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Abstract

Set prediction tasks require the matching between predicted set and ground truth
set in order to propagate the gradient signal. Recent works have performed this
matching in the original feature space thus requiring predefined distance func-
tions. We propose a method for learning the distance function by performing the
matching in the latent space learned from encoding networks. This method enables
the use of teacher forcing which was not possible previously since matching in
the feature space must be computed after the entire output sequence is generated.
Nonetheless, a naive implementation of latent set prediction might not converge
due to permutation instability. To address this problem, we provide sufficient con-
ditions for permutation stability which begets an algorithm to improve the overall
model convergence. Experiments on several set prediction tasks, including image
captioning and object detection, demonstrate the effectiveness of our method. Code
is available at https://github.com/phizaz/latent-set-prediction.

1 Introduction

Set prediction is a task where a model predicts multiple elements whose ordering is not relevant
for correctness. This task is central to many real-world problems such as object detection, image
captioning, and multi-speaker speech recognition. Object detection requires predicting a set of
bounding boxes without any specific ordering. Describing objects within an image is a kind of image
captioning yet perfectly suitable for set prediction. Multi-speaker speech recognition is also well
suited for set prediction since the order of transcripts is irrelevant. Though these tasks can naturally
be modeled as set prediction, traditional deep learning is not inherently suitable for these tasks.

Multi-layer perceptrons and convolution networks with traditional loss functions impose a specific
ordering on the prediction heads which hinders set prediction. A reasonable set prediction pipeline
requires the model’s prediction heads to be more flexible. Each head does not have a predefined target,
yet relies on its peers to determine what is best to predict to complete the target set. Recent works
[1, 2] emphasized using a Transformer model [3], which is permutation-invariant, coupled with a
permutation-invariant loss function as the main ingredients. Any traditional loss function can be made
permutation-invariant by solving for a minimum bijective matching between predicted set and ground
truth set via the Hungarian algorithm under a certain distance metric. After the assignment, the loss
function is calculated between the assigned pairs, and backpropagation is performed accordingly.
This scheme is known as Permutation Invariant Training (PIT).
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A distance metric used by the assignment must agree with the loss function in a way that the
assignment is kept after an optimization step on the loss function. A distance metric that fails this
criterion may switch pairings hindering the convergence. Hence, a distance metric is crucial to the
convergence property of the set optimization scheme. One may argue to use the loss function itself as
a distance metric. However, not all loss functions have meaningful scalar values. For example, the
vanilla GAN’s loss [4] is not insightful in terms of progress or distance. Combining loss functions
from different domains also complicates the matter because they are not easily comparable in their
scalar forms. In object detection, both L1 error loss and cross entropy loss are used to learn bounding
box prediction [2], but it is unclear how to define a proper distance metric from such a combination.
Either hand-tuned coefficients or different surrogate distance metrics may be needed to form an
effective distance metric. This begets the problem of selecting a proper distance metric for PIT. A set
prediction scheme that does not require a hand-tuned distance function is appreciable.

Another hardship related to PIT is when applying set prediction on sequence domains that require
teacher forcing to train. Auto-regressive with teacher forcing is often used for sequence prediction
such as speech recognition [5, 6] and machine translation [7, 3]. However, teacher forcing requires
a groundtruth assignment before it can begin prediction. PIT also relies on the teacher forcing
prediction to do minimum assignment, resulting in a chicken and egg problem. If the set cardinality
is small enough, it is possible to exhaustively teacher force with respect to all possible ground
truths requiring O(N2) forward passes through the model, and keep only those with the minimum
assignment distances for optimization.

What if the Hungarian assignment is done in a latent space instead? Since the latent space is learned,
the choice of any specific distance metric is alleviated – even a simple Euclidean distance is reasonable.
Since the latent space is prior to the sequence prediction, the prediction process knows exactly what
its ground truth is which allows for efficient, O(N), teacher forcing. This paper presents latent set
prediction (LSP) which enables the assignment in the latent space with Euclidean distance metric.
At the same time, it provides a convergence guarantee of the loss function by reducing the effect of
permutation switches that can be problematic when performing matching in the latent space. Our
contributions are as follows:

1. We propose a framework for deep set prediction that alleviates the need for hand-crafted
distance metrics.

2. This framework is efficient for the set of sequence predictions with teacher forcing requiring
only O(N) predictions, an improvement from the usual exhaustive O(N2).

3. We provide a convergence proof of set prediction under this framework.

2 Related works

Set prediction. There are mainly two families of set prediction: distribution matching and minimum
assignment. The distribution matching approaches learn P (Y |x) where Y is a set and x is an input.
DeepSetNet and variants [8–10] proposed a likelihood function for set prediction. An energy function
learned via adversarial samples was also proposed [11]. On the other hand, the minimum assignment
approaches rely on solving assignment problems. The loss function is calculated between the assigned
pairs afterward. Either Hungarian assignment (bijection) or Chamfer assignment is usually used
depending on tasks. Zhang et al. [12] proposed to mold a primitive set into a target set via gradient
signals from a set encoder. Kosiorek et al. [1] proposed a Transformer for set prediction. A similar
kind of design was also used in end-to-end object detection [2]. Besides the two assignments, a stable
marriage was proposed for set autoencoding pretraining [13].

Image captioning is not usually related to set prediction. This is true for impression captions such
as MS-COCO [14] which only describe the most salient objects. A different kind of captioning is
descriptive which describes individual objects in a scene and their interactions. A prominent example
is Visual Genome [15]. For the same reason, a chest radiology report is also descriptive [16]. Since
descriptive captions have no specific ordering, this task is actually a set prediction where the elements
are captions themselves. To the best of our knowledge, there is no practical approach for set of text
predictions that involves teacher forcing.

Object detection is formulated as a set prediction task where each bounding box is a set member.
Most object detection algorithms impose ordering by dividing the image into several grids. Each cell
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Figure 1: Latent set prediction (LSP) framework where x is an image and y’s are sentences (it can be
applied to any x and y). The Hungarian algorithm is used to find the minimum assignment between
s’s (predictions) and g’s (encoded y’s). This allows efficient teacher forcing at decoder D which is
not possible previously. The latent loss Llatent is applied to minimize the distance between the s-g
pairs. The task loss Ltask is applied as usual on the prediction. Only set prediction model and decoder
are required during inference.

is responsible for predicting bounding boxes whose centers reside in it. Anchors are introduced to
allow a single cell to support multiple objects [17, 18]. As a result, hand-crafted components are
needed for these methods to function efficiently. Though many works are focusing on removing the
use of anchors [19, 20], the dense grid prediction still remains. Later, DETR [2] directly applies set
prediction on bounding boxes whose process matches predicted boxes to ground truth boxes. To
achieve a satisfactory result, the matching cost has to be manually designed.

3 Latent Set Prediction (LSP)

A common set prediction pipeline has three components: a set prediction model, ground truths, and an
assignment mechanism. Our method is focused on the case of Hungarian assignment. Traditionally,
the assignment mechanism matches the ground truths with the model predictions in an output space
Y . Here, the pairing happens in a latent space RC .

3.1 Notations

Figure 2: s’s move toward y’s
designated by g’s. At the same
time, s’s may move away from
their g’s resulting in a switch.

We assume a set prediction modelF : X → RN×C whereX is the
input space andN is the cardinality of the set. Effectively, F outputs
N vectors in a latent space RC . The model F is also responsible
for set cardinality prediction. Each latent vector is passed through
a decoder D : RC → Y where Y is any output space. Note that
the decoder may also accept the input x ∈ X wherever the input is
required for better prediction. To pair in the latent space, we utilizes
another component called encoder E : Y ×X → RC where y ∈ Y
is an output and x ∈ X is its corresponding input. The encoder
maps elements of the output space as guiding vectors g ∈ RC in
the latent space to facilitate the assignment. Given a set of latent
vectors {s1, s2, . . . , sN} and guiding vectors {g1, g2, . . . , gN}, the
minimum assignment π is

π = argmin
π′∈P

N∑
i

‖sπ′(i) − gi‖2 (1)

where P is the set of all permutations of N letters.

A switch is said to occur when sπ(i) changes after a gradient update
as illustrated in Figure 2.

3.2 Method

Latent set prediction (LSP) begins by feeding an input x into the set prediction model F resulting
in a set of latent vectors s’s. s’s do not have designated targets until the corresponding guiding
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vector g’s are retrieved. To get g, each ground truth yi is mapped via the encoder resulting in
gi. The assignment algorithm is performed between s’s and g’s resulting in the minimum bijective
matching π. This pairs up each latent vector sπ(i) to the guiding vector gi and the associated ground
truth yi. Knowing its target, s goes through the decoder D resulting in ŷ. The task loss function
Ltask is calculated accordingly between ŷπ(i) and yi, and then the optimization is performed. Note
that s receives no training signal from g; g only gives s its goal. After an optimization step, as
sπ(i) moves along the task gradient toward better prediction of yi, it may move away from gi and
approach another guiding vector gj . This can cause a switch as demonstrated in Figure 2. Our
method incorporates several techniques that encourage stable pairing of s’s and g’s over time, which
turns out to be sufficient for the convergence of Ltask. A pictorial description of the LSP framework
is depicted in Figure 1.

The proof of convergence of Ltask (Section 4) indicates that the convergence hinges on the ever
smaller gaps between s’s and g’s under π. In fact, Ltask is bounded from above by a function of∑N
i

∥∥sπ(i) − gi∥∥2. Hence, not only that g’s give s’s their goals, g’s must also follow wherever s’s
go. By closing the gaps, it is less likely for a switch to happen. Should a switch happen, it would only
be between a short distance which is not as harmful to Ltask. This does not imply that we need to
avert switches at all costs. We can simply assign gi to si for all i to guarantee no switches. However,
it is ordered prediction, not set prediction. In a sense, switches should be welcomed as a sign of
learning a natural ordering as long as in the long run the gaps are still closing.

Therefore, we propose two mechanisms to make sure that the gaps between s’s and g’s are smaller
over time. First, we enforce an asymmetric latent loss to bring s’s and g’s together:

Ls→glatent =
∑
i

1

2
‖sπ(i) − [gi]‖22

Llatent = βLs→glatent + γLg→slatent

Lg→slatent =
∑
i

1

2
‖
[
sπ(i)

]
− gi‖22

Ltotal = Llatent + Ltask

(2)

where [·] is stop gradient, and β, γ control the loss strengths. Ideally, we want to set β = 0 since
s’s should only follow the training signals from Ltask. However, we found β = 0.1 to be useful in
practice providing a bit of help for g’s to meet sπ’s. We set γ = 1 as the default value and found it to
work well across experiments.

