
A Recipe for implementing and deploying our strategy504

We here outline more explicitly how Corollary 7 and Proposition 11 may be used to formulate a fully505

differentiable objective by which a model may be trained.506

First, if one wishes to make hard labels, namely H ⊆ YX , it will first be necessary to use a507

surrogate class of soft hypotheses H′ ⊆ M(Y)X during training, before reverting to hard labels508

for example by taking the mean label or the one with highest probability. Using soft hypotheses509

during training is necessary to ensure that the empirical j-risks Rj
S(Q) are differentiable in the model510

parameters. Since how one chooses to do this will depend on the specific use case, we restrict our511

attention here to the case of soft hypotheses. Specifically, we consider a class of soft hypotheses512

H = {hθ : θ ∈ RN} ⊆ M(Y)X parameterised by the weights θ ∈ RN of some neural network513

of a given architecture with N parameters in such a way that the Rj
S(hθ) are differentiable in θ. A514

concrete example would be multiclass classification using a fully connected neural network with515

output being softmax probabilities on the classes so that the Rj
S(hθ) are differentiable.516

Second, it is necessary to restrict the prior and posterior P,Q ∈ M(H) to a parameterised subset517

ofM(H) in which KL(Q∥P ) has a closed form which is differentiable in the parameterisation. A518

simple choice for our case of a neural network with N parameters is P,Q ∈ {N (w, diag(s)) : w ∈519

RN , s ∈ RN
>0}. For prior a Pv,r = N (v, diag(r)) and posterior Qw,s = N (w, diag(s)) we have520

the closed form521

KL(Qw,s∥Pv,r) =
1

2

[
N∑

n=1

(
sn
rn

+
(wn − vn)

2

rn
+ ln

rn
sn

)
−N

]
,

which is indeed differentiable in v, r,w and s. While Qw,s and Pv,r are technically distributions on522

RD rather thanH, the KL-divergence between the distributions they induce onH will be at most as523

large as the expression above. Thus, substituting the expression above into the bounds we prove in524

Section 3 can only increase the value of the bounds, meaning the enlarged bounds certainly still hold525

with probability at least 1− δ.526

Third, in all but the simplest cases Rj
S(Qw,s) will not have a closed form, much less one that is527

differentiable in w and s. A common solution to this is to use the so-called pathwise gradient528

estimator. In our case, this corresponds to drawing ϵ ∼ N (0, I), where I is the N × N identity529

matrix, and estimating530

∇w,sR
j
S(Qw,s) = ∇w,s

[
Eϵ′∼N (0,I)R

j
S(hw+ϵ′⊙

√
s)
]
≈ ∇w,sR

j
S(hw+ϵ⊙

√
s),

where hw denotes the function expressed by the neural network with parameters w. For a proof that531

this is an unbiased estimator, and for other methods for estimating the gradients of expectations, see532

the survey [26].533

Fourth, one must choose the prior. Designing priors which are optimal in some sense (i.e., minimising534

the Kullback-Leibler term in the right-hand side of generalisation bounds) has been at the core of an535

active line of work in the PAC-Bayesian literature. For the sake of simplicity, and since it is out of the536

scope of our contributions, we assume here that the prior is given beforehand, although we stress that537

practitioners should pay great attention to its tuning. For our purposes, it suffices to say that if one538

is using a data-dependent prior then it is necessary to partition the sample into S = SPrior ∪ SBound,539

where SPrior is used to train the prior and SBound is used to evaluate the bound. Since our bound holds540

uniformly over posteriors Q ∈ M(H), the entire sample S is free to be used to train the posterior541

Q. For a more in-depth discussion on the choice of prior, we refer to the following body of work:542

Ambroladze et al. [2], Lever et al. [20, 21], Parrado-Hernández et al. [29], Dziugaite and Roy [13, 14],543

Rivasplata et al. [32], Letarte et al. [19], Pérez-Ortiz et al. [30], Dziugaite et al. [12], Biggs and Guedj544

[4, 6, 5].545

Finally, given a confidence level δ ∈ (0, 1], one may use Algorithm 1 to obtain a posterior Qw,s546

with minimal upper bound on the total risk. Note we take the pointwise logarithm of the variances547

r and s to obtain unbounded parameters on which to perform stochastic gradient descent or some548

other minimisation algorithm. We use ⊕ to denote vector concatenation. The algorithm can be549

straightforwardly adapted to permit mini-batches by, for each epoch, sequentially repeating the steps550

with S equal to each mini-batch.551
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Input:
X ,Y /* Arbitrary input and output spaces */⋃M

j=1 Ej = Y2 /* A finite partition into error types */
ℓ ∈ [0,∞)M /* A vector of losses, not all equal */
S = SPrior ∪ SBound ∈ (X × Y)m /* A partitioned i.i.d. sample */
N ∈ N /* The number of model parameters */
Pv,r, v(SPrior) ∈ RN , r(SPrior) ∈ RN

