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A CONNECTION TO VARIATIONAL INFERENCE

A connection between Gaussian continuation and variational inference can be made. We start by
defining our variational distribution as the Gaussian q(ϑ|θ, λ) = N (θ, λI) (equivalent to the Gaus-
sian kernel kλ defined in Section 2.1). Given a likelihood function p(D|ϑ), and zero-mean prior
p(ϑ) = N (0,Σ), the ELBO is defined as

ELBO(θ, λ) = Eq(ϑ|θ,λ) [log (p(D|ϑ))]−DKL(q(ϑ|θ, λ) || p(ϑ)), (13)

where DKL is the KL divergence. For the two Gaussian distributions q(ϑ|θ, λ) and p(ϑ), the KL
divergence is

DKL(q(ϑ|θ, λ) || p(ϑ)) =
1

2

(
log
∣∣∣Σ(λI)

−1
∣∣∣−m+ tr

(
λIΣ−1

)
+ θTΣ−1θ

)
. (14)

This may be further separated into terms that depend on θ and λ,

DKL(q(ϑ|θ, λ) || p(ϑ)) =
1

2

(
log |Σ| −m log(λ)−m+ λtr

(
Σ−1

)
+ θTΣ−1θ

)
=

1

2
θTΣ−1θ +

1

2

(
λtr
(
Σ−1

)
−m log(λ)

)
+K,

(15)

where K includes terms that are constant with respect to both θ and λ.

We define our objective f(ϑ) = − log (p(D|ϑ)), so the expected value in equation 13 is
−Eq(ϑ|θ,λ) [f(ϑ)]. Then it follows that

−Eq(ϑ|θ,λ) [f(ϑ)] = −
∫
M
f(ϑ)kλ(θ − ϑ)dϑ = − [f ⋆ kλ] (θ). (16)

The ELBO may then be written as

ELBO(θ, λ) = − [f ⋆ kλ] (θ)−
1

2
θTΣ−1θ − 1

2

(
λtr
(
Σ−1

)
−m log(λ)

)
−K. (17)

Maximizing this ELBO with respect to θ here means finding the mean of the variational distribution
q with fixed covariance λI . The leading term of the ELBO is the Gaussian-convolved objective g.
In addition, due to the zero-mean prior, there is a quadratic regularization term on θ, and a term that
tries to match the magnitude of λ and Σ. If we consider the case of an uninformed prior (i.e., limit
of large Σ), then the ELBO simplifies to

ELBO(θ, λ) = − [f ⋆ kλ] (θ) +
1

2
m log(λ)−K. (18)

Maximizing equation 18 with respect to θ is then equivalent to minimizing the convolved objective
g. Because of the log(λ) term however, it is not guaranteed to be monotonic in λ.
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B OPTIMIZING THE CONTINUATION PARAMETER (PROOF OF THEOREM 2)

Before we begin, we establish the following lemma.
Lemma 1. Let kλ(θ) be a Gaussian kernel with covariance Σ = λI , as in Section 2.1. Then,

tr

(
∂2kλ
∂θ2

)
= 2

∂kλ
∂λ

. (19)

Proof. Starting with the λ derivative,

∂kλ
∂λ

=

(
1

2λ2
θTθ − m

2λ

)
kλ,

Then comparing to the θ Hessian trace,

∂2kλ
∂θ2

=

(
1

λ2
θθT − 1

λ
I

)
kλ

tr
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∂θ2

)
=

(
1

λ2
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(
θθT

)
− 1

λ
tr (I)

)
kλ

=

(
1

λ2
θTθ − m

λ

)
kλ

= 2
∂kλ
∂λ

.

To prove monotonicity, we show that dg
dλ (θ

⋆(λ), λ) > 0. Expanding out the derivative,

dg

dλ
(θ⋆(λ), λ) =

∂g

∂θ

∂θ⋆

∂λ
(θ⋆(λ), λ) +

∂g

∂λ
(θ⋆(λ), λ).

Because θ⋆(λ) is a stationary point, ∂g
∂θ = 0, so

dg

dλ
(θ⋆(λ), λ) =

∂g

∂λ
(θ⋆(λ), λ) =

[
f ⋆

∂kλ
∂λ

]
(θ⋆(λ)),

and because θ⋆(λ) is a minimum, ∂2g
∂θ2 is positive semi-definite, so tr

(
∂2g
∂θ2

)
> 0. Expanding the

Hessian trace,

tr

(
∂2g

∂θ2
(θ⋆(λ))

)
=

[
f ⋆ tr

(
∂2kλ
∂θ2

)]
(θ⋆(λ)) by linearity of the convolution

= 2

[
f ⋆

∂kλ
∂λ

]
(θ⋆(λ)) by Lemma 1

= 2
∂g

∂λ
(θ⋆(λ), λ) > 0.