Figure 3: GC with rejection. s
is the leader in this case since
its ∇Ltask and ∇Llatent form
an obtuse angle. Its ∇Ltask
is rejected along the span of
its ∇Llatent when its bidirec-
tional latent gradient’s length
exceeds d ‖Ltask‖2.

However, the latent loss alone is not enough to guarantee conver-
gence. This is because the latent loss cannot anticipate the movement
of s’s. Even for a pair of infinitesimally close s and g, any sizeable
∇sπLtask can break apart the two. The second part which completes
the convergence proof is gradient cloning (GC) which copies the
task gradient ∇sπLtask from sπ’s to their respective g’s. Theoret-
ically, the distance between s and g is strictly decreasing which
satisfies the requirement for convergence.

In practice, the models that predict s’s and g’s may not be equally
capable as one may go faster than the other. To allow for this
discrepancy, we propose a stronger version of GC namely gradi-
ent cloning with rejection (GCR). With GCR, the leader of each
pair of sπ and g is slowed down when ‖∇sπLlatent −∇gLlatent‖2
is larger than d ‖∇Ltask‖2. The constant d (default d = 10−3)
is indicating whether s and g are sufficiently far apart (relative
to ‖∇Ltask‖2) requiring a slower leader. The leader is slowed
down by rejecting its ∇Ltask along the span of ∇Llatent. The one
with an obtuse angle between its task and latent gradients is con-
sidered a leader: 〈∇sπLtask,∇sπLlatent〉 < 0 (in case of s) or
〈∇sπLtask,∇gLlatent〉 < 0 (in case of g). d serves as a parame-
ter for choosing between GC (d =∞) and GCR with always rejection (d = 0). A smaller d puts a
stronger tendency for converging s and g at the cost of slower learning of s. The idea is depicted in
Figure 3 and described in Algorithm 2.

We summarize LSP in Algorithm 1 which can be implemented efficiently with modern deep learning
frameworks.
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Algorithm 1 Single training step of Latent Set Prediction (LSP)

Given x ∈ X,Y ∈ Y N , d ∈ R
S← F(x) . S ∈ RN×C , latent set element prediction

(Inference only)
Ŷ ← D(S) . Ŷ ∈ Y N , prediction on output space

(Training only)
G← E(Y, repeat(x)) .G ∈ RN×C , ground truth encoding
π ← Hungarian(G,S) . Equation 1
Ŷπ ← D(Sπ) . Ŷπ ∈ Y N , prediction on output space
Llatent ← Llatent(Sπ,G) . Equation 2
Ltask ← Ltask(Ŷπ,Y)
∇SπLtask,∇SπLlatent,∇GLlatent ← Backprop(Ltask + Llatent)
∇Sπ ← GCR(∇SπLtask,∇SπLlatent −∇GLlatent, d) . Algorithm 2
∇G ← GCR(∇SπLtask,∇GLlatent −∇SπLlatent, d) . Algorithm 2
Continue backpropagation to F ,D, E’s parameters

Algorithm 2 Gradient Cloning with Rejection (GCR)
Given∇Ltask,∇Llatent, and d ∈ R
obtuse← 〈∇Ltask,∇Llatent〉 < 0 . obtuse ∈ [0, 1]N , obtuse angles indicate leading positions
far← ‖∇Llatent‖2 > d · ‖∇Ltask‖2 . far ∈ [0, 1]N , large latent gradients indicate large distances
∇̂Llatent ← Llatent

‖Llatent‖2

∇Ltask ← ∇Ltask − (obtuse · far) · ∇̂Llatent ·
〈
∇Ltask, ∇̂Llatent

〉
. Gradient rejection

Return∇Ltask +∇Llatent

4 Convergence analysis

In this section, we show that gradient cloning (GC) technique together with a special case of
asymmetric latent loss, β = 0 in (2), is sufficient for the convergence of LSP to a local minimum
under the following mild assumptions:

1. Each latent vector si and each guiding vector gi is updated according to the gradients exactly
as expressed in the training dynamics defined in Section 4.1.

2. Ltask is L-smooth and satisfies the Polyak-Lojasiewicz condition. This is typically assumed
to prove the convergence of the gradient descent algorithm [21].

Under the standard gradient descent setup, the convergence of LSP is complicated by the fact that
each switch can increase the task loss as sπ(i) changes its target from yi to a new yj . Our gradient
cloning and asymmetric latent loss techniques ensure that even though switch can keep occurring
throughout the model training process, its impact on task loss will decay exponentially.

Detailed proofs are provided as an Appendix for interested readers. It should be noted that similar
results can be obtained for gradient cloning with rejection (GCR) and general cases of asymmetric
latent loss with β > 0.

4.1 LSP training dynamics with gradient cloning

We begin with the explicit notations for Algorithm 1. The training at each time point t+1 consists of
two steps. First, the assignment π is updated according to the values of s(t)π(i)’s and g(t)i ’s from the
previous time step as defined in (1). Then, the values of sπ(i)’s and gi’s are updated based on the
gradients from Ltask and Llatent with step size η and latent loss strength γ as defined in (2).

s
(t+1)

π(t+1)(i)
= s

(t)

π(t+1)(i)
− η∇sltask(s

(t)

π(t+1)(i)
, yi)

g
(t+1)
i = g

(t)
i − η

(
∇sltask(s

(t)

π(t+1)(i)
, yi) + γ∇gllatent(s

(t)

π(t+1)(i)
, g

(t)
i )
)
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where ltask(·, yi) subsumes the prediction head g(·). The lower case notations ltask and llatent corre-
spond to per-data-point loss functions.

A direct implication of gradient cloning, which attracts s and g together, is that the total distance∑
i ‖s

(t)

π(t)(i)
− g(t)i ‖2 decays exponentially. This consequently ensures that when a switch occurs at

time t, the distance between involved latent vectors ‖s(t)
π(t+1)(i)

− s(t)
π(t)(i)

‖2 also decay exponentially.
Hence, the impact of switch on Ltask decreases rapidly over the course of model training.

4.2 Impact of a switch on task loss

The impact of a switch on task loss can be illustrated mathematically using the L-smooth condition

ltask(s
(t+1)

π(t+1)(i)
, yi)−ltask(s

(t)

π(t)(i)
, yi) ≤

L

2
d2t+dt‖∇sltask(s

(t)

π(t)(i)
, yi)‖2−c‖∇sltask(s

(t)

π(t+1)(i)
, yi)‖22,

where c > 0 and dt = ‖s(t)π(t+1)(i)
− s(t)

π(t)(i)
‖2 is the distance between latent vectors involved in a

switch. It should be noted that the negative gradient term appears in a typical proof of convergence
for gradient descent while the terms with dt are introduced by the assignment step (1). In the absence
of a switch, task loss always decreases. However, if dt is large, the first two terms can dominate.

4.3 Convergence of LSP

By viewing the right-hand side of the inequality above as a quadratic function of dt, we can see that
if the magnitude of task gradients are larger than some factor of dt, then the right-hand side must be
negative. This implies that the task loss decreases. On the other hand, if the task gradients are small,
the Polyak-Lojasiewicz condition

1

2
‖∇sltask(x, y)‖2 ≥ µ · (ltask(x, y)− ltask(x

∗, y)) , where x∗ is a global minimum (3)

then implies that our optimization is already near a minimum. Thus, we put the two cases together to
obtain the following key result.
Theorem 4.1. If ltask(·, y) is L-smooth and satisfies the Polyak-Lojasiewicz condition, then

ltask(s
(t+1)

π(t+1)(i)
, yi)− ltask(s

∗
i , yi) ≤

C α
2t, if ‖∇sltask(s

(t)

π(t)(i)
, yi)‖ ≤ 3dt

η(1−Lη2 )

δ
(
ltask(s

(t)

π(t)(i)
, yi)− ltask(s

∗
i , yi)

)
, otherwise

where appropriate choices of step size η will ensure that all constants are positive and α, δ < 1.

This implies that the difference between the current task loss and the global minimum is bounded
above by the maximum of two sequences of positive real numbers, both converging to zero with
linear rates. Therefore, the task loss of LSP converges to a local minimum with a linear rate.

5 Experiments

We first demonstrate that GC and GCR help reduce switches in a synthetic dataset. Without our
methods, the models might not converge. Then, we apply LSP on common set prediction tasks such
as object detection and point cloud prediction (see Appendix B). One unique ability that LSP enables
is allowing teacher forcing in set of texts prediction scenarios which we demonstrate on a CLEVR
object description task and on a challenging MIMIC chest x-ray report generation task. Without LSP,
these kind of tasks were not possible to perform set prediction in due to the computational cost.

5.1 Synthetic dataset

This experiment aims to demonstrate the convergence properties of LSP variants (without GC, with
GC, and with GCR (d = 0)). Three sets of N random points from standard normal distribution were
generated. The three sets represent s’s, g’s, and y’s, all in Rdim space. Ltask(sπ, y) = ‖sπ − y‖22, i.e.
no prediction head. The loss is defined as Ltask(sπ, y) + αLlatent(sπ, g) where α serves as a relative
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(a) Convergence probability of LSP without GC (lighter means higher chance
of convergence). Those with GC or GCR converged in all of these settings.
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Figure 4: Comparing LSP with/without GC and GCR on the synthetic dataset.

strength between Ltask and Llatent. We altered α to better demonstrate their behaviors in practice since
both losses may be of different magnitudes. No neural networks were used in this experiment.

Convergence probability is how likely a trial will converge (from 100 trials). A trial is considered
converged if after 300 iterations1 Ltask < 0.01. A robust algorithm should always converge. Figure 4a
demonstrates LSP without GC on different N ’s and dim’s and α’s. The results confirmed that without
GC the training may not converge while those with GC converged robustly in all of these settings.
Positive factors for convergence are: smaller N , larger dim, larger α. In other words, keeping s
closer to g than the other s’s. Larger N and smaller dim reduce average spaces between points, and
smaller α leaves a larger gap between a leading s and a trailing g weakening the bond.

Switch ratio is the fraction of s’s that were matched to different y’s after an update. Decreasing
switch ratio as the training progresses is a good sign for convergence. We experimented with
N = 200,dim = 2, α = 0.5 and penalized the gradient towards g’s to be 0.5 times smaller than
those of s’s. This setting demonstrates a suboptimal encoder that cannot easily follow s’s. Figure 4b
that, with a suboptimal encoder, GCR (d = 0) reduces the switch ratio the fastest due to its ability to
slow down the faster s’s the most.