≥0 /* A (data-dependent) prior */
Qw0,s0

, w0 ∈ RN , s0 ∈ RN
≥0 /* An initial posterior */

δ ∈ (0, 1] /* A confidence level */
λ > 0 /* A learning rate */
T /* The number of epochs to train for */

Output:
Qw,s, w ∈ RN , s ∈ RN

≥0 /* A trained posterior */

Procedure:
ζ0 ← log s0 /* Transform to unbounded scale parameters */
p← w0 ⊕ ζ0 /* Collect mean and scale parameters */
for t← 1 to T do

Draw ϵ ∼ N (0, I)
u← RS

(
h
w+ϵ⊙

√
exp(ζ)

)
B ←

1
m

[
KL
(
Qw,exp(ζ)

∥∥Pv,r

)
+ ln

(
1
δ

√
πe1/12m

(
m
2

)M−1
2
∑M−1

z=0

(
M
z

)
1

(πm)z/2Γ(M−z
2 )

)]
ũ← (u1, . . . , uM , B)
G← 02N×(M+1) /* Initialise gradient matrix */
F ← 0M+1 /* Initialise gradient vector */
for j ← 1 to M + 1 do

Fj ← ∂f∗
ℓ

∂ũj
(ũ) /* Gradients of total loss from Prop 11 */

for i← 1 to 2N do
Gi,j ← ∂ũj

∂pi
(p) /* Gradients of empirical risks and bound */

end
end
H ← GF /* Gradients of total loss w.r.t. parameters */
p← p− λH /* Gradient step */

end
w = (p1, . . . , pN )
s = (exp(pN+1), . . . , exp(p2N ))
return w, s

Algorithm 1: Calculating a posterior with minimal bound on the total risk.

B Proofs552

B.1 Proof of Lemma 5553

Let EM := {e1, . . . , eM}, namely the set of M -dimensional basis vectors. We will denote a typical554

element of Em
M by η(m) = (η1, . . . ,ηm). For any x(m) = (x1, . . . ,xm) ∈ △m

M , a straightforward555

induction on m yields556 ∑
η(m)∈Em

M

(
m∏
i=1

xi · ηi

)
= 1. (8)

To see this, for m = 1 we have E1
M = {(e1, ), . . . , (eM , )}, where we have been pedantic in using557

1-tuples to maintain consistency with larger values of m. Thus, for any x(1) = (x1, ) ∈ △1
M , the left558
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hand side of equation (8) can be written as559

M∑
j=1

x1 · ej =
M∑
j=1

(x1)j = 1.

Now suppose that equation (8) holds for any x(m) ∈ △m
M and let x(m+1) = (x1, . . . ,xm+1) ∈560

△m+1
M . Then the left hand side of equation (8) can be written as561

∑
η(m+1)∈Em+1

M

(
m+1∏
i=1

xi · ηi

)
=

∑
η(m)∈Em

M

M∑
j=1

(
m∏
i=1

xi · ηi

)
(xm+1 · ej)

=
∑

η(m)∈Em
M

(
m∏
i=1

xi · ηi

)
M∑
j=1

(xm+1 · ej) = 1.

We now show that any x(m) = (x1, . . . ,xm) ∈ △m
M can be written as a convex combination of the562

elements of Em
M in the following way563

x(m) =
∑

η(m)∈Em
M

(
m∏
i=1

xi · ηi

)
η(m). (9)

We have already shown that the weights sum to one, and they are clearly elements of [0, 1], so the564

right hand side of equation (9) is indeed a convex combination of the elements of Em
M . We now show565

that equation (9) holds, again by induction.566

For m = 1 and any x(1) = (x1, ) ∈ △1
M , the right hand side of equation (9) can be written as567

M∑
j=1

(x1 · ej)(ej , ) = (x1, ) = x.

