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1. Notation Table

Symbol Interpretation
Γi A 3D point with index i
γi A 2D point in meters with index i
ξi x-coordinate of γi
ηi y-coordinate of γi
ρi Depth of the ith 3D point, Γi = ρiγi
R Rotation matrix
T Translation vector

Γi
A 3D point Γi in another camera coordinate,

related by Γi = RΓi + T
γi A 2D point in correspondence with γi
ρi Depth of Γi, Γi = ρiγi

ξi x-coordinate of γi

ηi y-coordinate of γi

r Distance of two 3D points, r = ∥Γi − Γj∥
S Scene surface

Ĉ
A curve as the intersection of a sphere

of radius r centered at Γi and the scene surface S

C A 2D curve as a projection from Ĉ
C A 2D curve corresponding to C

d
∗

The distance of γ from the curve C
∇ρ Gradient of depth ρ
∆ Feature point location error

Table 8. Notaions used in this paper.

2. Proof of Proposition 1
Proposition 1. Let r and r be the radial maps of the first
and second images, with respect to (γ0, ρ0) and (γ0, ρ0),
respectively. Given a putative correspondence, (γ, γ), the
first-order approximation of the level-set gives the distance
d of γ from the corresponding r-level-set as

d
∗
=

r|r − r|∥∥∥∥(ρ||γ||2 − ρ0γ
T
0 γ
)
∇ρ+ ρ

[
ρξ − ρ0ξ0
ρ η − ρ0η0

]∥∥∥∥ , (13)

where ρ(ξ, η) is the depth at γ(ξ, η).

Proof. The true correspondence point, γ∗, must lie on
the corresponding curve to the curve γ lies on, Figure 5, i.e.,
r(γ∗) = r(γ). Thus, γ∗ can be identified as any arbitrary
point γ̂ on the the r-level-set r that has the least perturbation
from the observed point γ, i.e.,

d = min
γ̂,r(γ̂)=r(γ)

d (γ, γ̂) . (14)

Figure 1. The geometric correspondence consistency constrains
a correspondence (γ, ρ) and (γ, ρ) to lie on the corresponding
curves with respect to a reference point correspondence (γ0, ρ0)
and (γ0, ρ0). Due to noise in feature location and depth measure-
ment, the observed correspondence γi is a perturbation of the true
corresponding point γ∗ by d

∗
.

Denoting γ = (ξ, η), γ̂ = (ξ̂, η̂), and γ = (ξ, η), this can
be written as

d = min
γ̂,r(γ̂)=r(γ)

[
(ξ̂ − ξ)2 + (η̂ − η)2

] 1
2

. (15)

Now, since the perturbation of γ̂ is small, a first-order ap-
proximation holds, i.e.,

r
(
ξ̂, η̂
)
∼= r

(
ξ, η
)
+∇r

(
ξ, η
) [ξ̂ − ξ

η̂ − η

]
. (16)

Using r(ξ̂, η̂) = r(ξ, η), this gives one equation in the un-
known (ξ̂, η̂), so that η̂ can be written in terms of ξ̂ by solv-
ing

r(ξ, η) = r(ξ, η)+rξ̂(ξ, η)(ξ̂−ξ)+rη̂(ξ, η)(η̂−η). (17)

This gives

(η̂ − η) =
r (ξ, η)− r

(
ξ, η
)
− rξ̂(ξ, η)(ξ̂ − ξ)

rη̂(ξ, η)
. (18)

Thus, the minimization over two variables in Equation 15
can be written over a single variable ξ̂,

d =argmin
ξ̂

[
(ξ̂ − ξ)2 +

r (ξ, η)− r
(
ξ, η
)
− rξ̂(ξ, η)(ξ̂ − ξ)

rη̂(ξ, η)

2] 1
2

=argmin
ξ̂

[(
1 +

r2
ξ̂
(ξ, η)

r2η̂(ξ, η)

)2

(ξ̂ − ξ)2

− 2
(
r(ξ, η)− r(ξ, η)