5.2 Object detection

We will demonstrate that LSP is applicable to common set prediction tasks such as object detection
and point cloud prediction (see Appendix B). The goal is to show that LSP achieves a competitive
performance compared to a manually designed assignment cost. We compared LSP against DETR
[2], which is a reasonably strong baseline, that can be adapted to work with LSP with minimal
changes. We used our modified MNIST dataset [22] in this experiment. The dataset contains 5,000
training and 1,000 test images. Each data point contains multiple randomly placed digits from the
MNIST dataset. To increase the difficulty of the dataset, each digit in the image was augmented
by using a random photometric distortion, morphological transformation, and random resizing. We
reported test AP of the last training epoch. APL was not reported because there is no large object in
our dataset. See Appendix Figure 6 for example images in our dataset.

Method AP AP50 AP75 APS APM

DETR [2] 43.5 71.0 49.1 39.8 64.5
LSP (GC) 31.1 62.3 26.8 28.3 48.9
LSP (GCR, d = 10−3) 45.0 71.2 51.4 41.6 64.7
LSP (GCR, d = 10−4) 45.6 71.2 52.7 42.2 64.8
LSP (GCR, d = 0) 43.8 69.8 50.2 40.0 64.8

Table 1: Performance of object detection task on
the test set of our modified MNIST dataset.

Table 1 shows that LSP achieved a competitive
result compared to a DETR baseline. Particu-
larly, LSP with GCR outperformed the baseline
when a small value of d was used. The gain
primarily came from an increase in predicted
bounding box quality shown by +3.6 AP75 over
the baseline. The result also suggested that
LSP led to a more robust matching for differ-
ent object sizes as the matching cost is learnt.
This is contrary to a manually designed fixed
matching cost that usually puts smaller importance on smaller objects (smaller bounding boxes). As
a result, LSP improved the detection performance on small objects (APS) by +2.4 points over the
baseline. A complete description of this task is provided in Appendix A.

1We observed that non-convergent trials demonstrated plateau loss curves within 300 iterations.
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Figure 5: We repurposed CLEVR dataset [23] for object description task. The descriptions (red
arrows) were from objects’ attributes (yellow arrows) which came from the metadata. We randomly
dropped attributes from descriptions to make the description generation task more challenging.

Method Precision Recall F1
Concat 0.931 0.910 0.920
Ordered set 0.957 0.526 0.679
LSP (w/o GC) 0.976 0.900 0.936
LSP (GC) 0.986 0.972 0.979
LSP (GCR, d = 10−3) 0.983 0.975 0.979
LSP (GCR, d = 0) 0.983 0.972 0.978

Table 2: CLEVR object description generation
task. Reported averages of three trials.

micro avg. BLEU
Method ŷ → y y → ŷ hmean
RM+MCLN [26]∗ 16.7 15.6 16.2
Concat 16.7 15.2 15.9
Ordered set 20.2 18.5 19.3
LSP (GC) 17.9 24.2 20.6
LSP (GCR, d = 10−3) 19.1 24.6 21.5
LSP (GCR, d = 0) 18.9 24.7 21.4

Table 3: MIMIC-CXR report generation task.
Reported averages of three trials except ∗ which
was run once.

5.3 CLEVR object description generation

Image captioning or paragraph captioning [24] can be considered a kind of set of texts prediction, yet
are usually tackled as one long text. Set of texts is hard because teacher forcing does not work with
Hungarian assignment. In this experiment and the next, we demonstrate that LSP enables set of texts
prediction that leads to superior performances.

We re-purposed the CLEVR dataset [23], which was originally designed for visual reasoning, for
image captioning. We selected CLEVR to represent a clean dataset which we know the ground truth
exactly. Each image contains objects of different kinds (attributes) described by a text description
derived from its attributes. Keywords were randomly dropped from the description to make the task
more challenging. The final description was guaranteed to be unambiguous for each object to keep
the task tractable. See Figure 5 for examples. We evaluated the models by the ratio of ground truth
objects that were described by the model (recall) and the ratio of predicted descriptions that were
supported by the ground truths (precision). We reported micro average precision, recall, and F1.

Image captioning is usually tackled by concatenating descriptions into a single caption. We imbued a
deterministic alphabetical ordering2 of descriptions to help the model learn. The model called Concat
which resembles show-attend-tell [25] albeit with Transformer. A more reasonable approach is to
describe each object description individually as a set. However, PIT does not facilitate teacher forcing
during training. A practical approach is to turn a set into an Ordered set to circumvent the matching
problem. Each prediction head in the model is responsible for generating the description of each
object in an alphabetical order. The most appropriate approach should assume no fixed ordering as
true set prediction which is possible with our LSP model. The results shown in Table 2 demonstrated
strong performances from LSP while Ordered set lacked behind in recall. Concat was strong due
to its fully autoregressive nature, yet not as strong as LSP. LSP results also improve with the addition
of our proposed GC or GCR. Furthermore, modeling as sets allows the prediction heads to specialize.
We observed this effect with the LSP model which was further described in Appendix Figure 10. A
complete description of this task is provided in Appendix C.

5.4 Chest radiograph report generation

With the ability to do set of texts prediction, LSP has potentials for a challenging image captioning
task such as chest radiograph report generation [26, 27] which has real-world applications [28]. We

2Alphabetical ordering was better than ordering by length in our preliminary experiments.
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X-ray Ground truth LSP Ordered set Concat
frontal and lateral views of the
chest were obtained. there are
streaky linear opacities at the
lung bases which are likely
due to atelectasis with chronic
changes. no definite focal
consolidation is seen. there
is no pleural effusion or pneu-
mothorax. no pneumothorax
is seen. the aorta is calci-
fied and tortuous. the car-
diac silhouette is top normal
to mildly enlarged. dual-lead
left-sided pacemaker is seen
with leads in the expected
positions of the right atrium
and right ventricle. chronic-
appearing rib deformities on
the right is again seen.

frontal and lateral views of the
chest were obtained. there
is a small left pleural effu-
sion with overlying atelecta-
sis. there is no focal con-
solidation, pleural effusion or
pneumothorax. there is no
pleural effusion or pneumoth-
orax. the aorta is calcified and
tortuous. the heart is mildly
enlarged. a left-sided pace-
maker is seen with leads in
the expected position of the
right atrium and right ventri-
cle. the patient is status post
median sternotomy and cabg.
the lungs are otherwise clear.

pa and lateral views of the
chest provided. there is no
pneumothorax. no pneumoth-
orax is seen. the heart is
mildly enlarged. the patient is
status post median sternotomy
and cabg. the lungs are
hyperinflated with flattening
of the diaphragms, suggest-
ing chronic obstructive pul-
monary disease.

pa and lateral views of the
chest provided. no large ef-
fusion or pneumothorax. the
heart is mildly enlarged. mid-
line sternotomy wires and me-
diastinal clips are noted. there
is a left chest wall pacer de-
vice with lead tips extend-
ing to the region of the
right atrium and right ventri-
cle. there is mild pulmonary
edema. no convincing signs of
pneumonia. bony structures
are intact. mediastinal con-
tour is normal. no free air be-
low the right hemidiaphragm.

Table 4: A chest radiograph report generation example. Similar sentences were reordered and color
coded for the ease of comparison. Hightlighted segments are major discrepancies from the ground
truth pointed out by a radiologist.

used MIMIC-CXR dataset [16] which contains 377,110 chest x-rays with 227,835 reports from
65,379 patients with the average length of 50 words per report. It is important to note that set of
texts prediction may not be much beneficial on shorter caption datasets such as MS-COCO [14].
MIMIC-CXR is considered noisy because multiple radiologists contributed to the dataset. The report
may be incomplete and/or inconsistent depending on the writer. Also, the report is not entirely
predictable because it usually refers to previous studies or to preconditions of the patient. We used a
specific kind of BLEU score [29, 30] for evaluation which focuses on correctness and completeness.
We calculated sentence-level BLEU scores from every source sentence to the highest BLEU target
sentence. It was calculated both ways from predictions to ground truths ŷ → y and vice versa
y → ŷ. To get a single summary metric we compute the harmonic mean between ŷ → y and y → ŷ.
Note that we discarded all blank predictions before scoring. This score does not penalize duplicated
predictions.

We included Concat, Ordered set, and Transformer with relational memory (RM+MCLN) [26],
which is also a kind of Concat, as baselines against our LSP model. The three baselines followed the
original ordering in the reports which was found to work better than alphabetical ordering. Ordered
set and LSP modeled the task as a set of sentences. To better capture report diversity, we trained
both models to always predict 10 sentences (from average 5.4 sentences per report). The same cannot
be done with concatenation baselines. A representative example was shown in Table 4 (duplicate
sentences were removed). Qualitatively, Concat generated a sound report. Like most radiologists,
it mentioned just a few frequent negative findings. This shows that Concat was heavily biased
by the imperfection of this dataset. Ordered set predicted the most duplicated sentences. Due to
report diversity, the order of a particular finding sentence can differ between reports. This prevents
Ordered set to specialize its prediction heads resulting in duplicated sentences being predicted. LSP
predicted the most diverse sentences and was the best at capturing negative findings thanks to its head
specialization. Quantitatively, Table 3 shows the superiority of both Ordered set and LSP models
mainly due to their ability to over-predict. Although Ordered set has a slight edge on the ŷ → y
metric, LSP has a substantial improvement in y → ŷ resulting in the best harmonic mean score. A
complete description of this task and more prediction examples are provided in Appendix D.

6 Broader Impact and Limitation

LSP is applicable to all set prediction tasks as long as the set members are representable as latent
vectors. Mature set prediction tasks like object detection are likely to receive only incremental
improvements from LSP. However, LSP has larger implications on tasks that were previously hard to
implement as set prediction including acoustic source separation. A questionable application like
mass surveillance might be made possible by a practical acoustic source separation using LSP.
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The proof of convergence (Section 4) relies on an assumption that both s’s and g’s respond to gradient
updates exactly. This assumption is only satisfied without a neural network. Hence, we cannot
mathematically guarantee the convergence in the general case.

Although LSP does away with the need for specifying distance metrics, it requires a reasonable
encoder to be designed instead. One may argue that designing an encoder is not an easy task in some
cases. One such example is the point cloud autoencoder task. Another example is the task of acoustic
source separation where one wants to decompose a mixture of sounds. It might not be obvious what
kind of encoder should be used in order to learn the latent information required in order to reconstruct
each source.

In this paper, we investigated and designed encoders for a few tasks. One can use these as guidelines.
However, the design of encoder in a completely different domain may require a non-trivial investment.