For the inductive hypothesis, suppose equation (9) holds for some arbitrary m ≥ 1, and denote568

elements of Em+1
M by η(m) ⊕ (e, ) for some η(m) ∈ Em

M and e ∈ EM , where ⊕ denotes vector569

concatenation. Then for any x(m+1) = x(m) ⊕ (xm+1, ) = (x1, . . . ,xm+1) ∈ △m+1
M , the right570

hand side of equation (9) can be written as571

∑
η(m+1)∈Em+1

M

(
m+1∏
i=1

xi · ηi

)
η(m+1) =

∑
η(m)∈Em

M

M∑
j=1

(
m∏
i=1

xi · ηi

)
(xm+1 · ej)η(m) ⊕ (ej , )

=
∑

η(m)∈Em
M

M∑
j=1

(
m∏
i=1

xi · ηi

)
(xm+1 · ej)η(m)

⊕
∑

η(m)∈Em
M

M∑
j=1

(
m∏
i=1

xi · ηi

)
(xm+1 · ej)(ej , )

=

M∑
j=1

(xm+1 · ej)
∑

η(m)∈Em
M

(
m∏
i=1

xi · ηi

)
η(m)

⊕
∑

η(m)∈Em
M

(
m∏
i=1

xi · ηi

)
M∑
j=1

(xm+1 · ej)(ej , )

= 1 · x(m) ⊕ 1 · (xm+1, ) = x(m+1),

where in the penultimate equality we have used the inductive hypothesis and (twice) the result of the572

previous induction.573
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We can now prove the statement of the Lemma. Applying Jensen’s inequality to equation (9) with the574

convex function f , we have that575

f(x1, . . . ,xm) = f

 ∑
η(m)∈Em

M

(
m∏
i=1

xi · ηi

)
η(m)


≤

∑
η(m)∈Em

M

(
m∏
i=1

xi · ηi

)
f
(
η(m)

)
.

Let µ = E[X1] denote the mean of the i.i.d. random vectors Xi. Then the above inequality implies576

E[f(X1, . . . ,Xm)] ≤
∑

η(m)∈Em
M

(
m∏
i=1

µ · ηi

)
f
(
η(m)

)

=
∑

η(m)∈Em
M

(
m∏
i=1

P(X ′
i = ηi)

)
f
(
η(m)

)
= E[f(X ′

1, . . . ,X
′
m)].

B.2 Proof of Lemma 8577

The proof of Lemma 8 itself requires two technical helping lemmas which we now state and prove.578

Lemma 12. For any integers n ≥ 2 and p ≥ −1,579

n−1∑
k=1

(n− k)p/2√
k

≤ n
p+1
2

∫ 1

0

(1− x)p/2√
x

dx.

Proof. The case of p = −1, namely580

n−1∑
k=1

1√
k(n− k)

≤
∫ 1

0

1√
x(1− x)

dx,

has already been demonstrated in [22]. For p > −1, let581

fp(x) :=
(1− x)p/2√

x
.

We will show that each fp(·) is monotonically decreasing on (0, 1). Indeed,582

dfp
dx

(x) = − (1− x)
p
2−1(px+ 1− x)

2x3/2
≤ − (1− x)p/2

2x3/2
< 0,

where for the inequalities we have used the fact that p > −1 and x ∈ (0, 1). We therefore see that583

n−1∑
k=1

(n− k)p/2√
k

=

n−1∑
k=1

np/2(1− k
n )

p/2

√
n
√

k
n

= n
p+1
2

n−1∑
k=1

1

n

(1− k
n )

p/2√
k
n

= n
p+1
2

n−1∑
k=1

1

n
fp

(
k

n

)

≤ n
p+1
2

n−1∑
k=1

∫ k
n

k−1
n

fp(x)dx
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= n
p+1
2

∫ 1− 1
n

0

fp(x)dx

≤ n
p+1
2

∫ 1

0

fp(x)dx.

584

Intuitively, the proof of the above lemma works by bounding the integral below by a Riemann sum.585

In the following lemma we actually calculate this integral, yielding a more explicit bound on the sum586

in Lemma 12. We found it is easier to calculate a slightly more general integral, where the 1 in the587

limit and the integrand is replaced by a positive constant a.588

Lemma 13. For any real number a > 0 and integer n ≥ −1,589 ∫ a

0

(a− x)n/2√
x

dx =
√
π
Γ(n+2

2 )

Γ(n+3
2 )

a
n+1
2 .

Proof. Define590

In(a) :=
∫ a

0

(a− x)n/2√
x

dx and fn(a) :=
√
π
Γ(n+2

2 )

Γ(n+3
2 )

a
n+1
2 .

We proceed by induction, increasing n by 2 each time. This means we need two base cases. First, for591

n = −1, we have592

I−1(a) =

∫ a

0

1√
x(a− x)

dx =

[
2 arcsin

√
x

a

]a
0

= π = f−1(a),

since Γ( 12 ) =
√
π and Γ(1) = 1. Second, for n = 0,593

I0(a) =
∫ a

0

1√
x
dx =

[
2
√
x
]a
0
= 2
√
a = f0(a),

since Γ( 32 ) =
√
π
2 . Now, by the Leibniz integral rule, we have594

d

da
In+2(a) =

∫ a

0

∂

∂a

(a− x)
n+2
2

√
x

dx =
n+ 2

2

∫ a

0

(a− x)
n
2

√
x

dx =
n+ 2

2
In(a).

Thus595

In+2(a) =
n+ 2

2

[∫ a

0

In(t)dt+ In(0)
]
=

n+ 2

2

∫ a

0

In(t)dt,

since In(0) = 0.596

Now, for the inductive step, suppose In(a) = fn(a) for some n ≥ −1. Then, using the previous597

calculation, we have598

In+2(a) =
n+ 2

2

∫ a

0

fn(t)dt

=
n+ 2

2

∫ a

0

√
π
Γ(n+2

2 )

