One-Inlier is First: Towards Efficient Position
Encoding for Point Cloud Registration
—Supplementary Material—

Fan Yang Lin Guo Zhi Chen Wenbing Tao*
School of Artificial Intelligence and Automation
Huazhong University of Science and Technology, Wuhan 430074, China
{fanyang,linguo,z_chen,wenbingtao}@hust.edu.cn

A Appendix

In this supplementary material, we first provide the rigorous definitions of evaluation metrics (Sec.
A.1), then describe the network architectures (Sec. A.2), implementation details (Sec. A.3) and
datasets (Sec. A.4) in detail. We further provide additional ablation studies (Sec. A.5) and experi-
mental results (Sec. A.6). We then discuss the broader impact (Sec. A.7) of our work. Finally, we
show more qualitative results of registration on 3DMatch, 3DLoMatch and KITTI (Sec. A.8).

A.1 Evaluation Metrics

Following [1, 3, 9], we evaluate the proposed method with different metrics on 3DMatch/3DLoMatch
and KITTI. On 3DMatch and 3DLoMatch, we report Inlier Ratio (IR), Feature Matching Recall
(FMR) and Registration Recall (RR). On KITTI, the Relative Rotation Error (RRE), Relative
Translation Error (RTE) and Registration Recall (RR) are reported.

3DMatch and 3DLoMatch Inlier Ratio (IR) measures the fraction of correct correspondences in
the putative correspondences. A correspondence (x;,y;) € C is considered correct if the distance
between the two points is smaller than 7; = 10cm under the ground truth transformation T* =
{R*,t"} between X and Y. Given the predicted correspondence set C, Inlier Ratio of the point cloud
pair (X, Y) can be calculated by:

R= ST ) —y,ll, <l (1)
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where [-] is the Iversion bracket and ||-||,, is the Euclidean norm.

Feature Matching Recall (FMR) measures the fraction of point cloud pairs whose Inlier Ratio is
above a certain threshold 72 = 5%. It indicates the likelihood that the optimal transformation between
two point clouds can be recovered using some robust estimator such as RANSAC [6], based on the
predicted correspondence set C:
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where N is the number of all point cloud pairs.

Registration Recall (RR) is the most important and reliable metric, because it directly evaluates the
quality of the actual task of point cloud registration. Registration Recall measures the fraction of

*Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



correctly registered point cloud pairs. Two point clouds are considered as correctly registered if
their transformation error is below 73 = 0.2m. The transformation error is calculated as the Root
Mean Square Error (RMSE) of the ground truth correspondences C* after applying the estimated
transformation T:
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Besides, we keep with the original evaluation protocol in 3DMatch [26], and exclude the immediately
adjacent point clouds since they have very high overlap ratios.

KITTI Relative Rotation Error (RRE) measures the geodesic distance in degrees between the
estimated and ground truth rotation matrices:
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where R denotes the estimated rotation matrix.

Relative Translation Error (RTE) measures the Euclidean distance between the estimated and ground
truth translation vectors:
RTE = ||t —t|,, (6)

where t denotes the estimated translation vector.

Registration Recall (RR) on KITTI measures the fraction of correctly registered point cloud pairs
whose RRE and RTE are both below certain thresholds:

N
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Following [1, 3,9, 12, 25, 14], we compute the mean RRE and RTE only with the correctly registered
point cloud pairs on KITTI.

A.2 Network Architecture Details

The detailed network architecture is depicted in Fig. 5. We use an encoder-decoder architecture
based on KPConv backbone [20] for feature extraction. The voxel-grid subsampling [20] is used to
downsample the point clouds. As a preprocessing step, the input point clouds are first downsampled
with a voxel size of 2.5cm on 3DMatch/3DLoMatch and 30cm on KITTI before being fed into the
backbone. We use the same voxel size and convolution radius in the KPConv backbone as in [9],
i.e., the voxel size is doubled in each downsampling operation. Therefore each point downsampling
results in the same outcome as in [9]. The upsampling in the decoder is performed by querying the
corresponding feature of the nearest point from the previous layer. We follow the configurations of
KPConv in [9] and apply group normalization [23] after each KPConv layer. Since our network does
not rely on a lot of self- and cross- attention modules for feature aggregation and only needs to find
an inlier for feature reconstruction, our approach is lightweight and has a fast inference speed.

Coarse Matching After L times feature reconstruction, we leverage the reconstructed features
to find coarse correspondences. The score matrix S € RM*" between the reconstructed features

2
H; and Hy is first calculated by S;; = exp(— HH;( - Hy. H ). Then we apply a dual-softmax
; illy

operator[15, 19], i.e., applying softmax on both dimensions to obtain the probability of soft mutual
nearest neighbor matching. Formally, the probability of coarse matching P is computed as:

P;; = softmax(S;.), - softmax(S.;),. ®)

Based on the matching probability P, we select coarse matches corresponding to the top-k largest
entries in P:

C = {(x:,¥;)I(i,4) € topk; ;(Pi;)}. ©)



Fine Matching After establishing coarse correspondences, these correspondences are refined to
point level. Those refined correspondences are then used for point cloud registration. For each coarse
correspondence (X;, yj), its refined point correspondences are extracted from the corresponding

patches Pg( and Pf We first compute a similarity matrix s € R"*" using the feature matrices
FY € R™>*4 and FY € R™*? of the two patches:

s =FX(F)T/Vd, (10)
where m; = [P¥|, n; = |P§| d is the feature dimension.