7 Conclusion

Set prediction requires a suitable distance metric that is also efficient to calculate. We proposed LSP
as a potential answer to both criteria. We gave a theoretical model of LSP and showed its convergence
properties under assumptions. This encourages usages in practical settings as we have shown with
object detection and image captioning. LSP did away with the need for hand-crafted distance
measures in object detection and made teacher forcing a viable option for set of text predictions. We
envision that LSP will broaden the applicability of set prediction to other domains where a distance
metric is hard to obtain or define.
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A Object detection

A.1 Dataset

We used a modified MNIST dataset consisting of 5,000 training and 1,000 testing images. Each
datapoint is a 160× 160 image canvas containing multiple randomly placed digits from the MNIST
dataset. To increase the task difficulty, each digit had to go through random image transformations
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Figure 6: Example of datapoints in our object detection dataset and its ground truth (red boxes).

before being placed on the canvas. First, an image was randomly selected from the MNIST dataset
and randomly resized to a square image with a size ranging from 16× 16 to 64× 64. After that, the
resized image (digit) was further augmented by random brightness, contrast, Gaussian blur, opening,
and closing morphological operations. Then, the augmented image (digit) was randomly placed on
the canvas with a constraint preventing it from having an excessive amount of highly overlapped
objects. We limited the maximum number of objects in a single image to 50. The digit placement was
not allowed when the summation of gray-scale value (intensity) in the bounding box area is higher
than 20,000. The bounding box of each digit in the MNIST dataset was obtained by finding the
border of the largest connected component in the digit image. An example of the generated dataset is
shown in Figure 6. The dataset will be released with the code base.

A.2 Models

Every experiment was conducted using DETR with ResNet-50 [31] backbone, and 6 layers of both
Transformer encoder and decoder with 256 hidden units and 8 attention heads. The backbone was
ImageNet-pretrained. The size of class prediction heads was adjusted to match the number of classes
in our dataset.

LSP model was based on DETR model with an extra encoder E component. We used an encoder
E(box, class, x) where x is the average pooled features from the ResNet-50 backbone. The encoder
had the following architecture:

a = MLP(box)

b = MLP(class)

c = MLP(x)

g = Linear(concat(a, b, c))

Each MLP is a three-layer MLP with 256 hidden units with layer norm and ReLU activation after
each layer. g has 256 units.

Remarks on the LSP model. The DETR model supervises on all layers of the Transformer decoder
sharing the same prediction head. This aims to help training the deep architecture more effectively.
Under the LSP terms, each intermediate state of the Transformer decoder layers is considered a set of
s’s. There are six such layers hence six sets of s’s. We treated them individually in the experiments.
That is we have six sets of g’s predicted by six different instances of encoders E . This simplification
disregards the fact that one set of s may affect the other five, yet was found to work well in practice.

A.3 Training details

We used the same set of training hyperparameters as DETR except for the number of training
iterations, batch size, and augmentation strategy. Every model was trained for 100,000 iterations
with the initial Transformer’s learning rate of 10−4, and the backbone’s learning rate of 10−5. The
learning rate was divided by 10 after 75,000 iterations. Batch size of 32 and 8 were used for an
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Encoder E AP AP50 AP75 APS APM

shared 43.6 69.5 49.8 40.2 63.8
separated 45.6 71.2 52.7 42.2 64.8

Table 5: Comparing shared vs. separated encoders E in the object detection task.

Method Batch size AP AP50 AP75 APS APM

DETR [2] 8 33.5 66.3 30.0 30.2 51.1
16 41.7 70.7 45.4 38.4 61.6
32 43.5 71.0 49.1 39.8 64.5
64 41.4 68.5 46.2 37.5 63.0

Ours 8 45.6 71.2 52.7 42.2 64.8
16 40.1 66.0 44.8 36.2 62.7
32 38.1 63.7 42.0 34.5 56.9

Table 6: The effect of different batch size on model performance.

original DETR and the DETR with LSP respectively. Training images were augmented using random
horizontal flip, random brightness, random contrast, and random Gaussian blur. The training image
resolution was set to 160× 160 pixels.

A.4 Ablation studies

All proposed model used in this section is DETR with LSP (GCR), with d = 10−4. We used the
same training schedule as the main experiments.

A.4.1 Choice of encoder E

We evaluate the necessity of having a different encoder E for each Transformer decoder by comparing
it with the one which has a single shared encoder E for every Transformer decoder. Table 5 shows
that although having multiple sets of s may affect the others, having different E outperformed a single
shared one. Nevertheless, having shared E still achieved a competitive performance to the DETR
baseline.

A.4.2 Batch size

We evaluate the effect of different training batch sizes of the proposed method. Table 6 shows that our
method achieved the best performance at the batch size of 8. Surprisingly, the performance dropped
drastically as the batch size increases which is opposite from the DETR baseline. The cause for this
problem is unclear and is open for future research.

A.5 Convergence speed

Figure 7 shows a training progression plot of LSP (GCR) with different d’s against the DETR baseline.
Both methods achieved convergence without much instability. However, we observed slightly worse
small object localization performance from the DETR baseline compared to that of learned distance
function from LSP.

A.6 Qualitative results

Figure 8 shows a qualitative result of DETR and our method on our generated object detection dataset.
The images in the figure are randomly selected from the test set.

B MNIST Point Cloud Autoencoding

In this section, we aim to show that LSP is competitive on the often used set prediction task, namely
point cloud autoencoding on the MNIST dataset [12]. We provided a comparison of our method
against DSPN [12], and TSPN [1]. In contrast to prior works which use the chamfer loss, we
performed comparison based on the Hungarian assignment.

15



Figure 7: Convergence plot of GCR against the DETR baseline on the object detection task.

B.1 Model

We followed DSPN and TSPN model architectures by using a 3-layer MLP with FSPool [32] for
the set encoders. For LSP, we augmented the TSPN architecture with an encoder, which is simply
a linear layer from a tuple of (x, y, presence) to a 256-sized vector. For both the TSPN and LSP
variants, we used the learned embeddings instead of Gaussian random vectors which were found to
work better for Hungarian matching. In addition, both predicted each element’s presence to derive
the set cardinality instead of using an MLP to predict the number of set cardinality explicitly.

B.2 Experimental setup

We followed DSPN and TSPN point cloud MNIST dataset, but limited the maximum number of
points to 150. All experiments were run for 50 epochs. Each performance number was the minimum
of the run. We varied the “hidden dimension” of the encoder for DSPN to scale it up for a comparable
parameter count. DSPN used a learning rate of 0.01 (following DSPN, grid searched from [0.01,
0.001, 0.0001]) while the others used a learning rate of 0.0001. We used batch normalization in the
set encoder for faster convergence.

B.3 Results

Table 7 shows a result of LSP aganist the DSPN and TSPN baseline. DSPN lags behind both TSPN
and LSP by a large margin both quantitatively and qualitatively (Figure 9). DSPN also did not scale
up well with wider models. TSPN performed better than LSP in this experiment, yet qualitatively
hard to perceive the differences. We want to point out that this is possibly a task where designing a
good encoder is harder than designing a good distance metric since each set element is simply (x, y,
presence).
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(a) DETR

(b) DETR with LSP (GCR, d = 10−4)

Figure 8: Qualitative result of DETR and DETR with LSP on our object detection dataset.

(a) DSPN 256 (b) DSPN 512 (c) DSPN 1024 (d) TSPN (e) LSP

Figure 9: The qualitative comparison between reconstructed images from different models for the
point cloud autoencoding task. DSPN’s performed poorly qualitatively compared to TSPN and LSP.

C CLEVR object description generation

C.1 Dataset

We constructed the attribute prediction dataset from images and metadata of CLEVR dataset [23].
The dataset released with 70,000/10,000 train/val scenes. Note that we used the val scenes as our
test dataset and split the train into 60,000/10,000 for training and development purposes. There
are seven attributes: shape, color, material, size, left/right, front/back, object count. Four of them
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Model Hidden dim. #Params (M) Chamfer L2 distance
DSPN 256 0.14 4.99 ± 0.37
DSPN 512 0.40 4.52 ± 0.23
DSPN* 1024 1.33 4.42 ± 0.01
TSPN 256 1.50 3.78 ± 0.01
LSP (GCR, d = 0.001) 256 1.50 3.90 ± 0.02

Table 7: The performance comparison for test set of MNIST point cloud autoencoder task. The
symbol ± represents one standard deviation of 3 different random seeds, except DSPN* that runs
with 2 seeds.

were obtained from the dataset’s metadata. The additional left/right and front/back attributes were
calculated from the object’s pixel-wise quadrant. The object count attribute (≤ 3) is the number of
objects that share the same attributes. The object description was generated from these attributes
with random corruption. All attributes except shape were dropped with 50% chance. Note that the
corruption always retained the unambiguity of the description.

C.2 Models

All models used byte-level byte pair encoding same as RoBERTa [33] via Huggingface [34]. We
used ResNet-34 [31] pretrained on Imagenet as the backbones for all models.

Concat model is a model where the input was the concatenation of all object descriptions separated
by “<sep>” tokens. It has the following architecture.

feat = Conv1(ResNet34(x))

Ŷ = TransformerDecoder(Y, feat)

where TransformerDecoder is a 3-layer Transformer decoder with 256 hidden units and 4 attention
head connected to a linear layer for predicting the softmax distribution of the vocabularies, and Y is
supplied as a teacher forcing signal. At the evaluation time, the network was greedily decoded.

Ordered set model predicts an alphabetically sorted list of object descriptions. It has the following
architecture.

feat = Conv1(ResNet34(x))

R = TransformerDecoder(seed, feat)

Ŷ = D(R+Y, repeat(feat))

where TransformerDecoder is a 3-layer Transformer decoder with 256 hidden units and 4 attention
heads, seed is fixed sinusoidal vectors as queries for set elements, D is 3-layer Transformer decoder
for generating object descriptions with 256 hidden units and 4 heads connected to a linear layer
for predicting the softmax distribution of the vocabularies, and Y is supplied as a teacher forcing
signal. R is added to the input of D to dictate the topic about which it generates. The network always
predicted K sentences (K = 10). We padded the ground truths (N sentences) with blank lines until
they have K sentences. At the evaluation time, the network was greedily decoded, and all the blank
lines were removed.

LSP model predicts a set of object descriptions. It shared the above architecture with an addition of
an encoder E as follows

B = TransformerDecoder(Y, repeat(feat))

where TransformerDecoder is a 3-layer Transformer decoder with 256 hidden units and 4 attention
heads. It performs cross-attention between the ground truth Y and the image feature feat. In
summary, object descriptions Y were encoded as B. Then, the Hungarian algorithm was performed
to find the minimum assignment π between R and B under Euclidean distance. The decoding step of
this network became Ŷπ = D(Rπ +Y, repeat(feat)) following the seq of text model’s notation.
Finally, the loss function was calculated directly as Ltask(Ŷπ,Y). Like the seq of text model, the
ground truths Y were padded by blank lines to have the total of K sentences. All the blank lines
were removed at inference time.
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C.3 Training details

The model sizes and other hyperparameters were not heavily tuned. Our goal is to show the
improvement from modeling the task as set prediction. Optimization. Adam with learning rate 10−4.
Batch size 64. The learning rate was reduced by 5 after the validation loss of Ltask is not reducing for
2 epochs. When the learning rate was below 10−6, the training stopped. Augmentation. Besides
resizing the image to 256× 256, there is no other augmentation.

