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GRFormer: Grouped Residual Self-Attention for Lightweight
Single Image Super-Resolution

Anonymous

ABSTRACT
Previous works have shown that reducing parameter overhead and
computations for transformer-based single image super-resolution
(SISR) models (e.g., SwinIR) usually leads to a reduction of per-
formance. In this paper, we present GRFormer, an efficient and
lightweight method, which not only reduces the parameter over-
head and computations, but also greatly improves performance.
The core of GRFormer is Grouped Residual Self-Attention (GRSA),
which is specifically oriented towards two fundamental compo-
nents. Firstly, it introduces a novel grouped residual layer (GRL) to
replace the QKV linear layer in self-attention, aimed at efficiently
reducing parameter overhead, computations, and performance loss
at the same time. Secondly, it integrates a compact Exponential-
Space Relative Position Bias (ES-RPB) as a substitute for the original
relative position bias to improve the ability to represent position
information while further minimizing the parameter count. Ex-
tensive experimental results demonstrate that GRFormer outper-
forms state-of-the-art transformer-based methods for x2, x3 and
x4 SISR tasks, notably outperforming SOTA by a maximum PSNR
of 0.23dB when trained on the DIV2K dataset, while reducing the
number of parameter and MACs by about 60% and 49% in only
self-attention module respectively. We hope that our simple and
effective method that can easily applied to SR models based on
window-division self-attention can serve as a useful tool for fur-
ther research in image super-resolution. The code is available at
https://github.com/sisrformer/GRFormer.

1 INTRODUCTION
Single Image Super-Resolution (SISR) aims to enhance image res-
olution by reconstructing a high-resolution image from a low-
resolution counterpart. With the development of CNN-based and
transformer-based SR models, one achievement after another has
been achieved for single image super-resolution tasks. For whether
CNN-based models or transformer-based ones, it is an easy way to
improve performance by increasing the number of the network lay-
ers and feature dimension, accompanied by the increase of parame-
ters and calculations. A straight question should be: Is it possible to
improve the performance while reducing number of the parameters
and calculations for transformer-based SR models? Motivated by
this question, we conduct in-depth research into self-attention and
present three sub-questions concerning self-attention:
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Figure 1: (a) shows the comparisons of self-attention of re-
cent transformer-based SR models in terms of multiply-
accumulate operations (MACs) and parameters. (b) shows
SISR comparisons of recent SR models (×4) in terms of
PSNR on Urban100, network parameters. Our model (GR-
Former) outperforms the SOTAmodel (x4) by 0.19dB in PSNR
score while having comparably low network parameters and
MACs.

• RQ1. Is there any redundancy within self-attention?
• RQ2. Can the expressive power of self-attention be further im-
proved?

• RQ3. Is there a better alternative to relative position bias for
representing the position information?

The research into RQ1. Self-attention [20] has achieved great
performance in the fields of text, image, and video since it was pub-
lished in 2017. However, despite the effectiveness of self-attention
mechanisms, they are often criticized for their extensive parameter
count and computational demands. Existing work [3] has observed
redundancy in self-attention layers, but its solutions focus mainly
on how to reduce the size of the attention window [21]. Through
empirical analysis, we explore the interaction among the varying
parameter counts, MACs, and the performance of the self-attention
module, as depicted in Fig. 1. This analysis reveals significant po-
tential for optimization in both parameters and computational ef-
ficiency within the SwinIR’s self-attention mechanism. Inspired
by these findings, we propose a novel grouping scheme of Q, K, V
linear layer, aimed at reducing both the parameter overhead and
computational complexity.
The research intoRQ2. In the field of single image super-resolution,
previous transformer-based approaches [12, 22] have primarily
utilized residual learning [8] at the outer layers of self-attention
mechanisms. This methodology has been effective in mitigating
network degradation and improving the expressive capabilities of
deep networks. Given the success of residual learning in enhancing
network performance, an intriguing question arises: could the inte-
gration of residual connections within the Query, Key, and Value
(QKV) linear layers of self-attention mechanisms further augment
their expressive power? Motivated by this consideration, our work

https://github.com/sisrformer/GRFormer
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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explores the incorporation of residual connections directly into
the QKV linear layers, aiming to enhance their representational
efficacy in deep neural architectures.
The research into RQ3.When self-attention [20] is proposed, it
uses position embedding to provide position information of words
in text. After self-attention is applied to computer vision, relative
position bias (RPB) is found to be more suitable for representing
relative position information, which is important for models in com-
puter vision. However, RPB has four fatal flaws: First, if we assume
the shape of the window in self-attention is H × W, the number
of parameters occupied by RPB is (2H-1)×(2W-1), which is a huge
parameter overhead. Second, the original RPB in SwinIR[12] sets
a position parameter for each position within the window, which
is not only the redundancy of the parameters, but also it is easy to
be interfered by noises during training. Specifically, many subtle
fluctuations can be found in the figures of Fig. 2 (a). Third, during
training, each parameter of RPB is trained independently, ignoring
the relative relationship between the weights of different positions.
Fourth, RPB fails to clearly reflect intuition: For reconstructing an
image, near pixels tend to be more important than far pixels. Moti-
vated by this, we designed an Exponential-Space Relative Position
Bias (ES-RPB) to replace RPB.