Then we augment the similarity matrix s by appending a new row and new column as [16], filled with
a learnable dustbin parameter «v. The fine point matching problem can be formulated as an optimal
transport problem. We run the Sinkhorn algorithm [18] on s to solve this problem. Then the final soft
matching score s € R™:*"i ig obtained by dropping the last row and the last column of s. We utilize
S as the confidence matrix of the candidate matches and extract the fine point correspondences by the
mutual top-k selection strategy. A point correspondence is selected if the corresponding matching
score is among the k largest entries of both the row and the column. The final point correspondence
set C is a collection of all the refined correspondences from each coarse correspondence.

A.3 Implementation Details

We implement the proposed network in PyTorch [13]. All experiments are conducted on an Intel(R)
Xeon(R) Platinum 8255C CPU and an NVIDIA RTX 2080Ti GPU. We train our network using Adam
optimizer [10] with 40 epochs on 3DMatch/3DLoMatch and 80 epochs on KITTI. The batch size
is 1 and the weight decay is 106, The initial learning rate is 10~* and exponentially decayed by
0.05 after each epoch on 3DMatch/3DLoMatch and every 4 epochs on KITTI. We apply training
data augmentation as in [9]. We use the matching radius 7 = 5cm for 3DMatch/3DLoMatch and
7 = 60cm for KITTI to determine overlapping during the generation of both coarse-level and fine-
level ground truth matches. We randomly sample 128 coarse correspondences with patch size being
64 during training. we sample point correspondences with probability proportional to the matching
score during testing. The proposed joint optimization is repeated L = 2 times. The number of
correspondences in Cy,py 1s 50. We run 100 iterations of the Sinkhorn Algorithm.

A.4 Datasets

3DMatch and 3DLoMatch 3DMatch [26] is a collection of 62 scenes from SUN3D [24], 7-Scenes
[17], RGB-D Scenes v.2 [11], Analysis-by-Synthesis [21], BundleFusion [5] and Halbel et al. [§]
(Tab. 1). Individual scenes are captured from diverse indoor spaces (e.g. kitchens, offices, bedrooms,
living rooms) and different sensors (e.g. Microsoft Kinect, Structure Sensor, Asus Xtion Pro Live,
Intel Realsense). Each scene in 3DMatch is split into point cloud fragments, which are generated
by fusing 50 consecutive depth frames using TSDF volumetric fusion [4]. We utilize the voxel-grid
downsampled point clouds from [9] for training and follow its evaluation protocols for testing. The
dataset contains 46 scenes for training, 8 scenes for validation and 8 scenes for testing. The original
3DMatch [26] only considers point cloud pairs with >30% overlap. In addition to this benchmark
(3DMatch), we follow [9] to include the collection of point cloud pairs with overlaps between 10%
and 30% to form another benchmark (3DLoMatch).

Table 1: Raw data used in the 3DMatch [26] dataset and their licenses.

Datasets | License
SUNS3D [24] CCBY-NC-SA 4.0
7-Scenes [17] Non-commercial use only

RGB-D Scenes v.2 [11] (License not stated)
Analysis-by-Synthesis [21]] CC BY-NC-SA 4.0
BundleFusion [5] CCBY-NC-SA 4.0
Halbel et al. [8] CC BY-NC-SA 4.0

OdometryKITTI KITTI [7] is published under the NonCommercial-ShareAlike 3.0 License. It
contains 11 sequences scanned by a Velodyne HDL-64 3D laser scanner in outdoor driving scenarios.



Following [1, 3, 9], we use sequences 0-5 for training, 6-7 for validation and 8-10 for testing. In line
with [1, 3, 9], we further refine the provided ground truth poses using ICP [2] since them provided by
GPS are noisy, and we only pick point cloud pairs with at least 10m intervals for evaluation.

A.5 Additional ablation studies
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Figure 1: Additional ablation studies.
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The number of correspondences in (_Ztopk. We evaluate the impact of the number of correspon-
dences in Ctopk, which is used to generate the virtual correspondence. We vary the number of
correspondences in Ctopk and calculate the registration recall. As shown in Fig. 1 (a), the registration
recall improves with the increase of the number of correspondences in (_Jtopk, i.e., from 25 to 50, and
reaches saturation after 50 on 3DMatch dataset. On 3DLoMatch the registration recall reaches its
peak at 50 and decreases after 50, because the proportion of false correspondences in C,,,5, gradually
rises. We choose the number of correspondences in Ctopk is 50 in our method to balance accuracy
and speed.

