Learning to Sample MRI via Variational Information Maximization

Cagan Alkan, Morteza Mardani, Shreyas S. Vasanawala, John M. Pauly { calkan, morteza, vasanawala, pauly } @stanford.edu

Summary

We present a framework for **learning the sampling** pattern in MRI jointly with reconstruction using variational information maximization. Experiments with knee MRI shows improved reconstruction quality of our data-driven sampling over the prevailing variable-density sampling.

Background

- MRI measures tissue properties by collecting spatial Fourier domain representations (k-space).
- One of the **main challenges** in MRI is the **long** scan times.
- In order to accelerate MR imaging, one can obtain a reduced number of k-space samples below the Nyquist rate and use compressed sensing or deep learning methods to solve the inverse problem.

Problem Statement

- Accelerating MRI scans requires **optimal sampling** of k-space data. However the sampling trajectories are usually selected heuristically.
- Can we optimize for the sampling locations in kspace in a data-driven manner?
- Given an acceleration factor, is it possible to optimize sampling pattern and image reconstruction jointly?

Our solution: We put forth a novel deep learning framework that leverages uncertainty autoencoders to enable joint optimization of sampling pattern and reconstruction of MRI scans.

Methods

We consider the multi-coil MR signal model under the additive white complex Gaussian noise as

Variational Information Maximization

We make use of the InfoMax principle that maximizes the mutual information between the measurements and noisy latent representations

Network Architecture

We use the nuFFT operator for multi-coil encoding and unrolled network architecture for decoding. Sampling locations ϕ are shared between encoder and decoder.

$$z = f_{\phi}(x) + \epsilon = \left[(F_{nu}(\phi)S_1)^H \cdots (F_{nu}(\phi)S_C)^H \right]^H x + \epsilon$$

where x is the image, z is k-space measurements. Encoding model $f_{\phi}(x)$ contains coil sensitivity information S_i , and enables continuous parameterization of sampling coordinates ϕ via nuFFT operator $F_{nu}(\phi)$.

$$\max_{\phi} I_{\phi}(X, Z) = \max_{\phi} \mathbb{E}_{q_{\phi}(X, Z)}[\log q_{\phi}(X|Z)]$$

$$\geq \max_{\phi, \theta} \mathbb{E}_{q_{\phi}(X, Z)}[\log p_{\theta}(X|Z)]$$
spread

where $p_{\theta}(X|Z)$ is a variational approximation to the model posterior $q_{\phi}(X|Z)$. We represent the loss function as

$$\mathcal{L}(\phi, \theta; \mathcal{D}) = \max_{\phi, \theta} \sum_{x \in \mathcal{D}} \mathbb{E}_{q_{\phi}(Z|x)}[\log p_{\theta}(x|z)]$$

Figure 1: Network architecture consisting of nuFFT based encoder (a) and unrolled reconstruction network (b, c).

Experiments

Conclusion

We considered four acceleration factors in our experiments: R = 5, 10, 15, 20. For each acceleration factor, we initialized the k-space sampling pattern (ϕ) by Variable Density Sampling and picked $\sigma = 0.001$ for the measurement noise ϵ .

Figure 2: pSNR (a) and SSIM (b) evaluated on test set for different acceleration factors. Point ead function (c) of sampling trajectories before and after optimization for R = 5.

Figure 3: Variable density (a) and optimized (b) trajectories along with the reconstruction result on a slice in the test set (c). Zero-filled reconstruction corresponds to applying A_{ϕ}^{H} on z directly.

• We use variational information maximization for learning the sampling pattern in MRI jointly with image reconstruction.

• Optimizing sampling pattern improves reconstruction quality highlighting benefits that can be obtained by learning undersampling patterns.