) rξ̂(ξ, η)
r2η̂(ξ, η)

(ξ̂ − ξ)

+

(
r(ξ, η)− r(ξ, η)

rη̂(ξ, η)

)2
] 1

2

(19)



Differentiating this equation with respect to ξ̂ and setting to
zero gives(
1 +

r2
ξ̂
(ξ, η)

r2η̂(ξ, η)

)
(ξ̂−ξ)−

(
r(ξ, η)− r(ξ, η)

) rξ̂(ξ, η)
r2η̂(ξ, η)

= 0,

(20)
so that

(ξ̂ − ξ) =

(
r(ξ, η)− r(ξ, η)

)
rξ̂(ξ, η)

r2
ξ̂
(ξ, η) + r2η̂(ξ, η)

=
r(ξ, η)− r(ξ, η)

∥∇r∥2 (ξ, η)
rξ̂(ξ, η).

(21)

Similarly,

(η̂ − η) =
r(ξ, η)− r(ξ, η)

∥∇r∥2 (ξ, η)
rη̂(ξ, η). (22)

Thus, the optimal distance d is,

d =
[
(ξ̂ − ξ)2 + (η̂ − η)2

] 1
2

=

[(
r(ξ, η)− r(ξ, η)

)2
∥∇r∥2 (ξ, η)

] 1
2

=
|r(ξ, η)− r(ξ, η)|

∥∇r∥ (ξ, η)
.

(23)
Now, this expression can be reduced to gradient of ρ which
is directly available, since by definition,

r(ξ̂, η̂) =
∥∥∥ρ̂(ξ̂, η̂)γ̂(ξ̂, η̂)− ρ0γ0

∥∥∥
=
[
(ρ̂ξ̂ − ρ0ξ0)

2 + (ρ̂η̂ − ρ0η0)
2 + (ρ̂− ρ0)

2
] 1

2

.

(24)

The gradient ∇r can be written in terms of ∇ρ̂,

∇r(ξ̂, η̂)

=
1

2


2(ρ̂ξ̂ − ρ0ξ0)(∇ρ̂ξ̂ + ρ̂e1)

+ 2(ρ̂η̂ − ρ0η0)(∇ρ̂η̂ + ρ̂ e2) + 2(ρ̂− ρ0)∇ρ̂(
(ρ̂ξ̂ − ρ0ξ0)

2 + (ρ̂η̂ − ρ0η0)
2 + (ρ̂− ρ0)

2
) 1

2


=

1

r(ξ̂, η̂)

((
(ρ̂ξ̂ − ρ0ξ0)ξ̂ + (ρ̂η̂ − ρ0η0)η̂ + (ρ̂− ρ0)

)
∇ρ̂

+ ρ̂

[
ρ̂ξ̂ − ρ0ξ0
ρ̂η̂ − ρ0η0

])

=
1

r(ξ̂, η̂)

[
(ρ̂ ∥γ̂∥2 − ρ0γ

T
0 γ̂)∇ρ̂+ ρ̂

[
1 0 0
0 1 0

]
(ρ̂γ̂ − ρ0γ0)

]
.

(25)
Using this expression in Equation 23 at (ξ, η) gives,

d
∗
=

|r(ξ, η)− r(ξ, η)|
∥∇r∥ (ξ, η)

=
r(ξ, η)|r(ξ, η)− r(ξ, η)|∥∥∥∥(ρ ∥γ∥2 − ρ0γ

T
0 γ)∇ρ+ ρ

[
1 0 0
0 1 0

]
(ρ γ − ρ0γ0)

∥∥∥∥ .
(26)
■

3. Time Savings from the GCC-filtered
RANSAC Contributed to Increased Accu-
racy

Table 1 in the main manuscript outlines the average cost as-
sociated with evaluating hypotheses, highlighting that the
primary computational expense is attributed to measuring
hypothesis support. The application of geometric corre-
spondence constraints to all pairs of triplet correspondences