Iterative joint optimization. Since we realize the joint optimization in an iterative fashion, by
repeating the joint optimization operation different times, we analyze the effect of the number of
joint optimization iterations on the final point cloud registration. As shown in Fig. 1 (b), iterative
joint optimization yields an increase of registration recall, which peaks at the second iteration. After
the second iteration the registration recall decreases as the number of iterations increases, a possible
reason is that as the network deepens, the learning of network parameters becomes difficult. We
choose L = 2 in our network, only repeating the joint optimization two times is one of the keys to
our fast inference speed.

The type of position encoding. We attempt two types of position encoding for encoding the point-
wise geometric position features: MLP position encoding and sinusoidal position encoding. For
MLP position encoding, we use a 5-layer MLP with 32-64-128-256-256 channels. For sinusoidal
position encoding, we extend the sinusoidal position encoding in [22] to 3D continuous coordinates.
Sinusoidal position encoding has a slightly lower performance in registration accuracy than MLP
type. Thus, we select the MLP position encoding.

Table 2: Influence of different position encodings.

| 3DMatch | 3DLoMatch
Pos. ‘RR(%) FMR (%) IR(%)‘RR(%) FMR(%) IR(%)

MLP| 92.4 98.1 623 | 76.1 84.6 27.5
Sine | 91.6 98.2 62.7 | 752 85.0 26.7

Absolute or relative position encoding. We provide an ablation study to show the comparison
between absolute and relative position encoding. Results can be found in Tab. 3, where we report
the results of ours, absolute position encoding and centroid based relative position encoding. For
absolute position encoding, we utilize the raw coordinates of point clouds to encode geometric
position features. For centroid based position encoding, we use the centroids as reference points for



relative position encoding. The results show that our relative position encoding achieves the best
performance.

Table 3: Comparison between absolute and relative position encoding.

| 3DMatch | 3DLoMatch
Model  |RR(%) FMR(%) IR(%)|RR(%) FMR(%) IR(%)

absolute 89.5 97.3 56.6 | 68.4 82.2 23.7
centroid based | 89.8 97.2 57.1 69.8 82.7 24.2
ours 92.4 98.1 62.3 | 76.1 84.6 27.5

A.6 Additional experimental results

We present the results of Relative Rotation Error (RRE) and Relative Translation Error (RTE) on
3DMatch and 3DLoMatch in Tab. 4. Since the results of some failure cases may produce extremely
large errors of translation and rotation, following [1, 3, 9, 14], we report the mean RRE and RTE for
the successfully registered point cloud pairs. This measurement strategy makes methods with high
registration recall more likely to have large mean errors because they include more difficult data in
the calculation of mean errors. As shown in 4, our method still achieves competitive performances
when compared with the closest competitor Gentransformer.

Table 4: Detailed results on the 3DMatch and 3DLoMatch datasets.

‘ 3DMatch ‘ 3DLoMatch

Methods | RRE (°) | RTE (m) | RRE (°) | RTE (m)

# Samples | 5000 2500 1000 500 250 5000 2500 1000 500 250 | 5000 2500 1000 500 250 5000 2500 1000 500 250
Geotrans | 1.871 1.924 1.929 1.959 2.047 0.065 0.067 0.066 0.066 0.068 |2.954 3.007 3.129 3.089 3.187 0.090 0.091 0.093 0.093 0.093
Ours 1.859 1.895 1.940 1.981 2.023 0.064 0.064 0.067 0.070 0.068 | 3.040 3.026 3.117 3.073 3.203 0.092 0.092 0.092 0.093 0.095

A.7 Broader Impact

We present a one-inlier based position encoding for point cloud registration. It is very efficient,
and competitive in term of computing overhead and inference speed. It provides a new perspective
for real-time accurate point cloud registration tasks. Our method is most likely to be applied to
autonomous driving and scene reconstruction. It could provide fast and accurate localization and
scene perception for autonomous vehicles. Besides, real-time scene reconstruction is the key for
intelligent embodied devices to realize scene understanding. Our method provide a new direction for
it. Additionally, we hope to test the effectiveness of our approach for other fields involving registration
task, including medical imaging and high-energy particle physics, etc. Point cloud registration is a
fundamental task in computer vision and computer graphics. Therefore, potential negative societal
impacts may occur when our method is applied to real scenarios. A possible case is the autonomous
driving scenarios: our algorithms may fail in the presence of complex environments resulting in
wrong driving decisions.

A.8 Qualitative Results

We show qualitative results on 3DMatch/3DLoMatch and KITTI in Fig. 2 and Fig. 3, respectively.
We also provide the visualization of failure cases of our method in Fig. 4. We observe that one
common failure case happens when the overlapping region is composed of repetitive structures or
textureless structures (e.g., wall, floor), resulting in failing to find reliable correspondences. The
potential solutions include rejecting outliers as a post-processing, or applying point cloud completion
based on the scene context.
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Figure 2: Qualitative registration results on 3DMatch and 3DLoMatch.



(a) Source (b) Target (c) Ground truth (d) Ours

Figure 3: Qualitative registration results on KITTI.
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Figure 4: Failure cases on 3DLoMatch.
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