C.4 Results with standard deviations

We reported averages of three trials. ± denotes single standard deviation.

Method Precision Recall F1
Concat 0.931 ± 0.02 0.910 ± 0.02 0.920 ± 0.01
Ordered set 0.957 ± 0.01 0.526 ± 0.02 0.679 ± 0.02
LSP (GC) 0.986 ± 0.01 0.972 ± 0.01 0.979 ± 0.01
LSP (GCR, d = 10−1) 0.983 ± 0.01 0.970 ± 0.01 0.977 ± 0.01
LSP (GCR, d = 10−2) 0.979 ± 0.01 0.957 ± 0.02 0.968 ± 0.01
LSP (GCR, d = 10−3) 0.983 ± 0.01 0.975 ± 0.01 0.979 ± 0.01
LSP (GCR, d = 10−4) 0.984 ± 0.01 0.973 ± 0.02 0.978 ± 0.02
LSP (GCR, d = 0) 0.983 ± 0.01 0.972 ± 0.02 0.978 ± 0.01

C.5 Effect of hyperparameter in asymmetric latent loss

In this section, we studied the effect of hyperparameter β and γ of the asymmetric latent loss (Llatent)
by fixing the value of γ to 1 and adjusted the β. The table below shows us that β = 0.1 yielded the
best performance. Nevertheless, given the variances, there was no significant performance change
over different β.

Model Precision Recall F1
GC (β = 0) 0.979 ± 0.01 0.970 ± 0.02 0.975 ± 0.01
GC (β = 0.1) 0.989 ± 0.01 0.979 ± 0.01 0.984 ± 0.01
GC (β = 0.2) 0.987 ± 0.01 0.976 ± 0.02 0.982 ± 0.01
GC (β = 0.5) 0.980 ± 0.01 0.972 ± 0.01 0.976 ± 0.01
GC (β = 1) 0.983 ± 0.01 0.966 ± 0.02 0.974 ± 0.02

C.6 Effect of GCR’s d

In Section C.4. We saw no real performance differences between GC and GCR and GCR with
different d’s. This task represents a non-trivial set prediction yet has clean labels and few set members.
Under this scenario, the choice of GC or GCR did not really matter.

C.7 Head specialization

We observed prediction head specialization from the LSP model both in location specialization
(Figure 10a) and shape specialization (Figure 10b).

C.8 Convergence speed comparison

We depicted the speed of validation metrics over training epochs between Ordered Set, Concat, and
LSP (GC) in Figure 11. Two baselines converged faster than LSP but to worse solutions. Since these
methods did not converge to solutions of the same quality, it was unfair to compare the convergence
time directly. However, at any point in time, LSP was either on par or better with the other methods,
showing training stability. Noted that it is not a perfect comparison because the baselines are not set
prediction methods.
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Figure 10: All 10-head specialization of the LSP model on CLEVR object description task.

Figure 11: The comparison between validation performance progresses of different methods for
CLEVR dataset. Different lines are different random seeds.

D Chest radiograph report generation

D.1 Dataset

We used MIMIC-CXR dataset [16] containing 377,110 chest x-rays with 227,835 reports from 65,379
patients. We selected only reports with apparent “FINDING” keyword and extracted only the finding
section with regular expression to focus on a specific part on the report that is most predictable from
a chest x-ray. This resulted in 149,766 reports. From these, we selected only “frontal” images (PA
or AP). Finally, we have 160,291 images and 143,778 reports which were split into train/val/test as
112,025/15,994/32,272 images and 100,531/14,391/28,856 reports respectively. We broke a document
into sentences with Spacy [35].

D.2 Models

All models used byte-level byte pair encoding same as RoBERTa [33] via Huggingface [34]. We
used ResNet-34 [31] pretrained on Imagenet as the backbones for all models.
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Figure 12: A sample report from MIMIC-CXR dataset [16]. A report usually contains header section,
finding section, and impression section. We extracted only the finding section with regular expression
(highlighted in yellow).

Concat model is a model where the input was the concatenation of finding sentences in the report
separated by “<sep>” tokens. It has the following architecture.

feat = Conv1(ResNet34(x))

feat = TransformerEncoder(feat+ 2D position encoding)

Ŷ = TransformerDecoder(Y, feat)

where TransformerEncoder is a 3-layer Transformer encoder with 256 hidden units and 4 attention
heads, the position encoding is 2D sinusoidal features following [2], TransformerDecoder is a
3-layer Transformer decoder with 256 hidden units and 4 attention heads connected to a linear layer
for predicting the softmax distribution of the vocabularies, and Y is supplied as a teacher forcing
signal. At the evaluation time, the network was greedily decoded.

Ordered set model predicts an alphabetically sorted list of finding sentences. It has the following
architecture.

feat = Conv1(ResNet34(x))

feat = TransformerEncoder(feat+ 2D position encoding)
R = TransformerDecoder(seed, feat)

Ŷ = D(R+Y, repeat(feat))

where TransformerEncoder is a 3-layer Transformer encoder with 256 hidden units and 4 attention
heads, the position encoding is 2D sinusoidal features following [2], TransformerDecoder is a
3-layer Transformer decoder with 256 hidden units and 4 attention heads, seed is fixed sinusoidal
vectors as queries for set elements,D is 3-layer Transformer decoder for generating object descriptions
with 256 hidden units and 4 heads connected to a linear layer for predicting the softmax distribution
of the vocabularies, and Y is supplied as a teacher forcing signal. R is added to the input of D to
dictate the topic about which it generates. The network always predicted K sentences (K = 10). We
padded the ground truths (N sentences) with blank lines until they have K sentences. The losses on
these padded blank lines were zero out to allow the model to always predict K non-blank sentences.
At the evaluation time, the network was greedily decoded.

LSP model predicts a set of finding sentences. It shared the above architecture with an addition of an
encoder E as follows

B = TransformerDecoder(Y, repeat(feat))

where TransformerDecoder is a 3-layer Transformer decoder with 256 hidden units and 4 attention
heads. It performs cross-attention between the ground truth Y and the image feature feat. In
summary, object descriptions Y were encoded as B. Then, the Hungarian algorithm was performed
to find the minimum assignment π between R and B under Euclidean distance. The decoding step
of this network became Ŷπ = D(Rπ +Y, repeat(feat)) following the sequence of text model’s
notation. Finally, the loss function was calculated directly as Ltask(Ŷπ,Y). This model always
predictedK = 10 sentences. However, we did not pad Y with blank sentences. That is the Hungarian
match of N out of K sentences. We found this to work better than that with blank sentence padding.
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RM+MCLM [26] also takes the concatenation of finding sentences in the report. We used the official
implementation from https://github.com/cuhksz-nlp/R2Gen. We ran it with our dataset using batch
size 64 and our augmentation scheme. We kept the rest of the settings original apart from that of the
other models.

D.3 Training details

The model sizes and other hyperparameters were not heavily tuned. Our goal is to show the
improvement from modeling the task as set prediction. Optimization. Adam with learning rate 10−4.
Batch size 64. The learning rate was reduced by 5 after the validation loss of Ltask is not reducing for
2 epochs. When the learning rate was below 10−6, the training stopped. Augmentation. Random
rotation up to 90 degrees, random horizontal flip, random contrast and brightness in range (0.5, 1.5),
random crop with random size in range (0.7, 1.0), and random aspect ratio from 4:3 to 3:4. Images
were resized to 256× 256 pixels.

D.4 Results with standard deviations

We reported averages of three trials except ∗ which was run once. ± denotes single standard
deviation.

micro avg. BLEU
Method ŷ → y y → ŷ hmean
RM+MCLN [26]∗ 16.7 15.6 16.2
Concat 16.7 ± 0.1 15.2 ± 0.1 15.9 ± 0.1
Ordered set 20.2 ± 0.2 18.5 ± 0.2 19.3 ± 0.2
LSP (GC) 17.9 ± 0.5 24.2 ± 0.5 20.6 ± 0.3
LSP (GCR, d = 10−1) 19.1 ± 0.5 24.5 ± 0.5 21.5 ± 0.5
LSP (GCR, d = 10−2) 18.7 ± 0.8 24.6 ± 0.5 21.3 ± 0.7
LSP (GCR, d = 10−3) 19.1 ± 0.2 24.6 ± 0.1 21.5 ± 0.1
LSP (GCR, d = 10−4) 18.6 ± 0.7 24.3 ± 0.2 21.1 ± 0.5
LSP (GCR, d = 0) 18.9 ± 0.8 24.7 ± 0.4 21.4 ± 0.7

D.5 Effect of GCR’s d

In Section D.4, we observed high y → ŷ across GC and GCR with all d’s. The difference was in
ŷ → y where GCR excelled. We observed no real differences between different d’s of GCR. We
began to saw superior performances from GCR over GC in this difficult image captioning task with
noisy labels.

D.6 Prediction samples

We selected a few reports to qualitatively evaluate the models. Duplicate sentences were dropped in
the post process. We reordered and color-coded sentences related to abnormalities by hand to the best
of our non-expert ability. Finally, we asked a radiologist for opinions on these reports and highlighted
areas that significantly deviated from the ground truth. The radiologist was also asked to select the
best model from each example. For example number 1-3 the LSP is preferred, while the best choice
for number 4 is inconclusive.