First and foremost, to solve the RQ1, we propose a grouping
scheme for the QKV linear layer. Furthermore, to solve the RQ2
and compensate for performance loss from the grouping scheme,
we add residuals for the QKV linear layer. Lastly, to solve RQ3, we
propose Exponential-Space Relative Position Bias (ES-RPB). The
three methods above constitute the two fundamental components
of Grouped Residual Self-Attention (GRSA). Given the proposed
GRSA, we design a lightweight network for SR, termed GRFormer.
We evaluate our GRFormer on five widely-used datasets. Benefit-
ing from the proposed GRSA, our GRFormer achieves significant
performance improvements on almost five benchmark datasets. No-
tably, trained on DIV2K dataset[19] for x2 SR task, our GRFormer
achieves a 33.17 PSNR score on the challenging Urban100 dataset[9].
The result is much higher than recent SwinIR-light[12](32.76) and
the SOTA lightweight SR model (32.94). This improvement is consis-
tently observed across x3 and x4 tasks. Comprehensive experiments
show that GRFormer not only outperforms previous lightweight
SISR models [12, 14, 22], but also reduces the parameter count by
about 20% in total model architecture, compared with SwinIR [12]
(1000k parameters) with the same hyperparameter. To sum up,our
contributions can be summarized as follows:
• We propose a novel Grouped Residual Self-Attention (GRSA) for
lightweight image super-resolution, which can not only reduces
the parameter count but also enhances the performance in an
easy-to-understand way for SR tasks. In addition, our proposed
GRSA module can seamlessly replace the self-attention module
and its variants in other transformer-based SR models, simulta-
neously reducing the number of parameter by about 60% and the
number of MACs by about 49% in only self-attention module.

• Based on GRSA, we construct a novel transformer-based SR
network, termed GRFormer. Our GRFormer achieves state-of-
the-art performance in lightweight image SR, and outperforms
previous lightweight SISR networks by a large margin in most of
the five benchmark datasets.

(a)

(b)

Figure 2: Comparison between RPB and ES-RPB. The sub-
figure (a) and (b) showcase the relative position bias (RPB)
from the SwinIR model and an GRFomer model where RPB
are replaced to ES-RPB, respectively. The subfigure at 𝑖𝑡ℎ row
and 𝑗𝑡ℎ column corresponds to the relative position bias of 𝑖𝑡ℎ
GRSAB Group and 𝑗𝑡ℎ GRSAB in the network. These figures
specifically highlight the horizontal evolution of the relative
position bias values. The x-axis extends from 0 to 62, while
the y-axis corresponds to the data taken at the 7th point on
the x-axis from an RPB matrix of size 15x63.

2 RELATEDWORKS
2.1 CNN-Based Image Super-Resolution
A lot of CNN-based SR models [1, 13, 17] have emerged since SR-
CNN [6] introduces CNN-based deep learning method for image
SR. With very deep convolutional network and residual learning,
VDSR [10] achieves a high accuracy for image super-resolution,
which deeply influences the subsequent SR models. In order to ac-
celerate SR inference process, FSRCNN [7] learns the mapping from
the original low-resolution image to high-resolution and perform
an upsampling operation at the end of the network. The pipeline
with pixel shuffle upsampling is widely used by subsequent mod-
els. While most of other CNN-based SISR methods mainly focus
on wider or deeper architecture design, SAN [5] explores more
powerful feature expression and feature correlation learning.

2.2 Transformer-based Image Super-Resolution
Since Swin Transformer [16] introduces hierarchical architecture
and shifted windowing scheme, the feasibility of transformer appli-
cation in the field of computer vision has been greatly improved.
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In order to introduce transformer into the field of image super-
resolution, SwinIR[12] is proposed, which has been baseline model
for transformer-based SR models. However, for some lightweight
scenarios, the amount of parameters and calculations in SwinIR is
still too large and its relative position bias lacks a certain organiza-
tion.

2.3 Residuals
Deeper neural networks are more difficult to train, which prevents
implementation of deeper networks to improve performance. To
ease the difficulty in training of deeper networks, deep residual
learning framework is proposed, which helps a large number of
subsequent deep models to improve performance. There are a lot
of explanations on the reason why residual learning works, among
which two are popular: First, residual learning enhance the fitting
ability of deep model. Second, residual learning reduces the diffi-
culty of training the model, making it easier to train a better model.
Those inspires us to use residual learning framework to ease the
difficulty in training of self-attention.

2.4 Redundancy of self-attention
Since self-attention [20] is proposed, a large amount of research
has been devoted to solving the redundancy of self-attention. After
analysis of the empirical similarity of pairwise attention scores
across heads and layers, those pairwise attention scores in multiple
heads in multiple layers are found to be considerably redundant
and Reuse Transformer [2] is proposed to solve the redundancy. Al-
though Reuse Transformer solves the redundancy of self-attention
across heads and layers, it fails to pay attention to the redundancy
within self-attention. For image super-resolution, SRFormer [22]
shrinks the channel dimensions of K and V matrices and then per-
mutes to convey the part of spatial information into the channel
dimension, which reduces the redundancy within self-attention
while not degenerating too much performance. However, The re-
duction of the channel dimension of Q and K matrices will make it
difficult to add mechanisms such as residuals on this basis. It can
be seen from the above discussion that, there is a lot of redundancy
within self-attention.

2.5 Relative position bias
When self-attention is proposed to solve problems in the field of
natural language processing (NLP), absolute position embedding
is designed to supplement position information of words in text.
After self-attention is applied into image super-resolution, relative
position bias enjoys more popularity than the absolute position
embedding, because relative position bias can provide the relative
position information, which is intrinsically more suitable for image
super-resolution. However, there are some problems concerning rel-
ative position bias that cannot be ignored, such as parameter redun-
dancy, weak ability to resist interference during training and so on.
Afterwards, in order to tackle resolution gaps between pre-training
of large vision models, SwinIR-v2 [15] proposes a log-spaced contin-
uous position bias method to effectively transfer large-scale models
pre-trained using low-resolution images to downstream tasks with
high-resolution inputs. Although the log-spaced continuous posi-
tion bias is designed to solve the problem of resolution difference

of pre-trained large-scale models, it is very inspiring for the design
of relative position bias of transformer-based SR models.

