
A Appendix to Interpretable agent communication from scratch (with a
generic visual processor emerging on the side)

A.1 Compute details

All experiments were run using Tesla V100 GPUs on a SLURM-based cluster, except where indicated.
Training a communication game takes approximately 16 hours on 16 GPUs. Testing on the referential
game takes less than 5 minutes on a single NVIDIA Quadro GP100. The permutation procedure used
to establish statistical significance for purposes of protocol analysis takes up to about 24 hours, and
does not require GPUs. The downstream object classification experiments take up to about 16 hours
on 8 GPUs.

A.2 Impact of random seeds on +augmentations -shared model performance

To gauge the robustness of our results to model initialization variance, we repeated all experiments
after training our most representative model (+augmentations -shared) with 5 different random seeds
(including the randomly picked seed consistently used for the results reported in the main text). The
outcomes, summarized in Tables 1, 2 and 3, show that the effect of this source of variation on model
performance is negligible.

Dataset avg sd min max

ILSVRC-val 81.4% 0.2% 81.1% 81.6%
OOD set 71.7% 0.6% 71.0% 72.4%
Gaussian Blobs 0.8% 0.1% 0.8% 1.0%

Table 1: Game playing accuracy of +augmentations -shared model across 5 seeds.

Dataset avg sd min max

ILSVRC-val
|P | 2040.4 2.1 2037 2042
nMI 0.58 0.00 0.58 0.58
WNsim 0.18 0.00 0.17 0.18

OOD set
|P | 1749.8 15.0 1723 1767
nMI 0.53 0.00 0.52 0.53
WNsim 0.29 0.02 0.27 0.32

Table 2: Protocol analysis statistics of +augmentations -shared model across 5 seeds.

Dataset avg sd min max

ILSVRC-val 59.1 0.1 59.0 59.2
Places205 48.2 0.2 47.9 48.3
iNaturalist2018 31.1 0.2 30.8 31.3
VOC07 77.1 0.1 77.0 77.2

Table 3: Linear evaluation accuracy on object classification for +augmentations -shared model across
5 seeds. Reported scores are mAP for VOC07, top-1 accuracy elsewhere.

A.3 Testing the architecture of Lazaridou et al. 2017

Comparing our model to previous emergent communication architectures is somewhat problematic.
Being a relatively young field, there is a limited number of earlier models it makes sense to compare
against. Additionally, when employing visual input, most previous work relied on ad-hoc game
configurations and architectures that were trained with a small number of classes. Most importantly,
our aim here is not to compare with previous models on a specific metric or data set. Instead, we
want show that, with an appropriate training setup, we can induce the emergence of large-scale
communication about realistic images using generic architectures.
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Putting these caveats aside, we report here results for the most directly comparable model from
previous work. This is the model of Lazaridou et al. [1] and Bouchacourt and Baroni [2], in the
variant that they refer to as Informed Sender. This model can exploit extra information as its Sender
architecture has access to both target and distractor(s) when producing a message. First, a pre-trained
visual encoder embeds the target and distractors, then a convolutional filter over the image candidates
is applied by treating them as separate channels. This makes the model structurally biased towards
a comparative strategy when generating symbols. In the original setup, the Informed Sender used
a VGG architecure pre-trained on ImageNet as visual feature extractor. The Receiver is a standard
feedforward neural network, also equipped with a pre-trained VGG as visual processor. For additional
details, we refer readers to [1].

We used the ILSVRC training data and experimented with and without the data augmentation pipeline
described in the main text. Similarly to our setup, we employ a ResNet-50 instead of VGC but, like
Lazaridou, we pre-train it on ImageNet. All other parameters are taken from the main experiment and
the setup described in Section 3.1. Results when training and testing the model with 127 distractors
are presented in Table 4.1 The Informed Sender is able to generalize above chance level (0.8%) on
both the in-distribution and out-of-distribution test sets but still fares far below our generic architecture
or even the SimCLRdisc baseline (see Fig. 1 in the main text). Interestingly, the ad-hoc structure of
the Informed Sender does not play to its advantage. The extra information that the Sender can exploit
about the distractors does not help it generating more discriminative messages. Overall, the use of
data augmentations has only a marginal impact on game accuracy. Curiously, this impact is negative,
possibly due to how augmentations affect the transmission of comparative multi-image information
(as opposed to a single target image description).

Interestingly, the Informed Sender, even when trained without data augmentation, passes the Gaussian
test, staying at chance accuracy (0.8%). Such behaviour suggests that poor performance in the
communication game is not due to a degenerate language based on describing low-level visual
information. Note that the Gaussian test revealed instead the emergence of a degenerate protocol
for our models trained from scratch without augmentations and for the original Informed Sender of
Lazaridou and colleagues (as shown by Bouchacourt and Baroni [2]). We leave to future work a
deeper understanding of the relation between Sender architectures and the tendency to converge on
the degenerate communication strategies detected by the Gaussian test.

ILSVRC-val OOD set Guassian Blobs
-augmentations 31.2% 30.9% 0.8%
+augmentations 27.7% 27.0% 3.6%

Table 4: Accuracy of the communication game with the Informed Sender from Lazaridou et al. [1]
trained and tested with 127 distractors.

A.4 Applying data augmentation at test time

We consider here a version of the communication game in which data augmentations are also applied
at test time. On the one hand, this is not a very realistic experiment, as there is no reason why agents
should see randomly augmented images when wandering around a real-life environment. On the
other, it can be considered a rough approximation to the real-world challenge that two agents will
rarely get identical views of the target and distractor objects.