In general, there are abnormalities such as opacity, consolidation, and nodule that were not frequently
recognized by the models. The models were quite able to recognize abnormalities like pleural
effusions, cardiomegaly, and devices including lines and pacemaker. However, we observed better
prediction coverage from the LSP model than its peers especially on negative abnormality predictions.
In our opinion, this task is not yet solved. It is questionable how much more we can expect models to
learn from this noisy and partially predictable dataset.
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Report generation example 1 (curated)
X-ray Ground truth LSP Ordered set Concat

frontal and lateral views of the
chest were obtained. there are
streaky linear opacities at the
lung bases which are likely
due to atelectasis with chronic
changes. no definite focal
consolidation is seen. there
is no pleural effusion or pneu-
mothorax. no pneumothorax
is seen. the aorta is calci-
fied and tortuous. the car-
diac silhouette is top normal
to mildly enlarged. dual-lead
left-sided pacemaker is seen
with leads in the expected
positions of the right atrium
and right ventricle. chronic-
appearing rib deformities on
the right is again seen.

frontal and lateral views of the
chest were obtained. there
is a small left pleural effu-
sion with overlying atelecta-
sis. there is no focal con-
solidation, pleural effusion or
pneumothorax. there is no
pleural effusion or pneumoth-
orax. the aorta is calcified and
tortuous. the heart is mildly
enlarged. a left-sided pace-
maker is seen with leads in
the expected position of the
right atrium and right ventri-
cle. the patient is status post
median sternotomy and cabg.
the lungs are otherwise clear.

pa and lateral views of the
chest provided. there is no
pneumothorax. no pneumoth-
orax is seen. the heart is
mildly enlarged. the patient is
status post median sternotomy
and cabg. the lungs are
hyperinflated with flattening
of the diaphragms, suggest-
ing chronic obstructive pul-
monary disease.

pa and lateral views of the
chest provided. no large ef-
fusion or pneumothorax. the
heart is mildly enlarged. mid-
line sternotomy wires and me-
diastinal clips are noted. there
is a left chest wall pacer de-
vice with lead tips extend-
ing to the region of the
right atrium and right ventri-
cle. there is mild pulmonary
edema. no convincing signs of
pneumonia. bony structures
are intact. mediastinal con-
tour is normal. no free air be-
low the right hemidiaphragm.

Report generation example 2 (curated)
X-ray Ground truth LSP Ordered set Concat

the atient is status post
coronary artery bypass graft
surgery. the heart is mildly
enlarged. there is a large
hiatal hernia with an air-fluid
level. otherwise, the medi-
astinal and hilar contours are
unremarkable. the lungs
appear clear. the chest is
hyperinflated. there is no
pleural effusion or pneumoth-
orax. bony structures are
unremarkable.

the patient is status post me-
dian sternotomy and cabg.
the heart is mildly enlarged.
there is a large hiatal hernia
with an air-fluid level. the
mediastinal and hilar contours
are unremarkable. the lungs
are clear. there is no pleu-
ral effusion or pneumothorax.
there is no focal consolida-
tion, pleural effusion or pneu-
mothorax. no acute osseous
abnormalities. frontal and
lateral views of the chest were
obtained.

the patient is status post me-
dian sternotomy and cabg.
the cardiac silhouette is top
normal to mildly enlarged.
the lungs are clear. no
acute osseous abnormalities.
no acute osseous abnormali-
ties are detected. pa and lat-
eral views of the chest were
provided. no free air below
the right hemidiaphragm.

midline sternotomy wires and
mediastinal clips are again
noted. the cardiomediastinal
silhouette is normal. there is a
large retrocardiac opacity con-
taining an air-fluid level con-
cerning for a large hiatal her-
nia. there is no focal consoli-
dation, effusion, or pneumoth-
orax. imaged osseous struc-
tures are intact. pa and lat-
eral views of the chest pro-
vided. no free air below the
right hemidiaphragm is seen.

Report generation example 3 (random)
X-ray Ground truth LSP Ordered set Concat

pa and lateral views of the
chest provided. left chest
wall dual lead pacer is again
noted with leads extending
the region the right atrium and
right ventricle. the heart is
mildly enlarged. no convinc-
ing signs of edema or pneu-
monia. mediastinal contour is
normal. bony structures are
intact. mild hilar congestion
is suspected.

ap and lateral views of
the chest. left-sided dual-
chamber pacemaker device is
noted with leads terminating
in the right atrium and right
ventricle. the heart is mildly
enlarged. the mediastinal
and hilar contours are un-
changed. no acute osseous
abnormalities. there is mild
pulmonary vascular conges-
tion. no pleural effusion or
pneumothorax is seen. there
is no pleural effusion or
pneumothorax. there is no
focal consolidation, pleural
effusion or pneumothorax.
the lungs are clear.

left-sided dual-chamber pace-
maker device is noted with
leads terminating in the right
atrium and right ventricle. the
heart is mildly enlarged. the
cardiac silhouette is mildly
enlarged. no acute osseous
abnormality is detected. the
lungs are clear of focal consol-
idation or effusion. the lungs
are clear without focal con-
solidation, effusion, or pneu-
mothorax. no focal consolida-
tion, pleural effusion or pneu-
mothorax is present. no free
air below the right hemidi-
aphragm.

left-sided dual-chamber
pacemaker device is noted
with leads terminating in
the right atrium and right
ventricle. mild cardiomegaly
is unchanged. there is no
pulmonary edema. the medi-
astinal and hilar contours are
similar. there are no acute
osseous abnormalities. no
focal consolidation, pleural
effusion or pneumothorax is
present.
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Report generation example 4 (random)
X-ray Ground truth LSP Ordered set Concat

a portable view of the chest
demonstrates continous im-
proved aeration of the left mid
and upper lung. a moderate
left pleural effusion remains.
small right pleural effusion
is stable. the right lung is
grossly clear. a left pigtail
catheter and right picc are un-
changed in position. there is
no pneumothorax.

as compared to the previous
radiograph, the patient has
been extubated. there is a
large left pleural effusion with
associated atelectasis. the
right lung is essentially clear.
the tip of the right picc line
projects over the mid svc. the
monitoring and support de-
vices are constant. there is no
pneumothorax. no pneumoth-
orax. the size of the cardiac
silhouette is unchanged. the
heart is enlarged. there is mild
pulmonary edema.

as compared to the previous
radiograph, the patient has re-
ceived a new right-sided picc
line. there is a right-sided picc
line with distal lead tip in the
distal svc. there is no pneu-
mothorax.

the pre-existing left pleural ef-
fusion has slightly increased
in extent. as compared to
the previous radiograph, the
patient has received a right-
sided picc line. the course of
the line is unremarkable, the
tip of the line projects over
the mid svc. the tip of the
line projects over the mid svc.
there is no evidence of compli-
cations, notably no pneumoth-
orax. unchanged appearance
of the right lung. unchanged
appearance of the cardiac sil-
houette.

E Proof of convergence

We begin by showing the proof for the simplest situation where gradient cloning is used without
the rejection mechanism and β is set to 0. This will illustrate the intuitions behind the convergence
of latent set prediction, which can be modified to accommodate the rejection mechanism and other
values of β later on.

E.1 Recall of the setup

In the deep set prediction setting, we wish to train a set predictor which generates latent vectors si
∈ RC to match a set of targets yi in the output space, which are designated by the generated guiding
vectors gi ∈ RC . With a permutation π, we introduce the main task’s loss

Ltask =
∑
i

ltask(sπ(i), yi).

Note that the permutation π can change over the course of model training and a switch (Figure 2)
is said to occur when π(t+1) 6= π(t). To discourage switch, we define the following latent loss with
squared Euclidean distance to drive gi toward sπ(i)

Llatent =
∑
i

llatent(sπ(i), gi) =
∑
i

1

2
‖sπ(i) − gi‖22.

The training at each time point t + 1 consists of two steps. First, the permutation π is updated
according to the values of s(t)π(i)’s and g(t)i ’s from the previous time point

π(t+1) = argmin
π′∈P

∑
i

‖s(t)π′(i) − g
(t)
i ‖2, where P is the set of all permutations. (4)

Then, the values of sπ(i)’s and gi’s are updated based on the gradients from Ltask and Llatent with step
size η and latent loss strength γ

s
(t+1)

π(t+1)(i)
= s

(t)

π(t+1)(i)
− η∇sltask(s

(t)

π(t+1)(i)
, yi)

g
(t+1)
i = g

(t)
i − η

(
∇sltask(s

(t)

π(t+1)(i)
, yi) + γ∇gllatent(s

(t)

π(t+1)(i)
, g

(t)
i )
)
.

(5)

This is the gradient cloning technique with a special case of asymmetric latent loss (as in (2) where
β = 0).

Even though the set matching step may increase task loss through the switch from s
(t)
π(i) to s(t+1)

π(i) ,
it turns out that sufficient conditions for the convergence of LSP are the same as those needed in a
typical proof of convergence of gradient descent [21]. Namely, we assume that ltask(·, y) is L-smooth
and satisfies the Polyak-Lojasiewicz condition.
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The L-smooth assumption states that there is a constant L ∈ R+ such that for any x and y

L · ‖x− y‖2 ≥ ‖∇sltask(x, y)−∇sltask(y, y)‖2, (6)

which also implies (Lemma 1.2 in [36])

〈∇sltask(x, y), y − x〉+
L

2
‖y − x‖22 ≥ ltask(y, y)− ltask(x, y). (7)

The Polyak-Lojasiewicz condition guarantees that there is a constant µ ∈ R+ such that for any x

1

2
‖∇sltask(x, y)‖2 ≥ µ·(ltask(x, y)− ltask(x

∗, y)) , where x∗ is where the function reaches its minimum
(8)

E.2 Exponential decay of the switch distance

In this section, we show that our training dynamics effectively drive gi’s toward sπ(i)’s so strongly
that the distance between a switch at time t decays exponentially.

First, we show that the total distance between respective g’s and s’s decay exponentially.

Lemma E.1. For 0 < ηγ ≤ 1,∑
i

‖s(t)
π(t)(i)

− g(t)i ‖2 ≤ (1− ηγ)t
∑
i

‖s(0)
π(0)(i)

− g(0)‖2.

Proof. From the gradient descent update formula for s(t+1)

π(t+1)(i)
and g(t+1)

i in (5) we have

s
(t+1)

π(t+1)(i)
− g(t+1)

i = s
(t)

π(t+1)(i)
− g(t)i + ηγ∇gllatent(s

(t)

π(t+1)(i)
, g

(t)
i )

= s
(t)

π(t+1)(i)
− g(t)i − ηγ

(
s
(t)

π(t+1)(i)
− g(t)i

)
, because llatent is the squared Euclidean distance

= (1− ηγ)
(
s
(t)

π(t+1)(i)
− g(t)i

)
and so∑

i

‖s(t+1)

π(t+1)(i)
− g(t+1)

i ‖2 = (1− ηγ)
∑
i

‖s(t)
π(t+1)(i)

− g(t)i ‖2

≤ (1− ηγ)
∑
i

‖s(t)
π(t)(i)

− g(t)i ‖2, by the definition of π(t+1) in (4)
.

The desired result then follows through induction.

An important implication of the above behavior is that the distance ‖s(t)
π(t+1)(i)

− s(t)
π(t)(i)

‖2 due to a
switch also decays exponentially.

