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Summary

We present a framework for learning the sampling
pattern in MRI jointly with reconstruction using vari-
ational information maximization. Experiments
with knee MRI shows improved reconstruction qual-
ity of our data-driven sampling over the prevailing
variable-density sampling.

Background

e MRI measures tissue properties by collecting spatial
Fourier domain representations (k-space).

e One of the main challenges in MRI is the long
scan times.

e In order to accelerate MR imaging, one can ob-
tain a reduced number of k-space samples
below the Nyquist rate and use compressed sens-
ing or deep learning methods to solve the inverse
problem.

Problem Statement

e Accelerating MRI scans requires optimal sampling
of k-space data. However the sampling trajectories
are usually selected heuristically.

e Can we optimize for the sampling locations in k-
space in a data-driven manner?

e Given an acceleration factor, is it possible to op-
timize sampling pattern and image reconstruction
jointly?

Our solution: We put forth a novel deep learn-
ing framework that leverages uncertainty autoen-
coders to enable joint optimization of sampling pat-
tern and reconstruction of MRI scans.

Methods

We consider the multi-coil MR signal model under the additive white com-
plex Gaussian noise as
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where x is the image, 2 is k-space measurements. Encoding model f,(x)
contains coil sensitivity information S;, and enables continuous parameter-
ization of sampling coordinates ¢ via nuFFT operator F,,,(¢).

Variational Information Maximization

We make use of the InfoMax principle that maximizes the mutual informa-
tion between the measurements and noisy latent representations

mq?x I,(X,7Z) = mgx Ey,x,2) log q4(X|Z)]
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where py( X |Z) is a variational approximation to the model posterior ¢,(X | 7).

We represent the loss function as

Network Architecture

We use the nuFFT operator for multi-coil encoding and unrolled network
architecture for decoding. Sampling locations ¢ are shared between encoder
and decoder.
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Figure 1: Network architecture consisting of nuFFT based encoder (a) and unrolled recon-
struction network (b, c).

Experiments

We considered four acceleration factors in our experiments: R = 5, 10, 15, 20.
For each acceleration factor, we initialized the k-space sampling pattern (¢) by
Variable Density Sampling and picked o0 = 0.001 for the measurement noise €.
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Figure 2: pSNR (a) and SSIM (b) evaluated on test set for different acceleration factors. Point
spread function (c) of sampling trajectories before and after optimization for R = 5.
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Figure 3: Variable density (a) and optimized (b) trajectories along with the reconstruction result

on a slice in the test set (c). Zero-filled reconstruction corresponds to applying Ag on z directly.

Conclusion

e We use variational information maximization for learning the sampling pattern
in MRI jointly with image reconstruction.

e Optimizing sampling pattern improves reconstruction quality highlighting ben-
efits that can be obtained by learning undersampling patterns.



