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Abstract
Large language models have shown impressive re-
sults for multi-hop mathematical reasoning when
the input question is only textual. Many math-
ematical reasoning problems, however, contain
both text and image. With the ever-increasing
adoption of vision language models (VLMs), un-
derstanding their reasoning abilities for such prob-
lems is crucial. In this paper, we evaluate the rea-
soning capabilities of VLMs along various axes
through the lens of geometry problems. We pro-
cedurally create a synthetic dataset of geometry
questions with controllable difficulty levels along
multiple axes, thus enabling a systematic evalu-
ation. The empirical results obtained using our
benchmark for state-of-the-art VLMs indicate that
these models are not as capable in subjects like
geometry (and, by generalization, other topics
requiring similar reasoning) as suggested by pre-
vious benchmarks. This is made especially clear
by the construction of our benchmark at various
depth levels, since solving higher-depth problems
requires long chains of reasoning rather than ad-
ditional memorized knowledge.

1. Introduction
Multi-hop reasoning is a fundamental element in intelli-
gence: it allows us to combine multiple pieces of informa-
tion to answer questions or solve problems. While formal
reasoning such as automated theorem proving (Robinson,
1965; Kovács & Voronkov, 2013; Schulz, 2002) has been a
key focus in the AI literature, recent years have witnessed a
great amount of progress in multi-hop reasoning with nat-
ural language thanks to the advances in pre-trained large
language models (LLMs) (Wei et al., 2022; Nye et al., 2022;
Kazemi et al., 2023b; Saparov et al., 2023; Yao et al., 2023;
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Figure 1: Sample GeomVerse problem. Question: If the
ABEF shape is a rectangle where a semi-circle has been
removed from one side of it, the perimeter of the ABEF
shape is 34 [...] compute the degree of the DAB angle.
Assume π = 3.14. Round computations to 2 decimal places.
Solution: The diameter of the semi-circle in the ABEF
shape is equal to the side of the rectangle with length 7 so
the shape has two sides with equal but unknown lengths, one
side with length 7, and one semi-circle arc with diameter 7.
So the perimeter is 2 ∗ UnknownSide + 7 + 7π

2 [...] the
length of the AB side is 16.01

2 = 8. [...] the final answer is
28.69.

Pan et al., 2023). Among various types of multi-hop rea-
soning, mathematical reasoning has turned into a key focus
domain for AI researchers (Lu et al., 2022; Lewkowycz
et al., 2022) with many recent works targeting to solve open
problems in mathematics (Fawzi et al., 2022; Davies et al.,
2021). It is an appealing domain for AI research due to
various reasons: it is a primitive skill that is essential for
many tasks, it has an open-ended nature, and due to various
challenges such as limited data it still remains a challenge
for LLMs and modern AI systems. Recently, the Interna-
tional Math Olympiad (IMO) grand challenge (Selsam et al.,
2020) was announced where the goal is to build an AI sys-
tem that can win a gold medal in IMO, one of the most
prestigious competitions. Not only research, with advance-
ments in LLMs, many new applications and products are
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leveraging AI research for education to build personalized
tutors (Abdelghani et al., 2023; Khan, 2023). One of the
key challenges so far has been to improve the performance
of these systems in STEM subjects.

Due to the vast popularity of mathematical problem solv-
ing both from research and product perspectives, several
datasets have been developed for measuring and improving
the mathematical reasoning of LLMs (Cobbe et al., 2021;
Ling et al., 2017; Hendrycks et al., 2021) and are widely
adopted by the research community. While existing datasets
mostly focus on textual problems, there are several bodies of
mathematical problems that require both textual and visual
understanding of the problem. Being one of the main school
curriculum and having a high presence in many math com-
petitions including IMO, geometry is a key domain in this
space. With the fast pace in adoption of the vision-language
models (VLMs) (Chen et al., 2022b; OpenAI, 2023) in var-
ious aforementioned applications, it is crucial to measure
and improve their performance on such problems. Previ-
ous work has created a number of datasets with geometry
questions based on high-school, college, or SAT exams, and
developed specific models for this task. While evaluating
VLMs on such datasets may provide a holistic understand-
ing of the general capability of the models, such evaluation
may provide little information about the specific areas of
strengths and weaknesses of VLMs and hence provide little
guidance on where research should focus. Recent years have
witnessed a surge of interest in synthetic datasets that allow
for a systematic evaluation of the boundaries of capabilities
and the limitations of the state-of-the-art models (see, e.g.,
(Lindström & Abraham, 2022; Borisov et al., 2022; Kazemi
et al., 2023a; Gekhman et al., 2023; Vaska & Helus, 2023;
Fatemi et al., 2024)).

In this paper we create GeomVerse, a dataset of syntheti-
cally generated geometry questions that require multi-hop
mathematical reasoning over text and image. We bridge
reasoning about geometry problems and logical reasoning,
allowing us to measure model performances on reasoning
factors that may go beyond geometry and may be present
in many (mathematical) reasoning problems on text and
image. In other words, GeomVerse allows for unveiling the
reasoning ability of VLMs across several axes, by using ge-
ometry as a lens. We also measure model performances on
geometry-specific axes of difficulty. This enables a system-
atic evaluation of VLMs on this task. A sample generated
problem and solution can be viewed in Figure 1.

Some of the main findings from our systematic evaluation
on GeomVerse are summarized below. Firstly, through the
unique property of GeomVerse that allows for constructing
benchmarks at various depths, we find that current VLMs
are not as capable in subjects like geometry as suggested
by previous benchmarks, showing that they may still be

immature for product applications such as AI tutoring. Im-
portantly, since several of the difficulty axes we study are
not specific to geometry, our results reveal a number of
important failure modes as well as a significant gap in the
reasoning capacity of state-of-the-art VLM that may go
beyond geometry. Secondly, finetuning VLMs to produce
the entire solution substantially improves their performance
for in-distribution problems but that does not generalize to
out-of-distribution problems. Thirdly, VLMs struggle more
with increasing in depth rather than width of reasoning. And
fourthly, VLMs are rather robust to the question and image
representation.