Γ(n+3
2 )

t
n+1
2 dt

=
√
π

n+2
2 Γ(n+2

2 )
n+3
2 Γ(n+3

2 )
a

n+3
2

=
√
π
Γ(n+2

2 + 1)

Γ(n+3
2 + 1)

a
n+3
2

=
√
π
Γ
(

(n+2)+2
2

)
Γ
(

(n+2)+3
2

)a (n+2)+1
2

= fn+2(a).

This completes the proof.599
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We are now ready to prove Lemma 8 which, for ease of reference, we restate here. For integers600

M ≥ 1 and m ≥M ,601 ∑
k∈S>0

m,M

1∏M
j=1

√
kj
≤ π

M
2 m

M−2
2

Γ(M2 )
.

Proof. (of Lemma 8) We proceed by induction on M . For M = 1, the set Sm,M contains a single602

element, namely the one-dimensional vector k = (k1, ) = (m, ). In this case, the left hand side is603

1/
√
m while the right hand side is

√
π/(
√
mΓ(1/2)) = 1/

√
m, since Γ(1/2) =

√
π.604

Now, as the inductive hypothesis, assume the inequality of Lemma 8 holds for some fixed M ≥ 1605

and all m ≥M . Then for all m ≥M + 1, we have606

∑
k∈S>0

m,M+1

1∏M+1
j=1

√
kj

=

m−M∑
k1=1

1√
k1

∑
k′∈S>0

m−k1,M

1∏M
j=1

√
k′j

≤
m−M∑
k1=1

1√
k1

π
M
2 (m− k1)

M−2
2

Γ(M2 )
(by the inductive hypothesis)

=
π

M
2

Γ(M2 )

m−M∑
k1=1

(m− k1)
M−2

2

√
k1

≤ π
M
2

Γ(M2 )

m−1∑
k1=1

(m− k1)
M−2

2

√
k1

(enlarging the sum domain)

≤ π
M
2

Γ(M2 )
m

M−1
2

∫ 1

0

(1− x)
M−2

2

√
x

dx (by Lemma 12)

=
π

M
2

Γ(M2 )
m

M−1
2
√
π

Γ(M2 )

Γ(M+1
2 )

(by Lemma 13)

=
π

M+1
2 m

M−1
2

Γ(M+1
2 )

,

as required.607

B.3 Proof of Proposition 9608

Proof. The case where qj = 1 or pj = 1 can be dealt with trivially by splitting into the three609

following subcases610

• qj = pj = 1 =⇒ kl(qj∥pj) = kl(q∥p) = 0611

• qj = 1, pj ̸= 1 =⇒ kl(qj∥pj) = kl(q∥p) = − log pj612

• qj ̸= 1, pj = 1 =⇒ kl(qj∥pj) = kl(q∥p) =∞.613

For qj ̸= 1 and pj ̸= 1 define the distributions q̃, p̃ ∈ △M by q̃j = p̃j = 0 and614

q̃i =
qi

1− qj
and p̃i =

pi
1− pj

for i ̸= j. Then615 ∑
i ̸=j

qi log
qi
pi

=
∑
i ̸=j

(1− qj)q̃i log
(1− qj)q̃i
(1− pj)p̃i

= (1− qj)
∑
i ̸=j

q̃i log
q̃i
p̃i

+ q̃i log
1− qj
1− pj
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= (1− qj)kl(q̃∥p̃) + (1− qj) log
1− qj
1− pj

≥ (1− qj) log
1− qj
1− pj

.

The final inequality holds since kl(q̃∥p̃) ≥ 0. Further, note that we have equality if and only if q̃ = p̃,616

which, by their definitions, translates to617

pi =
1− pj
1− qj

qi

for all i ̸= j. If we now add qj log
qj
pj

to both sides, we obtain618

kl(q∥p) ≥ (1− qj) log
1− qj
1− pj

+ qj log
qj
pj

= kl(qj∥pj),

with the same condition for equality.619

The following proposition makes more precise the argument found at the beginning of Section 4620

for how Proposition 9 can be used to derive the tightest possible lower and upper bounds on each621

Rj
D(Q).622

Proposition 14. Suppose that q,p ∈ △M are such that kl(q∥p) ≤ B, where q is known and p is623

unknown. Then, in the absence of any further information, the tightest bound that can be obtained on624

each pj is625

pj ≤ kl−1(qj , B).