Results are in Table 5. As expected, performance is affected across the board. Accuracy is however
still much higher than random (0.8%) for SimCLR and the communication models that were exposed
to augmentations at training time, with a clear advantage for the latter. Not surprisingly, accuracy
drops to random level or just above it for models that were trained without augmentations.

1The design of the Informed Sender does not allow for changes in the number of distractors between training
and testing regime. For this reason we cannot train it with 1 distractor as done in the original paper, and then test
it with 127, for comparison with our results.
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ILSVRC-val OOD set
SimCLRdisc 42.9% 34.7%

Communication Game
-augmentations -shared 1.9% 2.0%
-augmentations +shared 0.9% 0.7%
+augmentations -shared 65.6% 54.4%
+augmentations +shared 64.4% 54.1%

Table 5: Game-playing accuracy when data augmentation is applied at test time. ± augmentations
marks whether the game was trained with data augmentations or not. ± shared indicates whether
there was CNN weight sharing or not between Sender and Receiver.

A.5 Training a communication game with a different number of distractors

An important feature of our training configuration is the use of a larger number of distractor images
compared to previous emergent communication setups. This was inspired by work on self-supervised
contrastive learning that relies on very large batches of datapoints to develop high-quality dense rep-
resentations of the input data. In order to assess the impact of number of distractors on game-playing
accuracy, we ran an ablation study with our most representative model, namely the +augmentations
-shared setup. We conducted experiments reducing the number of distractors down to the extreme
case of a single one, which is the standard setup in the earlier literature [e.g., 1, 3, 2]. Due to memory
constraints we could not experiment with more than 127 distractors. At test time, we probe the
models with 128 candidate images, which is equivalent to the experiment in the main text.

Results are reported in Table 6. Overall we see that training with fewer images in the candidate
list drastically harms performance on both the in-distribution and out-of-distribution test sets, thus
confirming that our shift towards a greater number of distractor images has positive impact on the
agents’ communication skills.2

Distractors at train time ILSVRC-val OOD set Guassian Blobs
1 7.3% 7.4% 0.9%

31 63.2% 57.4% 0.8%
63 76.1% 66.0% 1.4%

127 81.5% 72.0% 0.8%

Table 6: Accuracy of the +augmentations -shared configuration in the communication game when
training with a different number of distractors. At test time we feed the models with 128 candidate
images).

A.6 Impact of vocabulary size on the communication protocol

In Table 7 and Table 8 we report accuracy and protocol analysis for the communication game with
different vocabulary sizes (|V |) using our most representative model (+augmentations -shared). We
varied the size between 512 and 4096. Overall, the results show that game accuracy and protocol
structure are only mildly affected by changes in vocabulary size. Increasing |V | has little impact
on both game playing and the emergent protocol. On the other hand, decreasing vocabulary size
negatively impacts performance. Surprisingly, this is the case even when |V | is close to matching the
number of classes in the ILSVRC training data (|V | = 1024). However, the drop in performance is
relatively small, suggesting that our training setup is quite robust to the choice of vocabulary size.

Interestingly, we observe that while the number of used symbols (|P | in Table 11) initially approxi-
mates the number of available symbols, it then reaches a plateau at about 2.5K, suggesting that this is
the “natural” amount of symbols that agents would use to describe the training set.

2It might be considered unfair to evaluate models that were trained with fewer distractors by presenting them
with 128 items at test time. However, in experiments not reported here, we saw that the model trained with 127
distractors had the best overall performance even when tested with fewer distractor images, e.g., when testing
models on target discrimination with a single distractor, overall accuracy was of 87.2% vs 99.4% on the OOD
set for the model trained with 1 and the model trained with 127 distractors, respectively.
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Vocabulary Size ILSVRC-val OOD set Gaussian
512 68.8% 62.9% 0.8%

1024 76.3% 66.3% 0.8%
2048 81.5% 72.0% 0.8%
3072 81.5% 70.6% 0.9%
4096 77.7% 66.7% 0.8%

Table 7: Game-playing accuracy of the +augmentations -shared setup with different vocabulary
sizes.

Vocabulary Size ILSVRC-val OOD set
|P | nMI WNSim |P | nMI WNSim

512 512 0.48 0.12 509 0.42 0.20
1024 1023 0.53 0.15 960 0.50 0.25
2048 2042 0.58 0.18 1752 0.53 0.32
3072 2573 0.58 0.18 1711 0.55 0.30
4096 2461 0.58 0.17 1518 0.54 0.30

Table 8: Protocol analysis of the +augmentations -shared setup with different vocabulary sizes.

A.7 Symbol distribution analysis

The histograms in Fig. 1 show the strikingly different symbol frequency distributions of the
SimCLRdisc and +augmentations -shared systems, when fed all ILSVRC-val images as input.
For SimCLRdisc, we observe a very skewed distribution, with its mode at 1, and a few extremely
frequent symbols (the most common one is used for 826 images). This indicates a strong discrepancy
with respect to the underlying ILSVRC-val class distribution, which is fully balanced, with each
class instantiated 50 times. The distribution emerging by playing the communication game in the
+augmentation -shared setup (but the result also holds for other settings) is much more balanced,
with mode symbol usage at 10, and the most frequent symbol being used 135 times. Comparing this
to the underlying ILSVRC-val class distribution suggests that the agents generally agreed upon a
more granular partition of the concept space (as symbols overwhelmingly denote sets of less than 50
images), although symbol and ground-truth label extensions are in the same order of magnitude.

Figure 1: Histograms of relative symbol count frequencies for SimCLRdisc (left) and the +augmenta-
tions -shared setup (right), given all ILSVRC-val images as input.
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