Sequence Metrics
Narrow 1-frame

Classic / GCC-Filtered
7-frame apart

Classic / GCC-Filtered
14-frame apart

Classic / GCC-Filtered
22-frame apart

Classic / GCC-Filtered
Wide 30-frame

Classic / GCC-Filtered

fr1/desk
RPEtrans(cm)

RPErot(degree)
1.14 / 0.9
0.56 / 0.5

5.85 / 3.01
0.67 / 0.65

7.90 / 4.23
4.46 / 0.79

48.89 / 4.16
40.92 / 0.80

81.41 / 7.02
68.00 / 1.02

fr1/room
RPEtrans(cm)

RPErot(degree)
0.77 / 0.69
0.41 / 0.36

17.85 / 4.38
13.55 / 1.18

66.29 / 5.70
26.57 / 2.60

137.54 / 6.3
68.52 / 3.40

157.41 / 8.80
89.10 / 6.10

fr1/xyz
RPEtrans(cm)

RPErot(degree)
0.53 / 0.49
0.32 / 0.36

1.30 / 1.00
0.67 / 0.62

1.90 / 1.41
0.94 / 0.82

34.32 / 3.24
34.23 / 1.8

38 / 3.8
40.62 / 2.7

fr2/desk
RPEtrans(cm)

RPErot(degree)
2.62 / 0.89
0.72 / 0.49

6.9 / 2.47
6.4 / 2.3

9.81 / 3.56
9.79 / 3.49

34.32 / 4.39
12.9 / 4.22

14.41 / 4.97
13.6 / 5.1

fr3/struct
RPEtrans(cm)

RPErot(degree)
1.21 / 0.99
0.81 / 0.60

1.4 / 1.01
0.81 / 0.73

1.53 / 1.02
0.87 / 0.77

1.53 / 1.07
0.90 / 0.8

1.96 / 1.4
1.03 / 0.9

fr3/office
RPEtrans(cm)

RPErot(degree)
0.57 / 0.45
0.69 / 0.24

0.83 / 0.75
0.51 / 0.3

1.09 / 0.77
0.75 / 0.32

1.30 / 0.81
0.81 / 0.38

1.88 / 0.9
0.87 / 0.41

Number of Iterations 3000 / 7795 3000 / 8891 3000 / 12112 3000 / 14832 3000 / 16132
Execution Time (s) 0.13 0.13 0.13 0.13 0.13

Table 9. Pose estimation errors RPEtrans (cm) and RPErot (degree) classic RANSAC (Classic) and GCC-filtered RANSAC (GCC-Filtered)
across different baselines, keeping equal execution time.



that formulate a hypothesis significantly reduces the pool
of viable hypotheses. This reduction leads to an increase
in the cost of hypothesis formulation, denoted as α, but re-
sults in savings in the cost of measuring hypothesis support,
denoted as β, since only a fraction µ of N is computed.
Consequently, the total computational cost is expressed as
N(α + µβ). Although the cost α escalates from 0.96µs to
approximately 1.69µs, the reduction factor µ markedly de-
creases the overall cost. It is important to note that µ varies
with the outlier ratio; scenarios with wider baselines and
higher outlier counts see more pronounced speed improve-
ments as fewer hypotheses meet the constraints, thereby re-
ducing the cost of inlier support measurement.

In Table 9, the last two rows, where different baseline
performances are compared, the classic RANSAC algo-
rithm undergoes 3000 iterations, and the execution time
which is 0.138 seconds is fixed in this experiment. Un-
der these conditions, the number of iterations performed by
GCC-filtered RANSAC varies with the baseline distance:
7795 iterations for a narrow baseline (1-frame apart), 8891
iterations for 7-frame apart, 12112 iterations for 14-frame
apart, 14832 iterations for 22-frame apart, and 16132 iter-
ations for a wide baseline of 30 frames apart. These iter-
ations are average of all image pairs withing each baseline
category. Evidently, the results demonstrate that GCC en-
ables a higher number of iterations within the same time
frame, contributing to enhanced accuracy.