Theorem E.2.
‖s(t)
π(t+1)(i)

− s(t)
π(t)(i)

‖2 ≤ 2(1− ηγ)t
∑
i

‖s(0)
π(0)(i)

− g(0)‖2

Proof. By triangle inequality, we have

‖s(t)
π(t+1)(i)

− s(t)
π(t)(i)

‖2 ≤ ‖s(t)π(t+1)(i)
− g(t)i ‖2 + ‖s

(t)

π(t)(i)
− g(t)i ‖2

≤
∑
i

‖s(t)
π(t+1)(i)

− g(t)i ‖2 +
∑
i

‖s(t)
π(t)(i)

− g(t)i ‖2

≤ 2
∑
i

‖s(t)
π(t)(i)

− g(t)i ‖2, by the definition of π(t+1) in (4)

and the desired result follows immediately from Lemma E.1.
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E.3 Convergence of the main task’s loss function

For convenience, we introduce the following notations:
α = 1− ηγ,

B = Lη

(
1− Lη

2

)
,

C = 4L

(
1

2
+

3

B
+

9L

2µB2

)(∑
i

‖s(0)
π(0)(i)

− g(0)‖2

)2

,

δ = 1− µ

9L

(
2B3 − 13B2 + 12B

)
,

dt = ‖s(t)π(t+1)(i)
− s(t)

π(t)(i)
‖2,

xt = ltask(s
(t)

π(t)(i)
, yi)− ltask(s

∗
i , yi),

where α, B, C, and δ are constants and dt and xt are sequences of positive real numbers. If η is
chosen to be smaller than min{1/γ, 2/L}, then α ∈ (0, 1) and B, C > 0. With AM-GM inequality,
it is clear that B ≤ 1/2. In fact, B can be made arbitrarily small from the choice of η. Furthermore,
since the cubic polynomial p(x) = 2x3 − 13x2 + 12x is increasing on [0, 1/2], we can set η to make
B small enough that p(B) < 9L/µ and ensure that δ ∈ (0, 1).

In the proofs below, we rely on the properties of these constants, especially that α, δ ∈ (0, 1), to show
the convergence of LSP.
Lemma E.3. If ltask(·, y) is L-smooth, we have the following inequalities

‖∇sltask(s
(t)

π(t+1)(i)
, yi)‖2 ≥ ‖∇sltask(s

(t)

π(t)(i)
, yi)‖2 − Ldt, (9)

ltask(s
(t+1)

π(t+1)(i)
, yi)−ltask(s

(t)

π(t)(i)
, yi) ≤

L

2
d2t+‖∇sltask(s

(t)

π(t)(i)
, yi)‖2·dt−

B
L
‖∇sltask(s

(t)

π(t+1)(i)
, yi)‖22.

(10)

Proof. From L-smoothness (6), we have

L · ‖s(t)
π(t+1)(i)

− s(t)
π(t)(i)

‖2 ≥ ‖∇sltask(s
(t)

π(t+1)(i)
, yi)−∇sltask(s

(t)

π(t)(i)
, yi)‖2

≥ ‖∇sltask(s
(t)

π(t)(i)
, yi)‖2 − ‖∇sltask(s

(t)

π(t+1)(i)
, yi)‖2

by the triangle inequality. This proves the first inequality.

For the second inequality, we apply L-smoothness (7) with x = s
(t)

π(t+1)(i)
and y = s

(t+1)

π(t+1)(i)
and

obtain

ltask(s
(t+1)

π(t+1)(i)
, yi)− ltask(s

(t)

π(t+1)(i)
, yi) ≤ 〈∇sltask(s

(t)

π(t+1)(i)
, yi), s

(t+1)

π(t+1)(i)
− s(t)

π(t+1)(i)
〉+ L

2
· ‖s(t+1)

π(t+1)(i)
− s(t)

π(t+1)(i)
‖22

= 〈∇sltask(s
(t)

π(t+1)(i)
, yi),−η∇sltask(s

(t)

π(t+1)(i)
, yi)〉+

L

2
‖η∇sltask(s

(t)

π(t+1)(i)
, yi)‖22

= −η
(
1− Lη

2

)
‖∇sltask(s

(t)

π(t+1)(i)
, yi)‖22

= −B
L
‖∇sltask(s

(t)

π(t+1)(i)
, yi)‖22.

We also consider (7) when x = s
(t)

π(t)(i)
and y = s

(t)

π(t+1)(i)

ltask(s
(t)

π(t+1)(i)
, yi)− ltask(s

(t)

π(t)(i)
, yi) ≤ 〈∇sltask(s

(t)

π(t)(i)
, yi), s

(t)

π(t+1)(i)
− s(t)

π(t)(i)
〉+ L

2
· ‖s(t)

π(t+1)(i)
− s(t)

π(t)(i)
‖22

≤ ‖∇sltask(s
(t)

π(t)(i)
, yi)‖2 · dt +

L

2
d2t ,

where we use Cauchy-Schwarz inequality on the first term. Adding the two inequalities together
gives us the desired result.
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We are now ready to prove the main Theorem 4.1. With the above notation, we rewrite the inequality
as

xt+1 = ltask(s
(t+1)

π(t+1)(i)
, yi)− ltask(s

∗
i , yi) ≤

{
C α2t, if ‖∇sltask(s

(t)

π(t)(i)
, yi)‖ ≤ 3Ldt

B
δ xt, otherwise

Proof of Theorem 4.1. In the first case, we assume ‖∇sltask(s
(t)

π(t)(i)
, yi)‖2 ≤ 3Ldt

B . From the Polyak-
Lojasiewicz condition (8), we have

ltask(s
(t)

π(t)(i)
, yi)− ltask(s

∗
i , yi) ≤

1

2µ
‖∇sltask(s

(t)

π(t)(i)
, yi)‖22 ≤

9L2

2µB2
d2t .

From (10) in Lemma E.3, we also have

ltask(s
(t+1)

π(t+1)(i)
, yi)− ltask(s

(t)

π(t)(i)
, yi) ≤

L

2
d2t + ‖∇sltask(s

(t)

π(t)(i)
, yi)‖2 · dt −

B
L
‖∇sltask(s

(t)

π(t+1)(i)
, yi)‖22

≤ L

2
d2t + ‖∇sltask(s

(t)

π(t)(i)
, yi)‖2 · dt

≤ L

2
d2t +

3L

B
d2t .

We combine above inequalities and Theorem E.2 to conclude that

xt+1 ≤ L
(
1

2
+

3

B
+

9L

2µB2

)
dt

2

≤ L
(
1

2
+

3

B
+

9L

2µB2

)(
2(1− ηγ)t

∑
i

‖s(0)
π(0)(i)

− g(0)‖2

)2

= C α2t

In the second case, we assume ‖∇sltask(s
(t)

π(t)(i)
, yi)‖2 > 3Ldt

B . Notice that B is chosen to be small
and in particular 1/B > 2. From (9) in Lemma E.3, this implies

‖∇sltask(s
(t)

π(t+1)(i)
, yi)‖2 ≥ ‖∇sltask(s

(t)

π(t)(i)
, yi)‖2 − Ldt > 5Ldt ≥ 0.

We now consider (10) from Lemma E.3

ltask(s
(t+1)

π(t+1)(i)
, yi)− ltask(s

(t)

π(t)(i)
, yi) ≤

L

2
d2t + ‖∇sltask(s

(t)

π(t)(i)
, yi)‖2 · dt −

B
L
‖∇sltask(s

(t)

π(t+1)(i)
, yi)‖22

≤ L

2
d2t + ‖∇sltask(s

(t)

π(t)(i)
, yi)‖2 · dt −

B
L

(
‖∇sltask(s

(t)

π(t)(i)
, yi)‖2 − Ldt

)2
=

(
L

2
− BL

)
d2t + (1 + 2B) ‖∇sltask(s

(t)

π(t)(i)
, yi)‖2 · dt −

B
L
‖∇sltask(s

(t)

π(t)(i)
, yi)‖22.

Next, we use our assumption that B < 1/2 and dt < B
3L‖∇sltask(s

(t)

π(t)(i)
, yi)‖2 to obtain

ltask(s
(t+1)

π(t+1)(i)
, yi)− ltask(s

(t)

π(t)(i)
, yi) <

((
L

2
− BL

)
B2

9L2
+ (1 + 2B) B

3L
− B
L

)
‖∇sltask(s

(t)

π(t)(i)
, yi)‖22

= − 1

18L

(
2B3 − 13B2 + 12B

)
‖∇sltask(s

(t)

π(t)(i)
, yi)‖22

≤ − µ

9L

(
2B3 − 13B2 + 12B

) (
ltask(s

(t)

π(t)(i)
, yi)− ltask(s

∗
i , yi)

)
= (δ − 1)

(
ltask(s

(t)

π(t)(i)
, yi)− ltask(s

∗
i , yi)

)
where we use the Polyak-Lojasiewicz condition (8) and the fact that p(x) = 2x3 − 13x2 + 12x is
positive on (0, 1/2]. Hence xt+1 − xt < (δ − 1)xt or xt+1 < δ xt as desired.
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Theorem E.4. (Convergence of latent set prediction) If the main task’s loss function, ltask(·, y) is
L-smooth and satisfies the Polyak-Lojasiewicz condition, and η is sufficiently small, then the training
dynamics described in (5) guarantees its convergence at a linear rate

xt = ltask(s
(t)

π(t)(i)
, yi)− ltask(s

∗
i , yi) ≤ C0εt−1,

where C0 := max{C, δx0} and ε := max{α2, δ}.

Proof. This is a consequence of Theorem 4.1. It is easy to check when t = 1 and we will proceed by
induction.

Suppose that xt ≤ C0εt−1 and consider two cases. If ‖∇sltask(s
(t)

π(t)(i)
, yi)‖ ≤ 3Ldt

B , we have

xt+1 ≤ C α2t ≤ C0εt.

If ‖∇sltask(s
(t)

π(t)(i)
, yi)‖ > 3Ldt

B , we have

xt+1 ≤ δ xt ≤ C0δεt−1 ≤ C0εt.

Therefore xt is bounded above by an exponential decay. This implies that the main task’s loss
function converges at least at a linear rate ε < 1. This finishes the proof.

E.4 Impact of β > 0

Setting β > 0 adds a new term to the update of s(t+1)

π(t+1)(i)
in (5)

s
(t+1)

π(t+1)(i)
= s

(t)

π(t+1)(i)
− η

(
∇sltask(s

(t)

π(t+1)(i)
, yi) + β∇sllatent(s

(t)

π(t+1)(i)
, g

(t)
i )
)

g
(t+1)
i = g

(t)
i − η

(
∇sltask(s

(t)

π(t+1)(i)
, yi) + γ∇gllatent(s

(t)

π(t+1)(i)
, g

(t)
i )
)
.