3 METHOD
3.1 Overall Architecture
The overall architecture of our GRFormer is shown in Fig. 3, con-
sisting of three parts: shallow feature extraction, deep feature
extraction, and image reconstruction. Given the LR input 𝐼𝐿𝑅 ∈
𝑅𝐻×𝑊 ×𝐶𝑖𝑛 , we first use a 3×3 convolution 𝐿𝑆𝐹 to transform the
low-resolution image 𝐼𝐿𝑅 to shallow feature 𝑋0 ∈ 𝑅𝐻×𝑊 ×𝐶 as

𝑋0 = 𝐿𝑆𝐹 (𝐼𝐿𝑅) (1)

where 𝐶𝑖𝑛 and C is the channel number of LR input and shallow
feature. This convolution layer simply converts the input from
image space into high-dimensional feature space. Then, we use
N grouped residual self-attention block groups 𝐿𝐺𝑅𝑆𝐴𝐵𝐺 and a
3×3 convolution layer 𝐿𝑐𝑜𝑛𝑣 at the end to extract the deep feature
𝐼𝐷𝐹 ∈ 𝑅𝐻×𝑊 ×𝐶 . The process can be expressed as

𝑋𝑖 = 𝐿𝐺𝑅𝑆𝐴𝐵𝐺𝑖 (𝑋𝑖−1),
𝐼𝐷𝐹 = 𝐿𝑐𝑜𝑛𝑣 (𝑋𝑁 ) + 𝑋0

(2)

In GRSAB Group, given𝑋𝑖 as input, we use M grouped residual self-
attention block 𝐿𝐺𝑅𝑆𝐴𝐵 to get𝑋𝑖,𝑀 . Then we use a 3×3 convolution
layer 𝐿𝑐𝑜𝑛𝑣 to get 𝑋𝑖+1. The process can be expressed as

𝑋𝑖,0 = 𝑋𝑖 ,

𝑋𝑖, 𝑗 = 𝐿𝐺𝑅𝑆𝐴𝐵 𝑗 (𝑋𝑖,𝑗−1 ),
𝑋𝑖+1 = 𝐿𝑐𝑜𝑛𝑣 (𝑋𝑖,𝑀 ) + 𝑋𝑖,𝑀

(3)

Finally, we use a 3×3 convolution layer 𝐿𝑐𝑜𝑛𝑣 to get better feature
aggregation, and aggregate shallow and deep features to reconstruct
HR image 𝐼𝐻𝑅 ∈ 𝑅𝐻×𝑊 ×𝐶𝑜𝑢𝑡 as

𝐼𝐻𝑅 = 𝐿𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒 (𝐿𝑐𝑜𝑛𝑣 (𝐼𝐷𝐹 ) + 𝐼𝑆𝐹 ), (4)

where 𝐶𝑜𝑢𝑡 is the channel number of the high-resolution image
and 𝐿𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒 is a PixelShuffle [18] module.

3.2 Grouped Residual Self-Attention Block
The Grouped Residual Self-Attention Block (GRSAB) mainly con-
sists of two core components: Grouped Residual Self-Attention
(GRSA), Feed Forward Network module (FFN). Given the input of
GRSAB as 𝐼𝑖𝑛 ∈ 𝑅𝐻×𝑊 ×𝐶 , we first use a grouped residual self-
attention module 𝐿𝐺𝑅𝑆𝐴 to learn the global relationships of pixels
in a window. After 𝐿𝐺𝑅𝑆𝐴 , we use a LayerNorm module to nor-
malize the feature, because the normalized features can eliminate
gradient vanishing and make the training stable. The process can
be expressed as

𝐼𝐺𝑅𝑆𝐴 = 𝑁𝑜𝑟𝑚(𝐿𝐺𝑅𝑆𝐴 (𝐼𝑖𝑛)) + 𝐼𝑖𝑛 (5)

where 𝐼𝐺𝑅𝑆𝐴 is the ouput of GRSA module. Then we use a feed
forward network to transform the 𝐼𝐺𝑅𝑆𝐴 to another feature space
and a LayerNorm module to normalize the feature as

𝐼𝑜𝑢𝑡 = 𝑁𝑜𝑟𝑚(𝐿𝐹𝐹𝑁 (𝐼𝐺𝑅𝑆𝐴)) + 𝐼𝐺𝑅𝑆𝐴 (6)
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Figure 3: Network architecture of the proposed GRFormer. It mainly consists of a shallow feature extraction module, several
grouped residual self-attention block groups (GRSAB Group) to learn deep feature mapping in an efficient and effective way,
and a high-resolution image reconstruction module.

3.3 Grouped Residual Self-Attention
To reduce the number of parameters as well as calculations and
enhance the performance, we introduce the Grouped Residual Self-
Attention (GRSA), which incorporates two novel and compact com-
ponents: grouped residual layer (GRL) and exponential-space rel-
ative position (ES-RPB). GRL consists of twp parts: residuals for
QKV linear layer to transform the feature space of self-attention
from the linear space to residual space, grouping scheme for QKV
linear layer to reduce the parameters and calculations. By reducing
the noise interference during training and making self-attention
sensitive to pixel distance, ES-RPB improves the expression ability
of position information. The proposed GRSA aggregates features
of pixels globally in the window. Specifically, given input of GRSA
as X ∈ 𝑅𝐻×𝑊 ×𝐶 , we uses 𝐿𝐺𝑅𝐿𝑄 , 𝐿𝐺𝑅𝐿𝐾 , 𝐿𝐺𝑅𝐿𝑉 to get Q, K, V.