2. Related Work
Our work is related to several research directions in the
literature as summarized below.

Vision-Language Models (VLMs): Recent VLMs (Chen
et al., 2022b; Allaway et al., 2022; Alayrac et al., 2022;
Li et al., 2023; Wang et al., 2022; Chen et al., 2023) have
demonstrated promising performance on a wide range of im-
age and video tasks including captioning, question answer-
ing and visual reasoning. However, the capabilities of per-
forming multi-modal multi-hop (mathematical) reasoning
are less investigated. Because these VLMs are generative
black-boxes, understanding how well they can comprehend
and answer the multi-hop questions is a critical topic.

Multi-Hop Reasoning Datasets: There are a number of
datasets available in the literature that require multi-hop log-
ical (Tafjord et al., 2021; Kazemi et al., 2023a; Zhong et al.,
2021) and mathematical (Cobbe et al., 2021; Ling et al.,
2017; Hendrycks et al., 2021) reasoning over text. Previous
work has also developed a number of geometric reasoning
datasets (Seo et al., 2015; Lu et al., 2021; Chen et al., 2021;
2022a; Zhang et al., 2023) that require reasoning over both
text and image. Table 1 provides an overview of the existing
datasets and compares them along four axes: 1- requiring
textual understanding, 2- requiring visual understanding, 3-
involving mathematical reasoning, and 4- automatic con-
trol of the difficulty level (thus allowing for a systematic
evaluation).

Multi-Hop Reasoning Approaches: Some of the ap-
proaches for improving the multi-hop reasoning of LLMs
and VLMs range from pre-training on relevant data
(Hendrycks et al., 2021; Lewkowycz et al., 2022), fine-
tuning with (Nye et al., 2022; Dalvi et al., 2021; Zelikman
et al., 2022; Kazemi et al., 2023a) and without (Clark et al.,
2021; Betz et al., 2021) explicitly generating the solution,
in-context learning with solutions (Wei et al., 2022), decom-
posing the problem into smaller pieces and solving them
separately (Zhou et al., 2023; Khot et al., 2023) and using
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Textual
Understanding

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Visual
Understanding

✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mathematical
Reasoning

✗ ∼ ✗ ✓ ✓ ∼ ∼ ✓ ✓ ✓ ✓ ✓ ✓

Automatic
Difficulty
Control

✓ ✓ ✗ ✗ ✗ ∼ ∼ ✗ ✗ ✗ ✗ ✗ ✓

Table 1: A comparison of GeomVerse with some of the recent and/or widely-used multi-hop (logical or mathematical)
reasoning datasets. We use ∼ when a dataset contains a property to a limited extent.

LLMs/VLMs as tools within classical algorithms (Kazemi
et al., 2023b; Creswell et al., 2023). In the realm of reason-
ing about geometry problems, existing work typically de-
velops specialized models or tools (e.g, (Trinh et al., 2024))
or resorts to distillation strategies (e.g., (Gao et al., 2023));
measuring the reasoning ability of general-purpose VLMs
is less studied.

3. The GeomVerse Dataset
We start with some preliminaries and terminologies. Then,
we explain how GeomVerse is created. The dataset will be
publicly available upon the acceptance of the paper.

3.1. Multi-Hop Logical Reasoning

A logical theory consists of facts and rules. Consider the
following theory as a running example:

Facts : {a, b}
Rules : {a ⇒ c, a ∧ b ⇒ d, d ⇒ e}

The theory contains two facts specifying a and b are true,
and three rules specifying a implies c, a and b imply d
and d implies e. Starting from the facts, one can apply
deduction on the set of facts and the rules to derive new
facts and answer queries (e.g., we can query whether e
holds). We define the depth of a query as the number of
hops of reasoning required to prove it, and the width of a
query as the maximum number of branches in the proof of
the query. For a given query, any fact or rule not necessarily
in the proof of the query is referred to as a distractor. For
example, if we query a both the depth and width are 0, if
we query c the depth is 1 and the width is also 1, if we
query d the depth is 1 and the width is 2, and if we query e
both the depth and the width are 2. When we query e, the

rule a ⇒ c is a distractor. Note that queries with width 1
correspond to a chain of reasoning, whereas higher width
queries correspond to a tree of reasoning.

3.2. From Logical to Geometric Reasoning

Geometry problems often provide values for certain ele-
ments (e.g., sides, angles, areas). Using geometric rules
and formulas, we can deduce the values of the remaining
elements one by one. The elements whose values are given
to us can be thought of as facts in logical theories, the ge-
ometry rules and formulas can be considered as the rules
in logical theories, and the process of deriving the hidden
values can be thought of as the deduction.

As an example, the solution to the problem in Figure 1 can
be formulated in logical form as:

Facts : {AAHID, AABCD, PABEF , LBE}
Rules : {AAHID =⇒ AD,PABEF , LBE =⇒ LAB ,

AABCD, LAD, LAB =⇒ DDAB}

where Ax, Px, Lx and Dx represent the area of a shape,
perimeter of a shape, length of a side, and degree of an
angle respectively. We note two key differences with logical
reasoning: 1- unlike in deductive logical reasoning, the
rules are not given to the model and the model has to use
its own geometry knowledge (learned from pre-training
or finetuning) to apply the right geometry formulae and
derive new values, 2- in the case of geometry, applying rules
involves computations.

3.3. Creating the GeomVerse

To create GeomVerse, we fix a set of 12 standard and non-
standard shapes S as demonstrated in Figure 2 and gather a
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number of rules/formulas Fs for each shape s ∈ S (e.g., the
Pythagorean theorem) with a total of 68 formulas across all
shapes. We further use supplementary and complementary
angles as two special shapes with only a single formula
each. For a formula f , we let fin represent the input ele-
ments and fout represent the element whose value can be
computed based on the formula and the inputs (e.g., for the
Pythagorean theorem, the two sides can be the input and
the hypotenuse can be the output). Then, similar to several
existing works on constructing multi-hop, textual logical
reasoning datasets or textual stories (Kazemi et al., 2023a;
Ye et al., 2022), we adopt a backward generation strategy
where we start by generating a question, and then adding
rules to increase the depth and width of reasoning to the
desired amount.

Generating Examples with Depth 1: To generate an exam-
ple with depth 1, we can simply sample a shape s ∈ S
and formula f ∈ Fs. Then, we let facts = f (in),
query = f (out), and with the only required rule in the
solution being rules = {f}.