Proof. Suppose pj > kl−1(qj , B). Then, by definition of kl−1, we have that kl(qj∥pj) > B.626

By Proposition 9, this would then imply kl(q∥p) > B, contradicting our assumption. Therefore627

pj ≤ kl−1(qj , B). Now, with the information we have, we cannot rule out that628

pi =
1− pj
1− qj

qi

for all i ̸= j and thus, by Proposition 9, that kl(qj∥pj) = kl(q∥p). Further, we cannot rule out that629

kl(q∥p) = B. Thus, it is possible that kl(qj∥pj) = B, in which case pj = kl−1(qj , B). We therefore630

see that kl−1(qj , B) is the tightest possible upper bound on pj , for each j ∈ [M ].631

B.4 Proof of Proposition 11632

Before proving the proposition, we first argue that kl−1
ℓ (u|c) given by Definition 10 is well-defined.633

First, note that Au := {v ∈ △M : kl(u∥v) ≤ c} is compact (boundedness is clear and it is closed634

because it is the preimage of the closed set [0, c] under the continuous map v 7→ kl(u∥v)) and so the635

continuous function fℓ achieves its supremum on Au. Further, note that Au is a convex subset of636

△M (because the map v 7→ kl(u∥v) is convex) and fℓ is linear, so the supremum of fℓ over Au is637

achieved and is located on the boundary of Au. This means we can replace the inequality constraint638

kl(u∥v) ≤ c in Definition 10 with the equality constraint kl(u∥v) = c. Finally, if u ∈ △>0
M then639

Au is a strictly convex subset of△M (because the map v 7→ kl(u∥v) is then strictly convex) and so640

the supremum of fℓ occurs at a unique point on the boundary of Au. In other words, if u ∈ △>0
M641

then kl−1
ℓ (u|c) is defined uniquely.642

Proof. (of Proposition 11) We start by deriving the implicit expression for v∗(ũ) = kl−1
ℓ (u|c) given643

in the proposition by solving a transformed version of the optimisation problem given by Definition644

10 using the method of Lagrange multipliers. We obtain two solutions to the Lagrangian equations,645

which must correspond to the maximum and minimum total risk over the set Au := {v ∈ △M :646

kl(u∥v) ≤ c} because, as argued in the main text (see the discussion after Definition 10), Au is647

compact and so the linear total risk fℓ(v) attains its maximum and minimum on Au.648

By definition of v∗(ũ) = kl−1
ℓ (u|c), we know that kl(v∗(ũ)∥u) ≤ c. Since, by assumption,649

uj > 0 for all j, we see that v∗(ũ)j > 0 for all j, otherwise we would have kl(v∗(ũ)∥u) = ∞, a650
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contradiction. Thus v∗(ũ) ∈ △>0
M and we are permitted to instead optimise over the unbounded651

variable t ∈ RM , where tj := ln vj . With this transformation, the constraint v ∈ △M can be652

replaced simply by
∑

j e
tj = 1 and the optimisation problem becomes653

Maximise: F (t) :=

M∑
j=1

ℓje
tj

Subject to: g(t;u, c) := kl(u∥et)− c = 0,

h(t) :=

M∑
j=1

etj − 1 = 0,

where et ∈ RM is defined by (et)j := etj . Note that F (t) = fℓ(e
t). Following the terminology654

of mathematical economics, we call the tj the optimisation variables, and the ũj (namely the uj655

and c) the choice variables. The vector ℓ is considered fixed—we neither want to optimise over656

it nor differentiate with respect to it—which is why we occasionally suppress it from the notation657

henceforth.658

For each ũ, let v∗(ũ) and t∗(ũ) be the solutions to the original and transformed optimisation659

problems respectively. Since the map v = et is one-to-one, it is clear that since v∗(ũ) exists uniquely,660

so does t∗(ũ), and that they are related by v∗(ũ) = et
∗(ũ). We therefore have the identity661

fℓ(v
∗(ũ)) ≡ F (t∗(ũ)).

Recalling that f∗
ℓ (ũ) := fℓ(v

∗(ũ)), we see that662

∇ũf
∗
ℓ (ũ) ≡ ∇ũF (t∗(ũ)). (10)

the derivatives of fℓ(kl−1
ℓ (u|c)) with respect to u and c are given by∇ũF (t∗(ũ)).663

Using the method of Lagrange multipliers, there exist real numbers λ∗ = λ∗(ũ) and µ∗ = µ∗(ũ)664

such that (t∗, λ∗, µ∗) is a stationary point (with respect to t, λ and µ) of the Lagrangian function665

L(t, λ, µ; ũ) := F (t) + λg(t; ũ) + µh(t).