𝑄 = 𝐿𝐺𝑅𝐿𝑄 (𝑋 ),
𝐾 = 𝐿𝐺𝑅𝐿𝐾 (𝑋 ),
𝑉 = 𝐿𝐺𝑅𝐿𝑉 (𝑋 )

(7)

where 𝐿𝐺𝑅𝐿𝑄 , 𝐿𝐺𝑅𝐿𝐾 , 𝐿𝐺𝑅𝐿𝑉 are the GRL module corresponding
to Q, K, V. Then we normalize Q and K and calculate the matrix
product of Q and K to get the similarity of Q and K. We multiply
𝑄𝐾𝑇 by a trainable self-attention scaling factor 𝜆, add 𝐵𝐸𝑆−𝑅𝑃𝐵
and perform a Softmax operation. Next, we calculate the matrix
product of the𝑄𝐾𝑇 after Softmax and V. If multi-head self-attention
is applied, we will use a grouped linear layer 𝐿𝑝𝑟𝑜 𝑗 as a projection
at the last to map the multi-head to one head. The formulation can
be written as:

GRSA = 𝐿𝑝𝑟𝑜 𝑗 (Softmax(𝜆 · Normalize(Q)
∗ Normalize(K)T + B𝐸𝑆−𝑅𝑃𝐵)V)

(8)

3.4 Grouped Residual Linear.
As a substitute for the QKV linear layer, the Grouped Residual
Linear (GRL) is one of the core modules of GRSA, with the objective
of reducing the amount of parameters and calculations and basically
maintaining the feature learning ability. By integrating concepts
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Figure 4: Qualitative comparison with recent state-of-the-art
lightweight image SR methods on the ×4 SR task.

of grouping and residuals into the self-attention mechanism, we
enhance its structural efficiency and functional effectiveness.
• Grouping scheme of QKV linear layer in self-attention.
A lot of works, such as [22], show that there is redundancy in
generation of Q, K, V and matrix product of Q, K. To reduce the
redundancy, we apply the idea of grouping. Given the input as X,
we divide X into two equal parts in the channel dimension and
then use two independent linear layers to get Q, K, V respectively.
Grouping scheme of Q, K, V will not significantly reduce the
interaction of pixel features, because the matrix multiplication of
Q and K in self-attention will offset these shortcomings to some
extent, which is discussed in section 3.6.

• Residuals of the Q, K, V linear layers. Residuals allows train-
ing to be performed in the residual space, which makes the net-
work find the optimal solution in the residual space. So we add
it into the QKV linear layer to transform the training space of
QKV linear layer from linear space to residual space in order to
enhance the feature learning ability of QKV linear layer.

Specifically, we assume the input of GRL module is X ∈ 𝑅𝐻×𝑊 ×𝐶 .
We first divide X in channel dimension into two parts 𝑋𝑖𝑛1 , 𝑋𝑖𝑛2 .
Then, by using residuals, each uses a linear layer to get𝑋𝑜𝑢𝑡1 ,𝑋𝑜𝑢𝑡2 .
Finally, we merge 𝑋𝑜𝑢𝑡1 , 𝑋𝑜𝑢𝑡2 in channel dimension to get the
output 𝑋𝑜𝑢𝑡 at the last as

𝑋𝑖𝑛1 , 𝑋𝑖𝑛2 = 𝑋,

𝑋𝑜𝑢𝑡1 = 𝐿𝐿𝑖𝑛𝑒𝑎𝑟1 (𝑋𝑖𝑛1 ) + 𝑋𝑖𝑛1 ,
𝑋𝑜𝑢𝑡2 = 𝐿𝐿𝑖𝑛𝑒𝑎𝑟2 (𝑋𝑖𝑛2 ) + 𝑋𝑖𝑛2 ,
𝑋𝑜𝑢𝑡 = 𝑋𝑜𝑢𝑡1 , 𝑋𝑜𝑢𝑡2 ,

(9)

where 𝐿𝐿𝑖𝑛𝑒𝑎𝑟1 and 𝐿𝐿𝑖𝑛𝑒𝑎𝑟2 are linear layers, 𝑋𝑖𝑛1 , 𝑋𝑖𝑛2 , 𝑋𝑜𝑢𝑡1 ,
𝑋𝑜𝑢𝑡2 ∈ 𝑅𝐻×𝑊 ×𝐶2 .

3.5 Exponential-Space Relative Position Bias
To solve the four disadvantages of original RPB mentioned in RQ3,
we propose the Exponential-Space Relative Position Bias (ES-RPB).
We design a exponential mapping for original absolute position
coordinates to forcibly add pixel distance sensitive rules to original
RPB, which makes it give more weight to nearby pixels. What’s
more, we use a tiny multilayer perceptron (MLP) to obtain the
mapping of all absolute position coordinates, which reduces the
impact of noise during training and makes it easier to be trained.
Specifically, we transform the abscissa ΔX and the ordinate ΔY in
absolute position coordinatematrix from linear space to exponential
space, and then we use a tiny MLP to get 𝐵𝐸𝑆−𝑅𝑃𝐵

Δ𝑋 = 𝑠𝑖𝑔𝑛(Δ𝑋 ) ∗ (1 − exp(−|𝛼 ∗ Δ𝑋 |)),
Δ𝑌 = 𝑠𝑖𝑔𝑛(Δ𝑌 ) ∗ (1 − exp(−|𝛽 ∗ Δ𝑌 |)),

𝐵𝐸𝑆−𝑅𝑃𝐵 = 𝑀𝐿𝑃 (Δ𝑋,Δ𝑌 )
(10)

where 𝛼 and 𝛽 is trainable distance-sensitive factors to control the
sensitivity to distances between reference pixel and the others in
the same window and the symbol * represents the multiplication of
each position in the matrix. MLP consists of two linear layers and
an activation layer sandwiched between them.