Increasing the Depth: Let f1 be the formula we sampled
for the depth 1 example and f

(in)
1 and f

(out)
1 be the inputs

and output of f1. To increase the depth to 2, we select
one of the elements e in f

(in)
1 and do not provide it in

the facts. Instead, we sample a new shape s2 and formula
f2 such that f (out)

2 has the same type as e and we tie the
values of e and f

(out)
2

1. For example, if e is one of the
sides of a triangle, then s2 can be a square and f2 can be
the formula of deriving the side of a square from its area,
where the square and the triangle share the same side. Then
facts = (f

(in)
1 − e) ∪ f

(in)
2 , query = f

(out)
1 , and the

required rules are rules = {f1, f2} with f2 providing the
value for e and then f1 using this value to answer the query.
The depth can be further increased in a similar way by
appending a new shape and formula to one of the elements
in f

(in)
2 .

Increasing the Width: Let s and f be the shape and for-
mula we sampled at some depth for the construction of an
example and e1 and e2 be two connectable elements (side
or angle) in f (in). We can include only f (in) − {e1, e2} in
the facts, and append new shapes and formulas as explained
above so that the values for e1 and e2 can be derived.

Distractors: Distractors can be added in a post processing
step. Consider a Depth 2 (Width 1) example and suppose e
is the element that has to be computed in the first hop and
be used in the second hop. If we provide the value of e as
input, then the model turns into a Depth 1 problem with
a distracting shape and corresponding values. In Figure 1,
for example, if we provide the value of the AD side as

1Note: e should have a type that allows it to be connected to
another shape (e.g., side or angle).

Algorithm 1 BackwardGenerate
Input: Shared element e, Shared element type τ Depth d [t]
if d == 0 then

do
s = RandomSelect(S)
f = RandomSelect(Fs)

while f (out).type != τ

Append s to other shapes on e.
Randomly assign values to f (in).
Provide f (in) values as facts.

else
do

s = RandomSelect(S)
f = RandomSelect(Fs)
E = ConnectableElements(f (in))

while f (out).type != τ OR |E| = 0

Append s to other shapes on e.
Randomly assign values to f (in) − E .
Provide f (in) − E values as facts.
e1, . . . , em = SampleElems(E , pbranch)
for e ∈ {e1, . . . , em} do

BackwardGenerate(e, e.type, d-1)

input, then the square and its corresponding values can be
considered as distractors.

The Generation Algorithm: Algorithm 1 adopts the high-
level idea of the GenerateTheory algorithm from Kazemi
et al. (2023a) for recursively generating geometry problems
(as opposed to logical theory problems) in a backward fash-
ion. Initially, we select one element type τ to be asked
for in the question (e.g., side, angle, area, perimeter, etc.),
and a desired depth d. Then we call the BackwardGenerate
function. If d = 0, we sample a shape s ∈ S and formula
f ∈ Fs such that the type of the element in f (out) is τ ,
append the shape s to the previous shapes on the shared
element, assign random values to the elements in f (in) and
provide them as facts2. Otherwise, we sample a shape s ∈ S
and formula f ∈ Fs such that 1) the type of the element
in f (out) is τ and 2) there is at least one connectable (side
or angle) element in f (in). Then, we select a subset E of
the elements in f (in) for expanding the number of hops. If
pbranch = 0, we only select one of the elements from f (in)

2During random value assignment, we test multiple factors to
ensure the assigned values are sensible (e.g., the sides of a right
triangle are smaller than its hypotenuse) and re-assign values until
these criteria are met. Sometimes, this becomes impossible due to
some values that are derived from other hops; in these cases, we
simply discard the example and generate another example from
scratch.
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Figure 2: The standard shapes (top row) and non-standard shapes (bottom row) used in our dataset.

which introduces no branching and so no increase in width.
Otherwise, with probability pbranch we select a second ele-
ment as well, which leads to a branching and so increases
the width. We append the shape s to the previous shapes on
the shared element, assign random values to the elements in
f (in)−E and provide them as facts. Then, for each element
in E , we recursively call the BackwardGenerate function to
append new shapes such that these values can be derived. A
visual example of the procedure is provided in Appendix C.

Automatic Question and Solution Generation: We au-
tomatically produce a question that provides the facts as
input and asks for f (out) where f is the first formula used.
We also keep track of the required rules (including shapes,
formulas, and the shared elements) during the generation
process (excluded from Algorithm 1 for brevity) and au-
tomatically produce a solution by applying deduction and
computations on the rules and facts.

Text-Only vs. Text-Image: We create two versions of
our problems. In one version, all the required information
is given in the question and the image is not needed for
answering the question (although the presence of the image
can make it easier to understand the problem), and in the
other version some information is given in the image and
some in the question text so both the image and text of the
question are required. We use the former to experiment with
text-based LLMs and the latter to experiment with VLMs.

Coverage: The connection between Algorithm 1 and logi-
cal reasoning helps specify what classes of geometry prob-
lems are covered by Algorithm 1. Specifically, Algorithm 1
can generate any geometry problem P containing a tree of
shapes where each shape is connected to its parent shape
via a single side or a single (vertical) angle, and where the
solution can be found by finding the values of the shared
elements bottom-up on the tree.

Further Considerations: While Algorithm 1 can generate
problems with overlapping shapes, to ensure the quality of
the generated examples remains high without any human
involvement in the generation process, we only accept the
generated examples where the shapes are non-overlapping.

3.4. Quality Check

To ensure high quality for the questions, the solutions, the
images, and the labels, we did two quality checks. Firstly,
we generated all possible Depth 1 problems and manually
verified their quality and correctness. Secondly, we asked 10
well-educated people to verify a total of 100 problems (from
various depths and with various properties) and identify as
many issues as possible with the questions, solutions, labels,
or images. A list of the issues identified in this round are
provided in Appendix E. All the raised issues were then
fixed, and the process was repeated with 100 new examples
to ensure no issues remained. Additionally, to get human
performance on these problems, a separate set of four people
solved 60 sampled problems (20 from each depth) and raised
no issues, indicating another level of quality check for the
generated dataset.