Let Ft(·) and ht(·) denote the gradient vectors of F and h respectively, and let gt( · ; ũ) and gũ(t; · )666

denote the gradient vectors of g with respect to t only and ũ only, respectively. Simple calculation667

yields668

gt(t; ũ) =

(
∂g

∂t1
(t; ũ), . . . ,

∂g

∂tM
(t; ũ)

)
= −u and

gũ(t; ũ) =

(
∂g

∂ũ1
(t; ũ), . . . ,

∂g

∂ũM+1
(t; ũ)

)
=
(
1− t1 + log u1, . . . , 1− tM + log uM ,−1

)
.

(11)

Then, taking the partial derivatives of L with respect to λ, µ and the tj , we have that (t, λ, µ) =669

(t∗(ũ), λ∗(ũ), µ∗(ũ)) solves the simultaneous equations670

Ft(t) + λgt(t; ũ) + µht(t) = 0, (12)
671

g(t; ũ) = 0, and
672

h(t) = 0,

where the last two equations recover the constraints. Substituting the gradients Ft, gt and ht, the first673

equation reduces to674

ℓ⊙ et − λu+ µet = 0,

which implies that for all j ∈ [M ]675

etj =
λuj

µ+ ℓj
. (13)

Substituting this into the constraints g = h = 0 yields the following simultaneous equations in λ and676

µ677

c = kl(u∥et) =
M∑
j=1

uj log
uj

etj
=

M∑
j=1

uj log
µ+ ℓj

λ
and λ

M∑
j=1

uj

µ+ ℓj
= 1.
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Substituting the second into the first and rearranging the second, this is equivalent to solving678

c =

M∑
j=1

uj log

(
(µ+ ℓj)

M∑
k=1

uk

µ+ ℓk

)
and λ =

 M∑
j=1

uj

µ+ ℓj

−1

. (14)

It has already been established in the discussion after Definition 10 that fℓ(v) attains its maximum679

on the set Au := {v ∈ △M : kl(u∥v) ≤ c}. Therefore F (t) also attains its maximum on RM and680

one of the solutions to these simultaneous equations corresponds to this maximum. We first show681

that there is a single solution to the first equation in the set (−∞,−maxj ℓj), referred to as µ∗(ũ) in682

the proposition. Second, we show that any other solution corresponds to a smaller total risk, so that683

µ∗(ũ) corresponds to the maximum total risk and yields v∗(ũ) = kl−1
ℓ (u|c) when µ∗(ũ) and the684

associated λ∗(ũ) are substituted into Equation 13.685

For the first step, note that since the etj are probabilities, we see from Equation 13 that either686

µ + ℓj > 0 for all j (in the case that λ > 0), or µ + ℓj < 0 for all j (in the case that λ < 0).687

Thus any solutions µ to the first equation must be in (−∞,−maxj ℓj) or (−minj ℓj ,∞). If688

µ ∈ (−∞,−maxj ℓj) then the first equation can be written as c = ϕℓ(µ), with ϕℓ as defined in the689

statement of the proposition. We now show that ϕℓ is strictly increasing in µ, and that ϕℓ(µ)→ 0 as690

µ→ −∞ and ϕℓ(µ)→∞ as µ→ −maxj ℓj , so that c = ϕℓ(µ) does indeed have a single solution691

in the set (−∞,−maxj ℓj). Straightforward differentiation and algebra shows that692

ϕ′
ℓ(µ) =

M∑
j=1

uj

(µ+ ℓj)
∑M

k=1
uk

µ+ℓk

(
M∑

k′=1

uk′

µ+ ℓk′
− (µ+ ℓj)

M∑
k′=1

uk′

(µ+ ℓk′)2

)

=

(∑M
j=1

uj

µ+ℓj

)2
−
∑M

j=1
uj

(µ+ℓj)2∑M
k=1

uk

µ+ℓk

.