3.6 Explanation of the effectiveness of GRL
GRL consists of two parts: a grouping scheme and a residual struc-
ture. Grouping scheme is proposed to efficiently reduce the param-
eters and calculations without severe performance degradation,
and residual structure makes the network find the optimal solu-
tion in the residual space, thereby reducing the difficulty of feature
learning. The explanation is as follows:

• Explanation of the effectiveness of grouping scheme. First,
we analyse the effectiveness in reduction of parameters and
MACs. We assume that the number of input features is N. Then,
both the parameters and the MACs occupied by the linear layer
are𝑁 2. But, if we group the input features into halves and use two
linear layers with the number of input features of 𝑁2 to process
the two parts of input features, respectively, both parameters and
MACs occupied by the two linear layers are only 𝑁 2

2 . Obviously,
the grouping scheme can halve the number of parameters and
MACs.
Second, we analyse the effectiveness analysis in preventing se-
vere performance degradation. A possible concern about the
grouping scheme is that grouping features will result in a lack of
aggregation of the two groups of features, leading to performance
degradation. We will analyze below that, at least for Q, K matri-
ces, this worry is unnecessary. As shown in the self-attention
formula: Attention(𝑄,𝐾,𝑉 ) = Softmax

(
𝑄𝐾𝑇√
𝑑𝑘

)
𝑉 , Q and K matri-

ces are only used to perform matrix product and get𝑄𝐾𝑇 matrix.
During the matrix product of Q and K, even if we employ the
grouping scheme to divide the input features into two groups
and perform feature aggregation individually, the subsequent



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Quantitative evaluations of the lightweight GRFormer against state-of-the-art methods on commonly used benchmark
datasets. Best and second best results are marked in red and blue colors. #Params means the number of the network parameters.
#MACs denotes the number of the MACs which are calculated on images with an upscaled spatial resolution of 1280 × 720
pixels. #Weighted-Avg means the weighted average PSNR and SSIM on five benchmark datasets. #Weighted-Avg =

∑5
𝑖=1 𝑀𝑖 ×

𝑆𝑐𝑜𝑟𝑒𝑖 , where M is the number of images in the dataset and Score is the corresponding PSNR or SSIM score.
Scale Method Year #Params(/K) #MACs(/G) Set5 Set14 B100 Urban100 Manga109 #Weighted-Avg

×2

EDSR-baseline[13] CVPRW2017 1370 316.3 37.99/0.9604 33.57/0.9175 32.16/0.8994 31.98/0.9272 38.54/0.9769 34.37/0.9353
CARN [1] ECCV2018 1592 222.8 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765 34.27/0.9342
LatticeNet [17] ECCV2020 756 169.7 38.15/0.9610 33.78/0.9193 32.25/0.9005 32.43/0.9302 -/- -/-
SwinIR-light [12] ICCV2021 910 207.5 38.14/0.9611 33.86/0.9206 32.31/0.9012 32.76/0.9340 39.12/0.9783 34.87/0.9386
SwinIR-NG [4] CVPR2023 1181 210.7 38.17/0.9612 33.94/0.9205 32.31/0.9013 32.78/0.9340 39.20/0.9781 34.90/0.9385
DLGSANet-light [11] ICCV2023 745 169.4 38.20/0.9612 33.89/0.9203 32.30/0.9012 32.94/0.9355 39.29/0.9780 34.98/0.9389
SRFormer-light [22] ICCV2023 853 198.6 38.23/0.9613 33.94/0.9209 32.36/0.9019 32.91/0.9353 39.28/0.9785 34.98/0.9393
HPINet-M [14] AAAI2023 783 213.1 38.12/- 33.94/- 32.31/- 32.85/- 39.08/- 34.88/-
GRFormer (Ours) - 781 198.4 38.22/0.9614 34.01/0.9214 32.35/0.9018 33.17/0.9375 39.30/0.9785 35.07/0.9399

×3

EDSR-baseline [13] CVPRW2017 1555 160.1 34.37/0.9270 30.28/0.8417 29.09/0.8052 28.15/0.8527 33.45/0.9439 30.38/0.8692
CARN [1] ECCV2018 1592 118.6 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440 30.36/0.8676
LatticeNet [17] ECCV2020 765 76.2 34.53/0.9281 30.39/0.8424 29.15/0.8059 28.33/0.8538 -/- -/-
SwinIR-light [12] ICCV2021 918 94.2 34.62/0.9289 30.54/0.8463 29.20/0.8082 28.66/0.8624 33.98/0.9478 30.76/0.8746
SwinIR-NG [4] CVPR2023 1190 95.67 34.64/0.9293 30.58/0.8471 29.24/0.8090 28.75/0.8639 34.22/0.9488 30.89/0.8757
DLGSANet-light [11] ICCV2023 752 75.8 34.70/0.9295 30.58/0.8465 29.24/0.8089 28.83/0.8653 34.16/0.9483 30.89/0.8759
SRFormer-light [22] ICCV2023 861 88.3 34.67/0.9296 30.57/0.8469 29.26/0.8099 28.81/0.8655 34.19/0.9489 30.90/0.8764
HPINet-M [14] AAAI2023 924 110.6 34.70/- 30.63/- 29.26/- 28.93/- 34.21/- 30.95/-
GRFormer (Ours) - 789 93.5 34.67/0.9293 30.64/0.8481 29.27/0.8100 29.07/0.8702 34.35/0.9494 31.04/0.8781

×4

EDSR-baseline [13] CVPRW2017 1518 114.2 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.35/0.9067 28.14/0.8119
CARN [1] ECCV2018 1592 90.88 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084 28.19/0.8118
LatticeNet [17] ECCV2020 777 43.6 32.30/0.8962 28.68/0.7830 27.62/0.7367 26.25/0.7873 -/- -/-
SwinIR-light [12] ICCV2021 930 54.18 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151 28.51/0.8204
SwinIR-NG [4] CVPR2023 1201 55 32.44/0.8980 28.83/0.7870 27.73/0.7418 26.61/0.8010 31.09/0.9161 28.62/0.8221
DLGSANet-light [11] ICCV2023 761 43.2 32.54/0.8993 28.84/0.7871 27.73/0.7415 26.66/0.8033 31.13/0.9161 28.65/0.8227
SRFormer-light [22] ICCV2023 873 53 32.51/0.8988 28.82/0.7872 27.73/0.7422 26.67/0.8032 31.17/0.9165 28.67/0.8230
HPINet-M [14] AAAI2023 896 81.1 32.60/- 28.87/- 27.73/- 26.71/- 31.19/- 28.69/-
GRFormer (Ours) - 800 50.8 32.58/0.8994 28.88/0.7886 27.75/0.7431 26.90/0.8097 31.31/0.9183 28.80/0.8260

matrix product of Q and K will deeply aggregate the two groups
of features. The process can be shown as follows.
Specifically, given input of self-attention as X ∈ 𝑅𝑁×𝐶 , where N
is the number of pixels in a window and C is number of input
features, we cut up X into 2×2 blocks as(