4. Experiments
We experiment with two state-of-the-art VLMs: PaLI (Chen
et al., 2022b) and GPT4V (OpenAI, 2023), and a state-of-
the-art LLM: PaLM 2 Large (Anil et al., 2023), in four
settings: 1- zero-shot, 2- few-shot with chain-of-thought
(CoT) prompting (Wei et al., 2022) (hereafter referred to
as FS-CoT), where the CoT corresponds to the solution, 3-
finetuning to directly predict the label (hereafter referred
to as FT), and 4- finetuning to predict the solution/CoT
(hereafter referred to as FT-CoT). We do the first experiment
with GPT4V3, the second with PaLM 2 Large and PaLI 55B
(the largest PaLI model), and the last two experiments with
PaLI 5B to keep the required computations manageable.

Following Methani et al. (2020) and Masry et al. (2022), we
measure performance in terms of relaxed accuracy, where a
prediction is considered correct if it is within δ percent of
the golden label. We do this to accommodate for the slight
variation in computations introduced due to the rounding
strategy (e.g., due to the order of the computations). We
empirically found δ = 3 to be appropriate so we consider a
prediction p correct if 0.97 ∗ label ≤ p ≤ 1.03 ∗ label. We
remove from our dataset any example where the difference

3Based on the GPT4 responses, we notice that it uses zero-shot
CoT (Kojima et al., 2022) under the hood.
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Figure 3: Model performances as a function of the depth of reasoning. Note: near-zero accuracies are not visible in the plot.
∗GPT4V results were obtained on a subset of randomly selected 10 examples per depth, and the correctness was determined
manually.

between the label computed with and without rounding
intermediate steps is more than 3%.

We provide results on subsets of our dataset with different
properties. In each case, we generate 1000 examples ran-
domly given the described parameters and report the results
on those examples. We also generate a separate pool of
train, validation, and fewshot examples for our experiments.
The implementation details are presented in Appendix B.

4.1. Performance as a Function of Depth

Figure 3 represents the model results on examples with
varying depths. Without finetuning, GPT4V can only solve
Depth 1 examples, and the accuracy of the FS-CoT PaLI
model is almost zero on all depths. In contrast, the text-only
model can solve a portion of the Depth 2 and 3 problems
as well. While the presence of the image should make the
problem easier to understand and solve, this results hints
that LLMs may be stronger in mathematical and multi-hop
reasoning compared to their counterpart VLMs. Moreover,
while finetuning helps VLMs learn to do some reasoning,
as the depth of reasoning increases the performance drops
monotonically and quite significantly.

Notice that FT-CoT outperforms FT substantially for all
depths. While such improvements have been previously
observed for reasoning with textual inputs (Suzgun et al.,
2022), this result shows the importance of showing CoT to
VLMs as well. This result also hints at the quality of the
automatic solutions in GeomVerse.

We also measured human performance on our dataset by hav-
ing 4 well-educated (but not necessarily expert in geometry)
people solve a total of 20 problems per depth. The results
show a stark gap between the best model performances and
the human performance; we also observe that our problems
can be challenging to solve even for humans. The mistakes
made by humans where due to various issues including
wrong/forgotten degree to radians conversion, using wrong
formulas, and making wrong assumptions.

Depth 1 Depth 2 Depth 3
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20
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80
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 (3
%

) In Distribution
Out of Distribution

Figure 4: Measuring the generalization ability with in-
distribution and out-of-distribution problems.

Table 2: Top-5 failure modes in the order of frequency.

Few-Shot Text-Only Model FT-CoT VLM Model (OOD)
Wrong proof planning Wrong calculations

Wrong formula Misunderstanding shapes
Wrong calculations Wrong formula

Wrong assignment of values Wrong proof planning
Hallucinating values Wrong value assignment

Generalization: We next measure how much the FT-CoT
model (the best performing one across depths) can gener-
alize to variations in the shapes. To this end, we finetune a
model only on the following shapes: square, right triangle,
trapezoid, semi-circle, rectangle plus equilateral triangle,
rectangle minus semi-circle, and square minus circle. We
then report the results separately for the test examples con-
taining only these shapes (in-distribution) vs examples con-
taining at least one new shape (out-of-distribution). Notice
that all the left-out shapes have a similar (but not exact)
counterpart shape in the training. The results are reported
in Figure 4. As it can be observed, the performance goes
significantly down for the out-of-distribution case.

Our depth and generalization results combined show that
VLMs struggle with solving multi-hop geometry questions
and reveals a crucial gap in their reasoning capabilities.

Failure Analysis: To understand the main failure modes of
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the models, we manually verified 5 examples per depth for
the FS-CoT text-only model and the FT-CoT model when
tested on a combination of seen and unseen shapes. The
main failure modes are presented in Table 2. Besides com-
putation errors which have been previously observed as well
for mathematical reasoning problems (Lewkowycz et al.,
2022), we observe several other failure modes: 1- wrong
proof planning (either wrong step order or disconnected
steps), 2- wrong formulas (showing a gap in model knowl-
edge), 3- misundestanding shapes in the case of VLMs (e.g.,
confusing sector with triangle), 4- wrong value assignment
(e.g., assigning the value of a side to another side), and
5- hallucination (mostly hallucinating non-existent value).
While proof planning is the most frequent failure mode of
the text-only model, we notice that the FT-CoT model makes
fewer planning errors.

Correct Label = Correct Reasoning? We next verify if
the model produces a correct reasoning chain in the cases
where it produces a correct final answer. Since re-using the
reasoning chains produced by a model to further finetune it
is becoming more prevalent (Zelikman et al., 2022; Huang
et al., 2022; Magister et al., 2022), producing correct reason-
ing in the case of correct label is an important property of a
model. To measure the reasoning accuracy, for the FS-CoT
text-only and the FT-CoT models, we randomly selected
up to 20 examples (upper-bounded by the number of cor-
rectly solved problems) from each of the depths where the
model produced the exact label and verified manually if the
produced reasoning chain is also correct. We also verified
the examples for which the zero-shot model predicted the
label correctly. For Depth 1 examples, we observe that the
reasoning chain is correct for the three models in all cases;
for Depth 2, 20/20 have correct reasoning chains for the
FS-CoT model and 19/20 have correct reasoning chains for
the FT-CoT model, and for Depth 3 examples, 8/9 exam-
ples have correct reasoning chains for the FS-CoT model
and 16/20 for the FT-CoT model, with the errors mostly
being on missed intermediate computations that were then
replaced with correct numbers in later steps. This shows that
the reasoning is mostly correct when the label is predicted
correctly.