Jensen’s inequality demonstrates that the numerator is strictly negative, where strictness is due to693

the assumption that the ℓj are not all equal. Further, since the denominator is strictly negative (since694

we are dealing with the case where µ ∈ (−∞,−maxj ℓj)), we see that ϕℓ is strictly increasing for695

µ ∈ (−∞,−maxj ℓj).2 Turning to the limits, we first show that ϕℓ(µ)→∞ as µ→ −maxj ℓj .696

We now determine the left hand limit. Define J = {j ∈ [M ] : ℓj = maxk ℓk}, noting that697

this is a strict subset of [M ] since by assumption the ℓj are not all equal. We then have that for698

µ ∈ (−∞,maxj ℓj)699

eϕℓ(µ) =

− M∑
j=1

uj

µ+ ℓj

( M∏
k=1

(
− (µ+ ℓk)

)uk

)

=

−∑
j∈J

uj

µ+ ℓj
−
∑
j′ ̸∈J

uj′

µ+ ℓj′

∏
k∈J

(
− (µ+ ℓk)

)uk
∏
k′ ̸∈J

(
− (µ+ ℓk′)

)uk′

≥

−∑
j∈J

uj

µ+ ℓj

∏
k∈J

(
− (µ+ ℓk)

)uk
∏
k′ ̸∈J

(
− (µ+ ℓk′)

)uk′

=

(∑
j∈J uj

)(∏
k′ ̸∈J

(
− (µ+ ℓk′)

)uk′
)

(
− (µ+maxj ℓj)

)1−∑
k∈J uk

.

The first term in the numerator is a positive constant, independent of µ. The second term in the700

numerator tends to a finite positive limit as µ ↑ −maxj ℓj . Since [M ] \ J is non-empty, the power701

in the denominator is positive and the term in the outer brackets is positive and tends to zero as702

µ ↑ −maxj ℓj . Thus eϕℓ(µ) →∞ as µ ↑ −maxj ℓj and, by the continuity of the logarithm, ϕℓ(µ)703

as µ ↑ −maxj ℓj .704

2Incidentally, this argument also shows that there is at most one solution to the first equation in (14) in the
range (−minj ℓj ,∞). There indeed exists a unique solution, which corresponds to the minimum total risk, but
we do not prove this.
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We now determine limµ→−∞ ϕℓ(µ) by sandwiching ϕ(µ) between two functions that both tend to705

zero as µ→ −∞. First, since ℓj ≥ 0 for all j, for µ ∈ (−∞,−maxj ℓj) we have706

log

− M∑
j=1

uj

µ+ ℓj

 ≥ log

− M∑
j=1

uj

µ

 = − log(−µ) = −
M∑
j=1

uj log(−µ),

and so707

ϕℓ(µ) ≥ −
M∑
j=1

uj log(−µ)+
M∑
j=1

uj log
(
−(µ+ℓj)

)
=

M∑
j=1

uj log

(
1 +

ℓj
µ

)
→ 0 as µ→ −∞.

Similarly,708

M∑
j=1

uj log
(
− (µ+ ℓj)

)
≤

M∑
j=1

uj log(−µ) = log(−µ),

and so709

ϕℓ(µ) ≤ log

µ
M∑
j=1

uj

µ+ ℓj

 = log

 M∑
j=1

uj

1 +
ℓj
µ

→ 0 as µ→ −∞.

This completes the first step, namely showing that there does indeed exist a unique solution µ∗(ũ) in710

the set (−ℓ1,∞) to the first equation in line (14).711

We now turn to the second step, namely showing that this solution corresponds to the maximum total712

risk. Given a value of the Lagrange multiplier µ, substitution into Equation 13 gives713

etj (µ) =

uj

µ+ℓj∑M
k=1

uk

µ+ℓk

and therefore total risk714

R(µ) =

∑M
j=1

ujℓj
µ+ℓj∑M

k=1
uk

µ+ℓk

.

To prove that the solution µ∗(ũ) ∈ (−∞,−maxj ℓj) is the solution to the first equation in line (14)715

that maximises R, it suffices to show that R(µ) →
∑M

j=1 ujℓj as |µ| → ∞ and R′(µ) ≥ 0 for all716

µ ∈ (−∞,−maxj ℓj) ∪ (−minj ℓj ,∞), so that717

inf
µ∈(−∞,−maxj ℓj)

R(µ) ≥ sup
µ∈(−minj ℓj ,∞)

R(µ).

This suffices as we have already proved that µ∗(ũ) is the only solution in (−∞,−maxj ℓj) to the718

first equation in line (14), and that no solutions exists in the set [−maxj ℓj ,−minj ℓj ].719

The limit can be easily evaluated by first rewriting R(µ) and then taking the limit as |µ| → ∞ as720

follows721

R(µ) =

∑M
j=1

ujℓj

1+
ℓj
µ∑M

k=1
uk

1+
ℓk
µ

→
∑M

j=1 ujℓj∑M
k=1 uk

=

M∑
j=1

ujℓj .