𝑋11 𝑋12
𝑋21 𝑋22

)
= 𝑋, (11)

where 𝑋11, 𝑋12, 𝑋21, 𝑋22 ∈ 𝑅
𝑁
2 ×𝐶2 . By packing parameter matri-

ces of two grouped linear layers with input features of 𝐶2 into
one parameter matrix, we can assume the parameter matrices of

Q, K projections as
(
𝑀𝑄1
𝑀𝑄2

)
,
(
𝑀𝐾1
𝑀𝐾2

)
respectively, where𝑀𝑄1 ,𝑀𝑄2 ,

𝑀𝐾1 , 𝑀𝐾2 ∈ 𝑅
𝐶
2 ×

𝐶
2 . Then we can perform matrix product of X

and the parameter matrices of Q, K projections respectively as

𝑄,𝐾 =

(
𝑋11 𝑋12
𝑋21 𝑋22

)
∗
(
𝑀𝑄1∨𝐾1
𝑀𝑄2∨𝐾2

)
=

(
𝑋11 ∗𝑀𝑄1∨𝐾1 𝑋12 ∗𝑀𝑄2∨𝐾2
𝑋21 ∗𝑀𝑄1∨𝐾1 𝑋22 ∗𝑀𝑄2∨𝐾2

)
,

(12)

where ∨ represents the logical symbol "or". Then, we perform
the matrix product of Q and K as follows:

𝑄𝐾𝑇 =

(
𝑂11 𝑂12
𝑂21 𝑂22

)
, (13)

then, each element in matrix of 𝑄𝐾𝑇 is calculated:

𝑂11 = 𝑋11𝑀𝑄1𝑀𝐾1
𝑇𝑋11

𝑇 + 𝑋12𝑀𝑄2𝑀𝐾2
𝑇𝑋12

𝑇 ,

𝑂12 = 𝑋11𝑀𝑄1𝑀𝐾1
𝑇𝑋21

𝑇 + 𝑋12𝑀𝑄2𝑀𝐾2
𝑇𝑋22

𝑇 ,

𝑂21 = 𝑋21𝑀𝑄1𝑀𝐾1
𝑇𝑋11

𝑇 + 𝑋22𝑀𝑄2𝑀𝐾2
𝑇𝑋12

𝑇 ,

𝑂22 = 𝑋21𝑀𝑄1𝑀𝐾1
𝑇𝑋21

𝑇 + 𝑋22𝑀𝑄2𝑀𝐾2
𝑇𝑋22

𝑇

(14)

It can be seen from Equation 14, in the matrix product of Q and
K of the self-attention mechanism, both 𝑋11 and 𝑋12 are used to
perform a series of matrix products to get𝑂11,𝑂12, and so do𝑋21
and𝑋22 to get𝑂21,𝑂22, which aggregates two groups of features.
Therefore, the matrix product of Q and K will offset the weak
aggregation of input features brought by the use of grouping
scheme. In other words, our grouping scheme won’t lead to lack
of aggregation of the two groups of features and thereby won’t
lead to severe performance degradation.

• Explanation of the effectiveness of residual structure for
the QKV linear layer. As shown in Formula 8, self-attention
involves multiple matrix products, which makes it difficult for
the network to learn the optimal parameters. Given the input
of self-attention as X and the optimal Q, K, V as 𝑄 , 𝐾 , 𝑉 , if we
add the residual structure for QKV linear layer, the network only
needs to optimize 𝑄-X, 𝐾 - X, 𝑉 - X instead of 𝑄 , 𝐾 , 𝑉 . The
residual structure transforms the learning space of QKV linear
layer from linear space to residual space, enhancing the feature
learning ability of QKV linear layer.
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3.7 Explanation of the effectiveness of ES-RPB
Wemainly analyze the effectiveness of ES-RPB from the perspective
of parameter reduction and performance improvement for ES-RPB.
• Explanation of parameter reduction for ES-RPB.We assume
that the size of the window of self-attention is W×H and the self-
attention head is 1. The number of parameters occupied by the
original RPB is (2×W-1)×(2×H-1). Specifically, the window size
is usually set to 16×16, so the parameter count is 961 in this
case. In contrast, if we suppose that the number of features of
the hidden layer in MLP is 𝐶ℎ𝑖𝑑𝑑𝑒𝑛 , the amount of parameters
occupied by ES-RPB is 3𝐶ℎ𝑖𝑑𝑑𝑒𝑛 . Specifically, 𝐶ℎ𝑖𝑑𝑑𝑒𝑛 is set to
128 in our GRFormer, so the number of parameters occupied by
ES-RPB in GRFormer is 384, which is much less than 961. What
has to be noted is that, when the height and width of window
grow simultaneously at a linear rate, the parameters occupied by
original RPB will grow squarely, while the parameters occupied
by ES-RPB will not grow.

