Geometric Correspondence Consistency in RGB-D Relative Pose Estimation

Supplementary Material

1. Notation Table
Symbol Interpretation
T, A 3D point with index i
s A 2D point in meters with index ¢
& x-coordinate of ~y;
;i y-coordinate of ;
pi Depth of the ith 3D point, I'; = p;v;
R Rotation matrix
T Translation vector
T, A 3D point I'; in angther camera coordinate,
‘ related by I'; = RI; + T
o A 2D point in correspondence with ~y;
Pi Depth of T';, I'; = p,7;
& x-coordinate of 7,
; y-coordinate of 7;
r Distance of two 3D points, r = ||I'; — T'||
S Scene surface
¢ A curve as the intersection of a sphere
of radius r centered at I'; and the scene surface S
C A 2D curve as a projection from C
C A 2D curve corresponding to C'
d’ The distance of 7 from the curve C'
Vp Gradient of depth p
A Feature point location error

Table 8. Notaions used in this paper.

2. Proof of Proposition 1

Proposition 1. Let » and 7 be the radial maps of the first
and second images, with respect to (o, po) and (¥¢, 9g)>
respectively. Given a putative correspondence, (,7), the
first-order approximation of the level-set gives the distance
d of 7 from the corresponding r-level-set as
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Proof. The true correspondence point, ¥*, must lie on
the corresponding curve to the curve -y lies on, Figure 5, i.e.,
7(7*) = r(vy). Thus, ¥* can be identified as any arbitrary
point 4 on the the r-level-set 7 that has the least perturbation
from the observed point 7, i.e.,

where p(€,7) is the depth at J(&,7).
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Figure 1. The geometric correspondence consistency constrains
a correspondence (v, p) and (7, p) to lie on the corresponding
curves with respect to a reference point correspondence (o, po)
and (¥, Py)- Due to noise in feature location and depth measure-
ment, the observed correspondence 7, is a perturbation of the true
corresponding point " by d".

Denoting v = (£,7), ¥ = (£,7), and 5 = (&, 7), this can
be written as

d:
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Now, since the perturbation of 4 is small, a first-order ap-
proximation holds, i.e.,

?(é,ﬁ) =~ 7 (€,7) + V7 (€,7) F 5}. (16)

Using 7(£,7) = r(£,n), this gives one equation in the un-

known (£, 7), so that /) can be written in terms of £ by solv-
ing
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Thus, the minimization over two Varjables in Equation 15
can be written over a single variable &,
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Differentiating this equation with respect to é and setting to
Zero gives
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so that
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Similarly,
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Thus, the optimal distance d is,
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Now, this expression can be reduced to gradient of p which
is directly available, since by definition,

The gradient V7 can be written in terms of Vp,
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Using this expression in Equation 23 at (£,7) gives,
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3. Time Savings from the GCC-filtered
RANSAC Contributed to Increased Accu-
racy

Table 1 in the main manuscript outlines the average cost as-

T(&n) = ||pENFEN) — PO’YOH sociated with evaluating hypotheses, highlighting that the
) 13 primary computational expense is attributed to measuring
= [(Pf —P00)” + (61 — PoTlo)” + (P — Po) : hypothesis support. The application of geometric corre-
24) spondence constraints to all pairs of triplet correspondences
S N Metri Narrow 1-frame 7-frame apart 14-frame apart 22-frame apart Wide 30-frame
equence WIS | Classic / GCC-Filtered|Classic / GCC-Filtered | Classic / GCC-Filtered | Classic / GCC-Filtered | Classic / GCC-Filtered
fr1/desk RPEans(cm) 1.14/0.9 5.85/73.01 7.90/4.23 48.89/4.16 81.41/7.02
RPE;(degree) 0.56/0.5 0.67/0.65 4.46/0.79 40.92/0.80 68.00/1.02
fr1/ro0m RPEans(cm) 0.77 /1 0.69 17.8574.38 66.29/5.70 137.5476.3 157.41/8.80
RPE;((degree) 0.41/0.36 13.55/1.18 26.57 /2.60 68.52/3.40 89.10/6.10
1/ RPEans(cm) 0.53/0.49 1.30/1.00 1.90/1.41 34.32/3.24 38/3.8
TYXYZ | RPE o (degree) 0.32/0.36 0.67/0.62 0.94/0.82 3423/18 40.62/2.7
f12/desk RPE(rans(cm) 2.62/0.89 6.9/2.47 9.81/3.56 34.32/4.39 14.41/4.97
RPE;o(degree) 0.72/0.49 6.4/2.3 9.79/3.49 12.9/4.22 13.6/5.1
f13/struct RPE(rans(cm) 1.21/0.99 1.47/1.01 1.53/1.02 1.53/1.07 1.96/1.4
e R PE o (degree) 0.81/0.60 0.81/0.73 0.87/0.77 0.90/0.8 1.03/0.9
f3/0ffi RPErans(cm) 0.57/0.45 0.83/0.75 1.09/0.77 1.30/0.81 1.8870.9
1/OMICe | R PE,oi(degree) 0.69 /0.24 0.51/0.3 0.75/0.32 0.81/0.38 0.87/0.41
Number of Iterations 3000/ 7795 3000/ 8891 3000/ 12112 3000 / 14832 3000/ 16132
Execution Time (s) 0.13 0.13 0.13 0.13 0.13

Table 9. Pose estimation errors RPE,s (cm) and RPE, (degree) classic RANSAC (Classic) and GCC-filtered RANSAC (GCC-Filtered)

across different baselines, keeping equal execution time.



that formulate a hypothesis significantly reduces the pool
of viable hypotheses. This reduction leads to an increase
in the cost of hypothesis formulation, denoted as «, but re-
sults in savings in the cost of measuring hypothesis support,
denoted as f3, since only a fraction p of IV is computed.
Consequently, the total computational cost is expressed as
N(a + pf). Although the cost « escalates from 0.96us to
approximately 1.69us, the reduction factor . markedly de-
creases the overall cost. It is important to note that ;. varies
with the outlier ratio; scenarios with wider baselines and
higher outlier counts see more pronounced speed improve-
ments as fewer hypotheses meet the constraints, thereby re-
ducing the cost of inlier support measurement.

In Table 9, the last two rows, where different baseline
performances are compared, the classic RANSAC algo-
rithm undergoes 3000 iterations, and the execution time
which is 0.138 seconds is fixed in this experiment. Un-
der these conditions, the number of iterations performed by
GCC-filtered RANSAC varies with the baseline distance:
7795 iterations for a narrow baseline (1-frame apart), 8891
iterations for 7-frame apart, 12112 iterations for 14-frame
apart, 14832 iterations for 22-frame apart, and 16132 iter-
ations for a wide baseline of 30 frames apart. These iter-
ations are average of all image pairs withing each baseline
category. Evidently, the results demonstrate that GCC en-
ables a higher number of iterations within the same time
frame, contributing to enhanced accuracy.