Due to the low performance of the zero-shot and FS-CoT
PaLI models, hereafter we only experiment with the FS-CoT
Text-Only and finetuned PaLI models.

4.2. Performance as a Function of Width

We generate Depth 2 examples (medium difficulty in terms
of depth) with pbranch=0, 0.5, and 1.0, and report the per-
formances in Figure 5. We observe that while increasing the
width negatively affects the performance in several cases
(especially for the FS-CoT model) the amount of decrease
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Figure 5: Model performances as a function of width. Mod-
els seem to be less affected by increasing the width of the
reasoning.
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Figure 6: Model performance when distracting information
is added to the question/image.

is substantially lower compared to the depth experiments4.
The results hint at the ability of the models at learning to
deal with higher width examples. This could be because the
main added difficulty from higher width problems is that
the model needs to solve more independent Depth 1 prob-
lems, on which they showed good performance according
to Figure 3.

4.3. Distractors

We next measure how well models can deal with distracting
information, a phenomenon which is common in real prob-
lems. We create a version of the Depth 2 problems where we
provide the hidden value as input. This effectively turns the
Depth 2 problem into a Depth 1 problem with some extra
(distracting) shapes and values. The model performance is
reported in Figure 6. Comparing Depth 1 results with and
without distractors, the performance drops significantly for
all models in presence of a distractor. Comparing Depth
1 with distractor and Depth 2 without distractor, while the
text-only model has taken advantage of the value for the hid-
den element in some cases, for the finetuned VLM models
the performance degrades to as low as that of the Depth 2
dataset.

4Part of the reason for this observation could be because we
have only 30/68 formulas that have more than 1 connectable ele-
ments in their inputs and so even in the case where pbranch = 1.0,
we still generate a number of examples that correspond to chains
as opposed to trees.
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Figure 7: Measuring model sensitivity to low-level features
of the images.

4.4. Sensitivity to low-level visual features

To measure how sensitive the VLM models are to the low-
level visual features, we create separate test sets each vary-
ing in one low-level feature and measure the performance
of the trained models on these new sets. Specifically, we
experiment with changing the opacity of the shape colors,
the line width of shape boundaries, and the font size of the
texts on the images. In figure 7, we observe that the models
are robust against opacity and line width, but not against
font size changes.

4.5. Other Variations

Our experiments so far focus on general factors that may
be present in many problems requiring reasoning on text
and image. In Appendix A, we experiment with various
other axes of difficulty that are more specific to geometry
problems (including shapes, source of information, image
annotation, adding variablized inputs, and decomposing
performance based on question type).

5. Limitations & Risks
While GeomVerse covers a wide range of geometry ques-
tions, there are problems that cannot be produced using
Algorithm 1 with our current set of shapes and formulas.
The connection between Algorithm 1 and logical reasoning
makes evident the class of problems that cannot be repre-
sented by the algorithm. In particular, let P be the class of
geometry problems containing a tree of shapes where each
shape is connected to its parent shape via a single side or a
single (vertical) angle, and where the solution can be found
by finding the values of the shared elements bottom-up on
the tree. Algorithm 1 cannot generate any geometry prob-
lem that is not in P . For example, let ABC be a triangle, D
be a point on the AC side dividing ABC into two triangles
ABD and ACD, where some property of ABC should be
computed based on the properties of ABD and ACD. This
problem cannot be produced by Algorithm 1 as it does not
correspond to a tree of connected shapes as described above.
However, note that one can add such cases to our set of

non-standard shapes in a similar way we added the other
non-standard shapes.

The problems in GeomVerse can be solved with a logical
deduction procedure and may not require much creativity.
For this reason, our evaluation should not be considered as
measuring the creativity of the models in solving problems,
but rather their ability in following a deduction procedure.

For our finetuning experiments, to make computations man-
ageable, we used the small PaLI 5B model. Finetuning
larger and more capable models such as Gemini (Team
et al., 2023) or GPT4V (OpenAI, 2023) can provide more
insight into the performance of the finetuned VLMs.

6. Conclusion
In this work, we procedurally generated a synthetic dataset
of geometry reasoning questions that require multi-hop rea-
soning over both text and image. Through the lens of the
geometry problems, we conducted a systematic analysis of
various general and geometry-specific reasoning abilities of
VLMs and found the gaps and strengths in their reasoning
capabilities. Future work can verify the merit of finetuning
models on synthetic geometry problems for improving their
performance on real datasets. In an initial experiment, we
measured the performance of the PaLI 5B model on Ge-
ometry3k with and without finetuning on GeomVerse and
observed modest improvements (from almost 0 to almost 2
percent accuracy). We believe this is due to the difference
in the visual and textual features of the Geomety3k and
GeomVerse, as well as the poor generalization of PaLI to
geometry problems beyond its training distribution. Bet-
ter aligning the textual and visual features and using more
powerful models can yield more gains.
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Figure 8: Comparing model performance when using only
standard shapes vs when using all shapes. Overall, we do
not see a big drop in the performance.
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Figure 9: Model performances as a function of providing
more information in the text or on the image.

A. More Results: Other Axes of Difficulty
Besides the experiments in the main text, we also consider a
number of other axes of difficulty for a systematic evaluation.
In what follows, we describe these axes and present the
experimental results. In Section D, we provide samples
corresponding to each of the axes of difficulty.

A.1. Standard vs Non-Standard Shapes

In Figure 2, we outlined the standard and non-standard
shapes used in GeomVerse. Conceptually, it should be more
difficult to solve problems involving non-standard shapes
as they require more computations. We compare the per-
formance of various models on problems that contain all
shapes vs those that involve only standard shapes. To fix
other axis of difficulty, we only consider depth 2 examples
for this experiment where the problems are at a medium
level of difficulty. The finetuned models are finetuned on all
images in both cases. The results are in Figure 8. According
to the results, we observe that while the FS-CoT model per-
forms better on the standard shapes, this is not the case after
finetuning. This shows that finetuning can teach the models
to effectively deal with non-standard (but in-distribution)
shapes.
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Figure 10: Model performances as a function of image
annotation.

