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Summary
We present a framework for learning the sampling
pattern in MRI jointly with reconstruction using vari-
ational information maximization. Experiments
with knee MRI shows improved reconstruction qual-
ity of our data-driven sampling over the prevailing
variable-density sampling.

Background

• MRI measures tissue properties by collecting spatial
Fourier domain representations (k-space).

• One of the main challenges in MRI is the long
scan times.

• In order to accelerate MR imaging, one can ob-
tain a reduced number of k-space samples
below the Nyquist rate and use compressed sens-
ing or deep learning methods to solve the inverse
problem.

Problem Statement

• Accelerating MRI scans requires optimal sampling
of k-space data. However the sampling trajectories
are usually selected heuristically.

• Can we optimize for the sampling locations in k-
space in a data-driven manner?

• Given an acceleration factor, is it possible to op-
timize sampling pattern and image reconstruction
jointly?

Our solution: We put forth a novel deep learn-
ing framework that leverages uncertainty autoen-
coders to enable joint optimization of sampling pat-
tern and reconstruction of MRI scans.

Methods
We consider the multi-coil MR signal model under the additive white com-
plex Gaussian noise as

z = fφ(x) + ε =
[
(Fnu(φ)S1)

H · · · (Fnu(φ)SC)H
]H
x + ε

where x is the image, z is k-space measurements. Encoding model fφ(x)
contains coil sensitivity information Si, and enables continuous parameter-
ization of sampling coordinates φ via nuFFT operator Fnu(φ).

Variational Information Maximization

We make use of the InfoMax principle that maximizes the mutual informa-
tion between the measurements and noisy latent representations

max
φ
Iφ(X,Z) = max

φ
Eqφ(X,Z)[log qφ(X|Z)]

≥ max
φ,θ

Eqφ(X,Z)[log pθ(X|Z)]

where pθ(X|Z) is a variational approximation to the model posterior qφ(X|Z).
We represent the loss function as

L(φ, θ;D) = max
φ,θ

∑
x∈D

Eqφ(Z|x)[log pθ(x|z)]

Network Architecture

We use the nuFFT operator for multi-coil encoding and unrolled network
architecture for decoding. Sampling locations φ are shared between encoder
and decoder.

Figure 1: Network architecture consisting of nuFFT based encoder (a) and unrolled recon-
struction network (b, c).

Experiments
We considered four acceleration factors in our experiments: R = 5, 10, 15, 20.
For each acceleration factor, we initialized the k-space sampling pattern (φ) by
Variable Density Sampling and picked σ = 0.001 for the measurement noise ε.
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Figure 2: pSNR (a) and SSIM (b) evaluated on test set for different acceleration factors. Point
spread function (c) of sampling trajectories before and after optimization for R = 5.
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Figure 3: Variable density (a) and optimized (b) trajectories along with the reconstruction result
on a slice in the test set (c). Zero-filled reconstruction corresponds to applying AHφ on z directly.

Conclusion

• We use variational information maximization for learning the sampling pattern
in MRI jointly with image reconstruction.

• Optimizing sampling pattern improves reconstruction quality highlighting ben-
efits that can be obtained by learning undersampling patterns.