• Explanation of performance improvement for ES-RPB. The
ES-RPB mechanism within GRFormer improves performance
through three key strategies. Firstly, instead of training positional
parameters directly, which can be noise-sensitive, we utilize a
tiny MLP to get the 𝐵𝐸𝑆−𝑅𝑃𝐵 . This approach minimizes the noise
impact on positional parameters during training. Secondly, the
mechanism enhances interaction of parameters representing rela-
tive position information by training them through this tiny MLP
rather than in isolation. Thirdly, ES-RPB introduces a distance-
sensitive design. It employs an exponential function to map the
absolute positional coordinates (Δ𝑋,Δ𝑌 ) from linear space to
exponential space, resulting in Δ𝑋 and Δ𝑌 . This transformation
ensures that positions closer to the reference pixel exhibit more
significant changes, aligning with the principle that nearer pixels
should attract more attention.

4 EXPERIMENTS
In this section, we conduct experiments on the lightweight image
SR tasks, compare our GRFormer with existing state-of-the-art
methods, and do ablation analysis of the proposed method.

4.1 Experimental Setup
Datasets and Evaluation. For training, we use DIV2K (Agustsson
and Timofte 2017), the same as the comparison models, to train our
GRFormer. It includes 800 training images and 100 validation im-
ages, mainly concerning human, animals, plants, buildings, etc. For
testing, we use five public SR benchmark datasets: Set5 (Bevilacqua
et al. 2012), Set14 (Zeyde, Elad, and Protter 2010), B100 (Martin et
al. 2001), Urban100 (Huang, Singh, and Ahuja 2015) and Manga109
(Matsui et al. 2017) to evaluate model. The experimental results are
evaluated in terms of two objective criteria: peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM), which are both
calculated on the Y channel from the YCbCr space.
ImplementationDetails.We set the GRSABGroup number, GRSAB
number of a GRSAB Group, feature number, and attention head
number, window size to 4, 6, 60, 3, 8×32, respectively. The training
low-resolution patch size we use is 64×64. When training, we ran-
domly rotate the images by 0◦, 90◦, 180◦, 270◦ and randomly flip
images horizontally for data augmentation. We adopt the Adam

optimizer with 𝛽1 = 0.9 and 𝛽2 = 0.99 to train the model for 600k
iterations. The learning rate is initialized as 2 × 10−4 and halves
on {250000, 400000, 510000, 540000}-th iterations. We use L1 loss to
train the model. The whole process is implemented by Pytorch on
NVIDIA GeForce RTX 3080 GPUs.

4.2 Comparisons with State-of-the-arts
We compare our GRFormer with commonly used lightweight SR
models for upscaling factor×2,×3,×4, including EDSR [13], CARN[1],
LatticeNet[17], SwinIR[12], SwinIR-NG[4], HPINet[14], DLGSANet[11],
SRFormer[22]. We compare the parameters, calculations as well
as performance on five commonly used SR benchmark datasets
(Set5, Set14, B100, Urban100, Manga109). The comparison results
are grouped for ×2, ×3, ×4 upscaling factor.

Quantitative Comparison Table 1 shows quantitative compar-
isons in terms of PSNR and SSIM on five benchmark datasets. As
shown in Table 1, our GRFormer achieves the best PSNR score and
SSIM score for ×2, ×3, ×4 task on Set14, Urban100, Manga109 and
weighted average of the five benchmark datasets, and the PSNR
score and SSIM score achieved by our GRFormer is either quite close
or superior to that of SOTA model on Set5 and B100. What’s more,
GRFormer outperforms SOTA model on Urban100 and Manga109
by a large margin. It is worth noting that, our GRFormer outper-
forms SwinIR-light by a maximum PSNR of 0.42dB and SOTA by a
maximum PSNR of 0.23dB, which is a significant improvement for
image SR. Furthermore, our GRFormer outperforms SOTAmodel by
about 0.1dB on the weighted average of the five benchmark datasets
for ×2, ×3, ×4 task. Although our GRFormer achieves great perfor-
mance, the parameters and MACs of GRFormer is relatively low.
As shown in Fig. 1 (a), compared with the self-attention of other
transformer-based SR models, our GRSA has the smallest number
of parameters and calculations.

Qualitative Comparison We further show visual examples of
common used methods under scaling factor ×4. As shown in Fig.4,
we use three images reconstructed by EDSR, CARN, LatticeNet,
SwinIR, SwinIR-NG, SRFormer, HPINet and GRFormer to make
qualitative comparisons.

First, we make qualitative comparisons on Urban100-img062. We
can see that, the texture and color of the image reconstructed by
EDSR[13], CARN[1] and LatticeNet[17] are distorted, and the lower
right corner of the restored image is severely distorted. SwinIR,
SwinIR-NG and SRFormer reconstruct part of the texture well, but
there are still large areas with severe distortion. The relatively large
area of image texture reconstructed by HPINet is distorted. The
image reconstructed by our GRFormer has the smallest distortion
area, and the restored color is also closest to HR.

Second, we make qualitative comparisons on Urban100-img028.
Urban100-img028 is an image of the ground whose texture regularly
changes from large to small. The distorted and blurred areas of the
image reconstructed by EDSR, CARN, LatticeNet and SRFormer
are visibly large. For the middle area of the image, the image recon-
structed by SwinIR is relatively blurry and the image reconstructed
by HPINet is slightly blurry. There is relatively large deformation
in the image reconstructed by SwinIR-NG. Apparently, compared
with other models, the picture quality recovered by GRFormer is the



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: Effect of the GRFormer on SISR. SA-Params and SA-MACs mean the parameters and MACs in our GRSA respectively.
Params and MACs mean the parameters and MACs in our GRFormer. The ablation experiments are trained on DF2K for ×4 SR
task and tested on benchmark datasets (Set5, Set14, B100, Urban100, Manga109) to get PSNR and SSIM.