A.2. More Info in Text or on Image

Some of the information can be provided either in the text of
the question or on the image. For example, the degree of an
angle can be provided in the image, or can be provided in the
text. We generate examples where the information is given
mostly in text and examples where it is given mostly on
the image, and report model performances in Figure 9. For
the FT model, we see that the former case results in lower
accuracy which could be because in this case the model
needs to first map those information to the elements in the
image and then reason with them. FT-CoT almost closes
the gap; this could be because the provided CoTs teach the
model how to map information from text to image.

A.3. Image Annotation

We consider two types of image annotation: 1- individual
annotation: we refer to each side with a single lower-case
letter, each angle with a Greek letter, and each shape with
its (distinct) color, and 2- coordinate annotation: we assign
upper-case letters to the coordinates on the image and refer
to sides with the letters on the two coordinates, to angles
with the three coordinates, and to shapes with all their coor-
dinates. We generate a test set with coordinate annotation
and another with individual annotation and report model
performances on these two sets in Figure 10. The two mod-
els show different behaviour with the FT model performing
slightly better on the individual annotation case, but the
FT-CoT model slightly performing better on the coordinate
annotation case.

A.4. Variablized Inputs

Instead of providing the exact values of the input elements
(e.g., the α angle is 30 degrees), it is common in geometry
questions to provide a variablized version of them (e.g., the
α angle is 2x+ 1) in which case one needs to first infer the
value of the variable based on the given information and then
use that to infer the value of an element. As an example, we
can either directly provide two of the angles of a triangle as

Few-Shot Text Only
(PaLM 2 L)

Finetuned
(PaLI 5B)

CoT Finetuned
(PaLI 5B)

0

10

20

30

40

Re
la

xe
d 

Ac
cu

ra
cy

 (3
%

)

Variable level = Zero.
Variable level = Medium
Variable level = High

Figure 11: Model performances as a function of includ-
ing variablized inputs in the question. The performance
degrades as we include variables in the questions.
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Figure 12: Model performances broken down by the ques-
tion type.

input and ask for the third one, or we can provide variablized
values for the three angles and ask for one of them. To
generate variablized questions, when we use a formula f ,
instead of directly providing the values for f (in) as input
and expecting the model to apply the formula to derive the
value of f (out), we provide variablized values for (some of)
the elements in f (in) and f (out) and expect the model to
use the formula for deriving the value of the variable x and
use that to derive the numerical value of f (out). We selected
17/68 of our formulas for which a variablized version of the
problem only requires solving an extra 1-d linear equation.
We then conducted an experiment where, whenever one of
the 17 rules was selected during generation, we provide
a variablized version of it with probability ρ. Figure 11
demonstrates the results for ρ = 0, ρ = 0.5 (corresponding
to level = medium) and ρ = 1.0 (corresponding to level =
high). We observe that as we include variablized inputs, the
performance of the models degrade, especially for the FT-
CoT model. This shows VLMs (and also LLMs) struggle to
work with variables when solving geometry problems.

A.5. Decomposing by Question Type

Our questions involve asking about the length of a side, the
degree of an angle, or the area/perimeter of a shape. In
Figure 12, we report model performances for each of these
question types. We observe that the FS-CoT Text-Only
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model performs almost equally across all three types, with
slight preference for angle and area/perimeter questions.
For the FT model, questions about angles are substantially
easier, followed by questions about side. We conjecture
that part of the reason for the high performance of the FT
model on angle questions might be because the degree of
an angle can be estimated from the figure without actually
solving the problem. This could be in part validated by the
results of the FT-CoT model, where the jump in accuracy is
substantially higher for side and area/perimeter questions. In
the case of FT-CoT, we see that side questions are easier than
the other two; this may in part be because these questions
involve easier arithmetic operations (e.g., some of the angle
questions require computing arcsin which might be difficult
for a pre-trained model).

B. Implementation Details
For our finetuning experiments, we first generated a training
set containing 10k examples and a validation set containing
2k examples. For each of the examples in these two sets, the
parameters corresponding to different axes of difficulty dis-
cussed in the paper were set randomly to allow for a diverse
set of examples in the train and validation sets. We then
removed the (few) examples whose solution was identical
to one of the solutions in one of the examples in our test
sets. The same train and validation sets were used for all of
our test sets.

We finetuned our model for 10k steps with a learning rate of
0.0005 and a batch size of 128, measured the model perfor-
mance on the validation set every 2000 steps, and reported
the results on the test sets for the checkpoint achieving the
best performance on the validation set.

For our fewshot experiments, we manually selected 4 ex-
amples from the training set and used those examples as
fewshot demonstrations across all experiments. These ex-
amples were selected to ensure many aspects of the test set
are covered (e.g., to ensure there are examples at various
depths, widths, with and without variables, with different
question types, etc.).

Rounding Errors: Note that depending on how we round
intermediate computations, the final answer can be slightly
different. For example, consider the expression 2.26∗3.14

4 .
If we first multiply the numerator, round it and then divide
by 4 and round again, we will get 2.26∗3.14

4 = 7.1
4 = 1.78.

However, if we first do both computations and then round
at the end, we will get 2.26∗3.14

4 = 1.77. For this reason, we
reported relaxed accuracy in our experiments to account for
the differences in the way we computed the final results and
the way the model may compute it.

C. Sample Process for Algorithm 1
In Figure 13, we provide a visual demonstration of the
process in Algorithm 1 for generating an example with
Depth 3. In Step 1, we select a shape from our set of shapes
and then select one of the formulas. The shape selected
in this example is a rectangle and let the selected formula
be to compute the area of a rectangle given its height and
width; so f

(in)
1 = {LAC , LCD} and f

(out)
1 = {AABCD}

where LAC and LCD represent the length of AC and CD
and AABCD represents the area of ABCD (note that we
could also select LBC and LAB instead). We then select
which element(s) from f

(in)
1 we will provide explicitly and

which element(s) should be derived. Assume we decide to
provide LAC explicitly and append other shapes to derive
the value of LCD. In this case, we assign a random value to
LAC and provide it in the set of facts.

In Step 2, we need to select a shape where one of its sides is
CD, and select a formula from which the length of this side
can be derived. In the provided example, the selected shape
is a right triangle and let us assume the selected formula is
to compute a side of a right triangle given the hypotenuse
and the opposite angle. So f

(in)
2 = {LCE , DCED} and

f
(out)
2 = {LCD}, where LCE and LCD represent the

lengths of the CE and CD sides and DCED represents the
degree of the CED angle. We then select which element(s)
from f

(in)
2 we will provide explicitly and which element(s)

should be derived. Assume both elements should be derived
(corresponding to increasing the width of reasoning). So
none of the elements will be added to the facts.