This result may be slightly generalized for practical use. Because we showed that for any Gaussian-
convolved g,

tr

(
∂2g

∂θ2

)
= 2

∂g

∂λ
, (20)

g increases monotonically with λ not only when it is at a minimum with respect to θ, but whenever
the trace of the Hessian of g with respect to θ is positive. This implies that as long as we are in
a locally convex “valley” of g (for example, by initializing with (θ⋆(λ0), λ0)), then minimizing g
with respect to θ and λ will naturally bring λ toward zero. If ∂g

∂λ ever goes negative in practice, this
indicates that g is not locally convex in θ.
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C CHANGE OF VARIABLES

Optimizing a loss g with respect to λ would normally require enforcing that λ be nonnegative,
however this can be avoided with the substitution λ = exp(ψ). The Monte Carlo gradient estimator
for ψ is

∂g

∂ψ
=
∂g

∂λ

dλ

dψ
≈

(
1

N

N∑
i=1

(θ − ϑi)
T (θ − ϑi)−mλ

2λ2
f(ϑi)

)
(exp(ψ))

=
1

N

N∑
i=1

(θ − ϑi)
T (θ − ϑi)−m exp(ψ)

2 exp(ψ)
f(ϑi),

(21)

where the estimator for ∂g
∂λ is from equation 8. We can also reparameterize the random samples by

θ − ϑi =
√
λϵi, ϵ1, . . . , ϵN ∼ N (0, I), (22)

which allows us to cancel some terms, leading to

∂g

∂ψ
≈ 1

N

N∑
i=1

ϵTi ϵi −m

2
f
(
θ −

√
exp(ψ)ϵi

)
. (23)

If we include the regularization term from Section 2.5,

∂g

∂ψ
=
∂g

∂λ

dλ

dψ
≈

(
1

N
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(θ − ϑi)
T (θ − ϑi)−mλ

2λ2
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)
(exp(ψ))

=
1

N
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ϵTi ϵi −m

2
f
(
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√
exp(ψ)ϵi

)
+ βm exp(ψ).

(24)

To decouple the scaling of β from λ, we scale the regularization term by the initial λ0 (i.e., exp(ψ0))
without loss in generality, giving

∂g

∂ψ
=

1

N

N∑
i=1

ϵTi ϵi −m

2
f
(
θ −

√
exp(ψ)ϵi

)
+ βm exp(ψ − ψ0). (25)
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(a) Rastrigin (b) Levy (c) Styblinski-Tang

Figure 8: Optimization path on all 2D test functions. The colour of the trace corresponds to the
value of λ.

(a) Rastrigin (b) Levy (c) Styblinski-Tang

Figure 9: Optimization by continuation on all 2D test functions with large number of Monte Carlo
samples.

D 2D TEST FUNCTIONS

The non-convex functions used in this section, Rastrigin, Levy, and Styblinski-Tang, were chosen
for having many local minima and saddle points. For ease of visualization, all example test functions
are 2D. In all test cases, we use simple gradient descent with λ0 = 3. The optimizer is run for a
“warmup period,” meaning λ is held constant at λ0 for a certain number of iterations, after which
λ is also adapted by gradient descent. The learning rates for θ and λ, the warmup period, and the
total number of iterations are varied for each test case. All case-specific information is given in
Appendix E.

D.1 MANY MONTE CARLO SAMPLES

This scenario is an “ideal” case, where large numbers of Monte Carlo samples are used to estimate g
and ∇g by equation 7 and equation 8. This gives relatively low-variance estimates of these quantities
at each optimizer step, and this is reflected in the smooth descent towards each function’s respective
minimum.

Surface plots of each test function are given in Figure 8. They also show the optimization path from
each initial guess, first to the “convex minimum” (i.e. the minimum of g at λ0), which corresponds
to the warmup period, then to the final minimum as λ decreases to zero. The Rastrigin and Levy
functions behave similarly in that most of the optimization occurs during the warmup period, as
their respective convex minima closely coincide with their true minima. The Styblinski-Tang func-
tion however shows how continuation behaves when the local minima are more even. The convex
minimum is close to the midpoint between the four local minima. As λ decreases, the optimizer
approaches the true minimum in the bottom left corner.
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(a) Rastrigin (b) Levy (c) Styblinski-Tang

Figure 10: Optimization path on all 2D test functions. The colour of the trace corresponds to the
value of λ.

(a) Rastrigin (b) Levy (c) Styblinski-Tang

Figure 11: Optimization by continuation on all 2D test functions with one Monte Carlo sample.

The convergence plots of f , g, and λ over iteration number are shown in Figure 9. The values along
these plots correspond to the optimization path from Figure 8. In all the convergence plots, the fact
that continuation allows the optimizer to climb out of local minima is apparent in the non-monotonic
behaviour of f compared to the monotonic behaviour of g. The convex minimum is reached as g
plateaus, at which point the warmup period concludes and λ is allowed to decrease. When λ = 0,
g = f .