Model GRL ES-RPB #SA-Params #Params #SA-MACs #MACs Set5 Set14 B100 Urban100 Manga109Group Residuals
1○ ✓ ✓ ✓ 8.2K 810K 39.5M 50.8G 32.59/0.8999 28.92/0.7890 27.77/0.7435 26.97/0.8110 31.47/0.9195
2○ ✓ ✓ 10.3K 850K 38.9M 50.8G 32.46/0.8980 28.81/0.7865 27.72/0.7414 26.53/0.7998 31.07/0.9150
3○ ✓ 15.4K 973K 69M 61.4G 32.60/0.9000 28.93/0.7892 27.77/0.7437 27.00/0.8118 31.48/0.9197
4○ ✓ ✓ 15.4K 973K 69M 61.4G 32.63/0.9002 28.95/0.7897 27.78/0.7441 27.07/0.8139 31.56/0.9206
5○ ✓ ✓ 8.2K 810K 39.5M 50.8G 32.58/0.8996 28.91/0.7888 27.76/0.7434 26.97/0.8116 31.43/0.9191

best and GRFormer has good reconstruction effect on a relatively
small texture scale.

Third, we make qualitative comparison on Urban100-img074.
The direction of the window frame in Urban100-img074 (a) is clear,
which can help us easily distinguish whether it is distorted. It can
be easily seen that except GRFormer, the image reconstructed by all
other methods are more or less distorted. Obviously, our GRFormer
reconstructs the image very well in various details, which shows
the superiority of our method.

4.3 Ablation Analysis
We conduct ablation experiments to study the effect of Grouped
Residual Layer (GRL) and Exponential-Space Relative Position Bias
(ES-RPB). Ablation experiments are trained on DF2K and evaluated
on the Set5, Set14, B100, Urban100, Manga109 datasets. PSNR and
SSIM are adopted to evaluate the perceptual quality of recovered
images. We also adopt parameters and MACs on images with an
upscaled spatial resolution of 1280 × 720 pixels to evaluate the
complexity.

Specifically, ablation experiments are conducted as follows. First,
we start with a complete model with GRL and ES-RPB (model 1○).
Second, we replace the GRL of model 1○ with a linear layer to get
model 3○. Third, we replace the ES-RPB of model 1○ with RPB in
SwinIR [12] to obtain model 2○. Finally, to prove the effectiveness
of the grouping scheme and residual structure in GRL, we retain
the ES-RPB and remove the grouping scheme and residual structure
separately to obtainmodel 4○ andmodel 5○ respectively. The results
are shown in Table 2.

Effectiveness of GRL As shown in Table 2, compared with
model 3○, #SA-Params, #Params, #SA-MACs and #MACs of model
1○ reduce by 47%, 17%, 43%, 17% respectively. A significant re-
duction in #SA-Params and #SA-MACs can be seen, because our
methods mainly act on self-attention. Although the number of pa-
rameters and MACs are significantly reduced, application of GRL
barely degrades performance, which shows the superiority of GRL.
To further show the effectiveness of grouping scheme and residual
structure in GRL, we conduct further experiments to get the model
4○ and model 5○ respectively.

• Effectiveness of grouping scheme. Compared with model 4○, #SA-
Params, #Params, #SA-MACs and #MACs of model 1○ reduce by
47%, 17%, 43%, 17% respectively, but model 1○ suffers some perfor-
mance degradation, especially on Urban100 as well as Manga109.
However, our residual structure for QKV linear layer can greatly
reduce performance degradation.

• Effectiveness of residual structure. Compared with model 3○,
model 4○ doesn’t make any changes to #SA-Params, #Params,

#SA-MACs and #MACs, but significantly improves the perfor-
mance, especially on Urban100 and Manga109. Specifically, the
performance of model 4○ improves by 0.07dB on Urban100 and
0.08dB on Manga109 respectively.

Effectiveness of ES-RPB The core feature of ES-RPB is the
ability to represent the pixel position information. To highlight
the contribution of our ES-RPB, we replace the ES-RPB of model
1○ with RPB in SwinIR to get model 2○. As shown in Table 2,
compared with model 2○, model 1○ improves the performance on
five benchmark datasets in a large margin. Specifically, model 1○
outperforms model 2○ on Urban100 by 0.44dB PSNR score, which
is a notable boost in lightweight image super-resolution. To further
understand the reason of improvement brought by ES-RPB, we
draw the three dimensional view of both ES-RPB in model 1○ and
RPB in model 2○. As shown in Fig.2, we can see that, the curve
of ES-RPB in model 1○ is roughly similar to that of RPB in model
2○, because both ES-RPB and RPB represent the relative position
information. As shown in Fig.2, after comparing the curves of RPB
and ES-RPB, we can find two differences: First, minor fluctuations
on the curve of ES-RPB are much less than that of RPB, which
means that most of noise interference is removed. Secondly, we can
see from the curve of RPB that RPB is overfitted, which will lead
to poor generalization ability. In contrast, our ES-RPB use simpler
structure to improve generalization ability. It means that RPB learns
a lot of content that is not universally applicable, which affects its
generalization ability to represent relative position information.

5 CONCLUSION
In this paper, we propose GRSA, an efficient self-attention mecha-
nismwhich consists of two components: GRL to significantly reduce
the amount of parameters and calculations as well as ES-RPB to ef-
ficiently and effectively represent the relative position information
and make it distance-sensitive. Within GRL module, we use group-
ing scheme to reduce redundancy in terms of parameters as well
as calculations with as little performance degradation as possible
and residual structure to enhance feature learning ability for QKV
linear layer. Based on GRSA, we design a simple yet effective model
for lightweight single image super-resolution, called GRFormer.
Benefiting from GRL and ES-RPB, GRFormer not only significantly
reduces the number of parameters and MACs, but also enhances
the performance in terms of PSNR and SSIM. Experimental results
show the superior performance of GRFormer over previous state-
of-the-art lightweight SR models on benchmark datasets, especially
on Urban100 and Manga109. We hope our GRSA can serve as a
useful tool for future research on the design of SR models.
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