In Step 3, we need to select a shape where one of its sides
is CE, and select a formula from which the length of this
side can be derived. In the provided example, the selected
shape is a semi-circle. Assume the formula is to compute
the diameter of the semi-circle LCE given its perimeter
PSemiCircle. Since we want to generate Depth 3 examples,
we add PSemiCircle to the set of facts.

In Step 4, we need to select a shape that can be connected to
the CED angle, such that DCED can be derived from that
new shape. In the provided example, the selected shape is
a supplementary angle, and the formula is that the sum of
two supplementary angles is 180. We provide DDEF in the
facts so DCED can be derived based on that.

Putting it all together, we get the rightmost shape in Fig-
ure 13. The facts include {LAC , PSemiCircle, DDEF } and
the query is AABCD. Based on the rules we used, we can
apply deduction to produce a solution as follows:

DDEF =⇒ DDEC

PSemiCircle =⇒ LCE

DDEC , LCE =⇒ LCD

13
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Figure 13: A visual demonstration of the process in Algorithm 1 for generating a example in Depth 3.

LCD, LAC =⇒ AABCD

To generate the question, we turn the facts (and the extra
information needed to know such as the shapes, whether
some angles are vertical or complementary, etc.) into a
question using a template. We also provide the shape names
when necessary. For Figure 13, for example, the elements
whose values have to be provided as input are recorded
during the generation process; this includes the length of
AC, the measure of the DEF angle, and the perimeter of the
semi-circle. We also take note of the other information that
must be provided; this includes the fact that CDE is a right
triangle and that DEF and DEC are complementary. We then
use templates to turn each of these pieces of information
into a textual format and concatenate them; we also textify
the question using templates and append at the end. The
final question will look like: If the length of the AC side
of the ABDC rectangle is 10, CDE is a right triangle, the
DEF angle is 120 degrees, the DEF and the DEC angles are
complementary, and the perimeter of the semi-circle is 20,
compute the area of the ABDC rectangle.

D. Samples from GeomVerse

In this work, we experimented with several variations of
GeomVerse. Here, we provide samples from these different
variations to better illustrate how each test set looks like.
The questions and solutions are provided in Tables 3 and 4
and the corresponding images are provided in Figure 14.

E. Issues Found During Quality Check
As mentioned in the main text, the dataset went through
multiple rounds of quality check. In what follows, we pro-
vide some of the examples of the issues found during the
quality check by non-authors.

• Text repetition: In two cases, the quality checkers
found the text of the question to be repetitive. This

happened in the cases where, e.g., the question was
”the length of the AB side of the ABC triangle is 10,
the length of the BC side of the ABC triangle is 6, the
length of the AC side of the ABC triangle is 8”. We
updated our templates to remove repetitions.

• Unnecessary information in the question: An issue
raised by multiple quality checkers was that we pro-
vided the value of π = 3.14 even when it was not
used in the solution. We made sure we only provide it
when needed. Misprinting a formula in the solution:
In one case, a formula was misprinted in the solution
where a squaring operation was missing (this did not
affect the final result though because it was a misprint).
This was fixed.

• Unsolvable Variablized Inputs: The quality checkers
identified that when we provided variablized inputs,
sometimes the problem became unsolvable. This hap-
pened, e.g., in the case where we provided an input
such as ”the length of the three angles of a triangle are
x+ 30, −2x+ 60 and x+ 45” where after summing
the three values, x disappeared.

• Missing Coordinates: In one case, one of the charac-
ters corresponding to an image in the coordinate was
missing. We identified the root cause and fixed this.

• Spacing issues: Since the solutions were generated
automatically, there were a number of cases where a
space was either missing between two words or there
were multiple spaces.
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((a)) Depth 1 ((b)) Depth 1 Variablized ((c)) Depth 2

((d)) Depth 2 with Branch ((e)) Depth 3 ((f)) Depth 3 Branch

((g)) Coordinate Annotation ((h)) Individual Annotation
(more info on image)

((i)) More Info in Text

Figure 14: Samples from our test sets.15
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Table 3: Questions and solutions corresponding to the images in Figure 14.

Image index Question Solution
(a) Compute the perimeter of the ABCD parallelogram. The lengths of the AD and the AB sides of the ABCD par-

allelogram are 10 and 12, so the perimeter of the ABCD
parallelogram is 2 * (10 + 12) = 2 * 22 = 44. Therefore
the final answer is 44.

(b) If the degree of the BAC angle is 2x + 50, the degree
of the BCA angle is 2x + 35 and the degree of the CBA
angle is 5x + 50, compute the degree of the CBA angle.

The three degrees of the ABC triangle are 2x+50, 2x+35
and 5x+50. Therefore, 2x+50+2x+35+5x+50 =
180, so 9x + 135 = 180, so 9x = 45, so x = 45

9
= 5.

The degree of the CBA angle = 5∗5+50 = 75. Therefore
the final answer is 75.

(c) If the BCDE shape is a combination of a rectangle and
a semi-circle and the area of the BCDE shape is 102,
compute the degree of the BCA angle. Assume π = 3.14.
Round computations to 2 decimal places.

The area of the BCDE shape is 102 and the length of
the CD side is 6, so (other side) ∗6 + 3.14∗62

8
= 102,

so (other side) * 6 = 102− 3.14∗62
8

= 102− 3.14∗36
8

=

102 − 113.04
8

= 102 − 14.13 = 87.87. Therefore, the
length of the BC side is 87.87

6
= 14.65. The length of the

hypotenuse of the ABC triangle is 14.65 and the length of
the side opposite to the BCA angle is 7, so the BCA angle
equals asin( 7

14.65
) = asin(0.48) = 28.69. Therefore

the final answer is 28.69.
(d) If the length of the height of the ABCD trapezoid is 8, the

area of the blue semi-circle is 189.97, the BCFGH shape
is a combination of a rectangle and an equilateral triangle
and the perimeter of the BCFGH shape is 42, compute the
area of the ABCD trapezoid. Assume π = 3.14. Round
computations to 2 decimal places.