(11)

which only slightly change the algebra inside the proof of Lemma E.1 as follows

s
(t+1)

π(t+1)(i)
− g(t+1)

i = s
(t)

π(t+1)(i)
− ηβ∇sllatent(s

(t)

π(t+1)(i)
, g

(t)
i )− g(t)i + ηγ∇gllatent(s

(t)

π(t+1)(i)
, g

(t)
i )

= s
(t)

π(t+1)(i)
− g(t)i − η(β + γ)

(
s
(t)

π(t+1)(i)
− g(t)i

)
= (1− η(β + γ))

(
s
(t)

π(t+1)(i)
− g(t)i

)
Hence, we can derive stronger exponential distance decays in Lemma E.1 and Theorem E.2

Lemma E.5. For 0 < ηγ ≤ 1,∑
i

‖s(t)
π(t)(i)

− g(t)i ‖2 ≤ (1− η(β + γ))t
∑
i

‖s(0)
π(0)(i)

− g(0)‖2.

Theorem E.6.

dt = ‖s(t)π(t+1)(i)
− s(t)

π(t)(i)
‖2 ≤ 2(1− η(β + γ))t

∑
i

‖s(0)
π(0)(i)

− g(0)‖2

Next, we note that this also introduces an additional term to the Equation (10)
in Lemma E.3 because the derivation of Equation (10) contains the dot product
〈∇sltask(s

(t)

π(t+1)(i)
, yi), s

(t+1)

π(t+1)(i)
− s

(t)

π(t+1)(i)
〉. This dot product now contains an additional

term −ηβ〈∇sltask(s
(t)

π(t+1)(i)
, yi),∇sllatent(s

(t)

π(t+1)(i)
, g

(t)
i )〉 which can be bounded from above by

ηβ
∥∥∥∇sltask(s

(t)

π(t+1)(i)
, yi)

∥∥∥
2
·
∥∥∥s(t)π(t+1)(i)

− g(t)i
∥∥∥
2
.

Since the rest of the algebra in the proof of Lemma E.3 remains the same, we can readily revise the
result of Equation (10) as follows
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Lemma E.7. If ltask(·, y) is L-smooth, we have the following inequalities

ltask(s
(t+1)

π(t+1)(i)
, yi)− ltask(s

(t)

π(t)(i)
, yi) ≤

L

2
d2t + ‖∇sltask(s

(t)

π(t)(i)
, yi)‖2 · dt −

B
L
‖∇sltask(s

(t)

π(t+1)(i)
, yi)‖22

+ ηβ
∥∥∥∇sltask(s

(t)

π(t+1)(i)
, yi)

∥∥∥
2
·
∥∥∥s(t)π(t+1)(i)

− g(t)i
∥∥∥
2
.

As an auxiliary result, it is clear that∥∥∥s(t)π(t+1)(i)
− g(t)i

∥∥∥
2
≤
∑
i

‖s(t)
π(t+1)(i)

− g(t)i ‖2

≤
∑
i

‖s(t)
π(t)(i)

− g(t)i ‖2, by the definition of π(t+1) in (4)

≤ (1− η(β + γ))t
∑
i

‖s(0)
π(0)(i)

− g(0)‖2, by Lemma E.5

(12)

For convenience, we also introduce some new notations

ω = 1− η(β + γ),

D =
∑
i

‖s(0)
π(0)(i)

− g(0)‖2,

where ω ∈ (0, 1) given appropriate choices of β, η, and γ. This also implies that ηβ ∈ (0, 1).

Now, we are ready to revise the proof of the main Theorem 4.1 to incorporate the effect of β > 0.
First, we note that the second case of the proof where

∥∥∥∇sltask(s
(t)

π(t)(i)
, yi)

∥∥∥
2
> 3Ldt

B is when the new∥∥∥s(t)π(t+1)(i)
− g(t)i

∥∥∥
2

term interferes with our ability to manipulate the algebra to apply the Polyak-

Lojasiewicz condition. This is mainly because the condition
∥∥∥∇sltask(s

(t)

π(t)(i)
, yi)

∥∥∥
2
> 3Ldt

B does

not tell us much about the value of
∥∥∥s(t)π(t+1)(i)

− g(t)i
∥∥∥
2
. However, as both dt and

∥∥∥s(t)π(t+1)(i)
− g(t)i

∥∥∥
2

are bounded above by constant factors of ωt (Theorem E.6), we can address this issue by changing
the threshold on

∥∥∥∇sltask(s
(t)

π(t)(i)
, yi)

∥∥∥
2

for dividing the proof into two cases from 3Ldt
B , which uses

dt as reference, to 6LD
B ωt, which uses ωt as reference.

For the first case where
∥∥∥∇sltask(s

(t)

π(t)(i)
, yi)

∥∥∥
2
≤ 6LD

B ωt, we have

ltask(s
(t)

π(t)(i)
, yi)− ltask(s

∗
i , yi) ≤

1

2µ
‖∇sltask(s

(t)

π(t)(i)
, yi)‖22 ≤

36L2D2

B2
ω2t.

from the Polyak-Lojasiewicz condition, and

ltask(s
(t+1)

π(t+1)(i)
, yi)− ltask(s

(t)

π(t)(i)
, yi) ≤

L

2
d2t +

6LD
B

ωtdt + ηβ
∥∥∥∇sltask(s

(t)

π(t+1)(i)
, yi)

∥∥∥
2
·
∥∥∥s(t)π(t+1)(i)

− g(t)i
∥∥∥
2

≤ L

2
d2t +

6LD
B

ωtdt +
6LDηβ
B

ωt
∥∥∥s(t)π(t+1)(i)

− g(t)i
∥∥∥
2
.

from Lemma E.7. Since both dt and
∥∥∥s(t)π(t+1)(i)

− g(t)i
∥∥∥
2

are bounded above by constant factors ωt

(Theorem E.6), all terms in the above inequalities are bounded above by constant factors of ω2t and
the desired result follows.

For the second case where
∥∥∥∇sltask(s

(t)

π(t)(i)
, yi)

∥∥∥
2
> 6LD

B ωt, by applying Theorem E.6, we can show

that
∥∥∥∇sltask(s

(t)

π(t)(i)
, yi)

∥∥∥
2
> 3Ldt

B as in the original proof. Hence, we can follow the same algebraic
manipulations to derive

ltask(s
(t+1)

π(t+1)(i)
, yi)− ltask(s

(t)

π(t)(i)
, yi) <−

1

18L

(
2B3 − 13B2 + 12B

)
‖∇sltask(s

(t)

π(t)(i)
, yi)‖22

+ ηβ
∥∥∥∇sltask(s

(t)

π(t+1)(i)
, yi)

∥∥∥
2
·
∥∥∥s(t)π(t+1)(i)

− g(t)i
∥∥∥
2
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From (12) and the condition of this second case, we can bound the last term from above by the
gradient of task loss ∥∥∥s(t)π(t+1)(i)

− g(t)i
∥∥∥
2
≤ Dωt < B

6L

∥∥∥∇sltask(s
(t)

π(t)(i)
, yi)

∥∥∥
2

This yields

ltask(s
(t+1)

π(t+1)(i)
, yi)− ltask(s

(t)

π(t)(i)
, yi) < −

1

18L

(
2B3 − 13B2 + 12B − 3ηβB

)
‖∇sltask(s

(t)

π(t)(i)
, yi)‖22

Because ηβ ∈ (0, 1), we can show that for x ∈ (0, 1/2], the polynomial p(x) = 2x3−13x2+12x−
3ηβx is strictly greater than q(x) = 2x3−13x2+9x which is always positive in this interval. Hence,
we can follow the original proof to get the desired result.

E.5 Impact of gradient cloning with rejection

The rejection mechanism adds complexity to the variable update equation (5) by modifying the task
loss gradient with

∇sπLtask, rejected = ∇sπLtask −
∇sπLlatent · 〈∇sπLtask,∇sπLlatent〉

‖∇sπLlatent‖22

on either the update of s(t+1)

π(t+1)(i)
or g(t+1)

i depending on which variable is leading (Figure 3).

Since gradient rejection is activated when ‖∇sπLlatent −∇gLlatent‖2 > d ‖∇sπLtask‖2, we can derive
an upper bound for this modification term as follows∥∥∥∥∥∇sπLlatent · 〈∇sπLtask,∇sπLlatent〉

‖∇sπLlatent‖22

∥∥∥∥∥
2

≤ ‖∇sπLtask‖2

<
1

d
‖∇sπLlatent −∇gLlatent‖2

=
1

d
(β + γ)

∥∥∥s(t)π(t+1)(i)
− g(t)i

∥∥∥
2

(13)

The proof of Lemma E.5 can be modified to incorporate this term by∥∥∥s(t+1)

π(t+1)(i)
− g(t+1)

i

∥∥∥
2
≤ ω

∥∥∥s(t)π(t+1)(i)
− g(t)i

∥∥∥
2
+

∥∥∥∥∥∇sπLlatent · 〈∇sπLtask,∇sπLlatent〉
‖∇sπLlatent‖22

∥∥∥∥∥
2

≤
(
ω +

1

d
(β + γ)

)∥∥∥s(t)π(t+1)(i)
− g(t)i

∥∥∥
2

where d must satisfy the conditions d > 1/η to ensure that the constant factor lies in (0, 1).

Similarly to the impact of setting β > 0, the modification of the task loss gradient can appear as an
extra term in Lemma E.7 through the dot product 〈∇sltask(s

(t)

π(t+1)(i)
, yi), s

(t+1)

π(t+1)(i)
− s(t)

π(t+1)(i)
〉 if

the rejection mechanism is activated and s(t)
π(t+1)(i)

is leading. Interestingly, this extra term is easy to
handle as

〈∇sltask(s
(t)

π(t+1)(i)
, yi),−

∇sπLlatent · 〈∇sπLtask,∇sπLlatent〉
‖∇sπLlatent‖22

〉 = −〈∇sπLtask,∇sπLlatent〉2

‖∇sπLlatent‖22
which is strictly negative. Hence, even if the rejection mechanism is activated, the result of the
Lemma E.7 still holds in its current form. This implies that the proof of the main theorem also holds.

F Computational resources

• A typical training time of models on the MNIST point cloud autoencoding task was around
2.5 GPU hours on an RTX 2080Ti.

30



• A typical training time of models on the CLEVR object description generation task was
around 2 GPU hours on a V100.

• A typical training time of models on the chest radiograph report generation task was around
5 GPU hours on an A100.

• A typical training time of models on the object detection task was around 8 GPU hours on
an RTX 3090 (batch size 8).
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