D.2 ONE MONTE CARLO SAMPLE

This scenario is a more realistic case. To minimize the difference in computational cost between
continuation and standard gradient-based optimization, only one Monte Carlo sample is used to es-
timate g and ∇g. In this special case, continuation amounts to adding Gaussian noise of diminishing
variance to θ during optimization.

Surface plots of each test function with optimization path are given in Figure 10. The effect of the
additional noise is apparent; all but Levy require a reduced learning rate and increased number of
iterations, and the Rastrigin optimizer settles in the wrong local minimum regardless. In the ideal
scenario shown previously, the warmup period eliminates variability in the final minimum due to
the initial guess for θ, since θ was optimized to a unique convex minimum. In this scenario it
still serves the same role, however the convex minimum is now a random variable drawn from a
potentially high-variance distribution. This is best exemplified with Rastrigin, as it resulted in the
optimizer finding an adjacent local minimum.

The convergence plots of f , g, and λ over iteration number are shown in Figure 11. The noisy
optimization is evident in all the convergence plots, especially in the slower descent of λ. Once
λ = 0 however, the optimizer is performing simple gradient descent.
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E 2D TEST FUNCTIONS AND OPTIMIZATION SETUPS

This section summarizes the test functions and their respective optimizer setups shown in Ap-
pendix D and the saddle function in Section 2.4. The test functions are the Rastrigin function,

f(θ) = 10m+

m∑
i=1

(
θ2i − 10 cos(2πθi)

)
, (26)

the Levy function,
f(θ) = sin2(πw1) + (wm − 1)2

(
1 + sin2(2πwm)

)
+

m−1∑
i=1

(wi − 1)2
(
1 + 10 sin2(πwi + 1)

)
,

where wi = 1 +
θi − 1

4
for all i = 1, . . . ,m,

(27)

and the Styblinski-Tang function,

f(θ) =
1

2

m∑
i=1

(θ4i − 16θ2i + 5θi). (28)

The saddle function is defined in Section 2.4. For all test functions, the parameter dimension m is
2. The true minima for each are listed in Table 1.

Table 1: Non-convex 2D test functions

Function Minimizer θ⋆ Minimum f(θ⋆)

Saddle, a = 0.01 ±(1.9222, 1.9222) −0.3431
Saddle, a = 0.02 ±(1.8451, 1.8451) −0.1920
Rastrigin (0, 0) 0
Levy (1, 1) 0
Styblinski-Tang (−2.9035,−2.9035) −78.3320

For each case, simple gradient descent was used with separate learning rates for θ and λ. The change
of variables (Appendix C) and regularization (Section 2.5) were not used for these test cases; they
were introduced only for the scenario of large machine learning problems.

The hyperparameter values for each case and figure in Section 2.4 and Appendix D are summarized
in Table 2.

Table 2: Optimization hyperparameters for non-convex 2D test functions

Monte Carlo Learning Learning Warmup /
Figure Function samples rate on θ rate on λ Total # iter.

4b Saddle, a = 0.01 4096 3× 100 3× 100 200/600
4a Saddle, a = 0.02 4096 3× 100 3× 100 200/600
8a, 9a Rastrigin 4096 3× 10−3 3× 10−3 750/1500
8b, 9b Levy 1024 1× 10−1 1× 10−1 150/300
8c, 9c Styblinski-Tang 4096 1× 10−2 1× 10−2 200/400
10a, 11a Rastrigin 1 1× 10−3 3× 10−3 1000/2000
10b, 11b Levy 1 1× 10−1 1× 10−1 150/300
10c, 11c Styblinski-Tang 1 3× 10−3 1× 10−2 300/600
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F DYNAMICAL SYSTEMS

The first learning problem is the Lotka-Volterra system of predator and prey populations,

d

dt

[
x
y

]
=

[
αx− βxy
δxy − γy

]
, (29)

which is parameterized by α, β, γ, and δ. To form the dataset, β and δ are held constant at 4/3
and 1 respectively, and α and γ are varied according to α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1} and γ ∈
{1, 1.25, 1.5, 1.75, 2}, leading to 30 different parameter instances and 30 corresponding time series.
The initial condition is fixed at [x0, y0] = [1, 1]. Each time series consists of solutions to equation 29
at 50 evenly spaced time slices in t ∈ [0, 20].

The second learning problem is the Lorenz system,

d

dt

[
x
y
z

]
=

[
σ(y − x)

x(ρ− z)− y
xy − βz

]
, (30)

which is parameterized by σ, ρ, and β. For this dataset, β is held constant at 8/3, and σ and ρ
are varied according to σ ∈ {9, 9.5, 10, 10.5, 11} and ρ ∈ {25, 26, 27, 28, 29, 30}, leading again to
30 different parameter instances and 30 corresponding time series. The initial condition is fixed at
[x0, y0, z0] = [5, 5, 5]. Each time series consists of solutions to equation 30 at 10 evenly spaced time
slices in t ∈ [0, 1].
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