The area of the blue semi-circle is 189.97 so the length

of the AD diameter can be computed as
√

8 ∗ 189.97
π

) =√
1519.76

π
=

√
484.0 = 22. The side of the equilateral

triangle in the BCFGH shape is equal to the side of the
rectangle with length 8 so the shape has two sides with
equal but unknown lengths, one with length 8, and two
triangle sides with length 8. The perimeter of the BCFGH
shape is 42 so 2 * (unknown side) + 3 * 8 = 42. So
2 * (unknown side) = 42 - 24 = 18, and the length of
the BC side is 18

2
= 9. The lengths of the AD and the

BC bases of the ABCD trapezoid are 22 and 9 and the
height of the trapezoid is 8, so the area of the trapezoid
is 1

2
∗ (22 + 9) ∗ 8 = 1

2
∗ 31 ∗ 8 = 124. Therefore the

final answer is 124.
(e) If the perimeter of the ABE triangle is 42, the BEFG shape

is a rectangle where a semi-circle has been removed from
one side of it and the perimeter of the BEFG shape is 62,
compute the perimeter of the ABCD rectangle. Assume
π = 3.14. Round computations to 2 decimal places.

The diameter of the semi-circle in the BEFG shape is
equal to the side of the rectangle with length 10 so the
shape has two sides with equal but unknown lengths,
one side with length 10, and one semi-circle arc with
diameter 10. So the perimeter is 2 ∗ UnknownSide +
10+ 10∗π

2
. So 2 ∗UnknownSide+10+ 10∗3.14

2
= 62.

So 2 ∗ UnknownSide = 62 − 10 − 10∗3.14
2

= 62 −
10 − 31.4

2
= 62 − 10 − 15.7 = 36.3. Therefore, the

length of the BE side is 36.3
2

= 18.15. The lengths of
the AE and BE sides of the ABE triangle are 10 and
18.15 and the perimeter is 42, so the lengths of the AB
side equals 42 − 10 − 18.15 = 13.85. The lengths of
the AD and the AB sides of the ABCD rectangle are 15
and 13.85, so the perimeter of the ABCD rectangle is
2∗ (15+13.85) = 2∗28.85 = 57.7. Therefore the final
answer is 57.7.
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Table 4: Continuing Table 3.

Image index Question Solution
(f) If the ABCD shape is a square where a circle has been

removed from it, the AEFGH shape is a rectangle where
an equilateral triangle has been removed from one side
of it, the perimeter of the AEFGH shape is 48, the DEIJ
shape is a rectangle where a semi-circle has been removed
from one side of it and the area of the DEIJ shape is 78,
compute the area of the ABCD shape. Assume π = 3.14.
Round computations to 2 decimal places.

The side of the equilateral triangle in the AEFGH shape
is equal to the side of the rectangle with length 9 and the
shape has two sides with equal but unknown lengths, one
with length 9, and two triangle sides with length 9. The
perimeter of the shape is 48 so 2∗OtherSside+3∗9 =
48. So 2 ∗ OtherSide = 48 − 27 = 21 and the length
of the AE side is 21

2
= 10.5. The area of the DEIJ shape

is 78 and the length of the EI side is 6, so OtherSide ∗
6− 3.14∗62

8
= 78, so OtherSide ∗ 6 = 78+ 3.14∗62

8
=

78 + 3.14∗36
8

= 78 + 113.04
8

= 78 + 14.13 = 92.13.
Therefore, the length of the DE side is 92.13/6 = 15.35.
The lengths of the AE and DE sides of the ADE triangle
are 10.5 and 15.35, so the length of the hypotenuse (the
AD side) is

√
10.52 + 15.352 =

√
110.25 + 235.62 =√

345.87 = 18.6. The length of the AD side of the
ABCD shape is 18.6, so its area is 18.62−(π

4
)∗(18.62) =

345.96 − 0.79 ∗ 345.96 = 345.96 − 273.31 = 72.65.
Therefore the final answer is 72.65.

(g) If the area of the ACD right triangle is 106, compute the
area of the ABC right triangle. Round computations to 2
decimal places.

The length of the AD side in the ACD triangle is 14 and
the area is 106 so the length of the AC side = 106∗2

14
=

212
14

= 15.14. The lengths of the AC and AB sides of the
ABC triangle are 15.14 and 15, so the area of the triangle
is (15.14 ∗ 15)/2 = 227.1/2 = 113.55. Therefore the
final answer is 113.55.

(h) If the perimeter of the gray triangle is 44, the green shape
is a combination of a rectangle and an equilateral triangle
and the area of the green shape is 114, compute the length
of the side of the gray triangle marked with question mark.
Round computations to 2 decimal places.

The area of the green shape is 114 and the length of one
side of its rectangle is 6, so (other side) ∗6 +

√
3

4
∗ 62 =

114, so (other side) ∗6 = 114−
√
3

4
∗ 62 = 114− 1.73

4
∗

36 = 114−0.43∗36 = 114−15.48 = 98.52. Therefore,
the length of the side marked with letter ”a” is 98.52/6 =
16.42. The lengths of two sides of the gray triangle are
21 and 16.42 and the perimeter is 44, so the lengths of
the side marked with ”?” equals 44− 21− 16.42 = 6.58.
Therefore the final answer is 6.58.

(i) If the perimeter of the ABC triangle is 33, the degree of
the CAD angle is 75, the area of the DAC sector is 157,
the degree of the EBC angle is 75 and the area of the EBC
sector is 56.52, compute the length of the AB side of the
ABC triangle. Assume π = 3.14. Round computations
to 2 decimal places.

The CAD angle of the DAC sector is 75 and the
area is 157 so the AC radius can be computed as
=

√
157/((75/360) ∗ π) =

√
157/(0.21 ∗ π) =√

157/0.66 =
√

(237.88) = 15.42. The EBC angle
of the EBC sector is 75 and the area is 56.52 so the BC
radius can be computed as =

√
56.52/((75/360) ∗ π) =√

56.52/(0.21 ∗ π) =
√

56.52/0.66 =
√
85.64 =

9.25. The lengths of the AC and BC sides of the ABC
triangle are 15.42 and 9.25 and the perimeter is 33, so the
lengths of the AB side equals 33− 15.42− 9.25 = 8.33.
Therefore the final answer is 8.33.
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