To show that R′(µ) ≥ 0, let ℓ(j) denote the j’th smallest component of ℓ (breaking ties arbitrarily),722

so that ℓ(1) ≤ · · · ≤ ℓ(M), and use the quotient rule to see that723

R′(µ) ≥ 0 ⇐⇒

(∑M
k=1

uk

µ+ℓk

)(∑M
j=1

−ujℓj
(µ+ℓj)2

)
−
(∑M

j=1
ujℓj
µ+ℓj

)(∑M
k=1

−uk

(µ+ℓk)2

)
(∑M

p=1
up

µ+ℓp

)2 ≥ 0

⇐⇒
M∑
j=1

M∑
k=1

ujukℓj
(µ+ ℓj)(µ+ ℓk)

(
1

µ+ ℓk
− 1

µ+ ℓj

)
≥ 0
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⇐⇒
∑

j,k∈[M ]
k<j

ujukℓ(j)

(µ+ ℓ(j))(µ+ ℓ(k))

(
1

µ+ ℓ(k)
− 1

µ+ ℓ(j)

)

+
∑

j,k∈[M ]
k>j

ujukℓ(j)

(µ+ ℓ(j))(µ+ ℓ(k))

(
1

µ+ ℓ(k)
− 1

µ+ ℓ(j)

)
≥ 0,

where in the final line we have dropped the summands where k = j since they equal zero as the terms724

in the bracket cancel. This final inequality holds since the first sum can be bounded below by the725

negative of the second sum as follows726 ∑
j,k∈[M ]
k<j

ujukℓ(j)

(µ+ ℓ(j))(µ+ ℓ(k))

(
1

µ+ ℓ(k)
− 1

µ+ ℓ(j)

)

≥
∑

j,k∈[M ]
k<j

ujukℓ(k)

(µ+ ℓ(j))(µ+ ℓ(k))

(
1

µ+ ℓ(k)
− 1

µ+ ℓ(j)

)
(since ℓ(k) ≤ ℓ(j) for k < j)

=
∑

j,k∈[M ]
k>j

ukujℓ(j)

(µ+ ℓ(k))(µ+ ℓ(j))

(
1

µ+ ℓ(j)
− 1

µ+ ℓ(k)

)
(swapping dummy variables j, k).

We now turn to finding the partial derivatives of F (t∗(ũ)) with respect the ũj , which in turn will727

allow us to find the partial derivatives of kl−1
ℓ (u|c). Let∇ũ denote the gradient operator with respect728

to ũ. Then the quantity we are after is∇ũF (t∗(ũ)) ∈ RM+1, the j’th component of which is729

(
∇ũF (t∗(ũ))

)
j
=

M+1∑
k=1

∂F

∂tk
(t∗(ũ))

∂t∗k
∂ũj

(ũ) = Ft(t
∗(ũ)) · ∂t

∗

∂ũj
(ũ) ∈ R.

Thus the full gradient vector is730

∇ũF (t∗(ũ)) = Ft(t
∗(ũ))∇ũt

∗(ũ), (15)

where ∇ũt
∗(ũ) is the M × (M + 1) matrix given by731 (

∇ũt
∗(ũ)

)
j,k

=
∂t∗k
∂ũj

(ũ).

Finding an expression for this matrix is difficult. Fortunately we can avoid needing to by using a trick732

from mathematical economics referred to as the envelope theorem, as we now show.733

First, note that since, for all ũ, the constraints g = h = 0 are satisfied by t∗(ũ), we have the identities734

g(t∗(ũ), ũ) ≡ 0 and h(t∗(ũ)) ≡ 0.

Differentiating these identities with respect to ũj then yields735

gt(t
∗(ũ), ũ) · ∂t

∗

∂ũj
(ũ) + gũj

(t∗(ũ), ũ) ≡ 0 and ht(t
∗(ũ)) · ∂t

∗

∂ũj
(ũ) ≡ 0.

As before, we can write these M + 1 pairs of equations as the following pair of matrix equations736

gt(t
∗(ũ), ũ)∇ũt

∗(ũ) + gũ(t
∗(ũ), ũ) ≡ 0 and ht(t

∗(ũ))∇ũt
∗(ũ) ≡ 0.

Multiplying these identities by λ∗(ũ) and µ∗(ũ) respectively, and combining with equation (15),737

yields738

∇ũF (t∗(ũ)) =
(
Ft(t

∗(ũ)) + λ∗(ũ)gt(t
∗(ũ), ũ) + µ∗(ũ)ht(t

∗(ũ))
)
∇ũt

∗(ũ)

+ λ∗(ũ)gũ(t
∗(ũ), ũ)

= λ∗(ũ)gũ(t
∗(ũ), ũ),
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where the final equality comes from noting that the terms in the large bracket vanish due to equation739

(12). Recalling the expression for gũ(t; ũ) given by Equation 11 and that v∗(ũ) = exp(t∗(ũ)) we740

obtain741

∇ũF (t∗(ũ)) = λ∗(ũ)
(
1− t∗(ũ)1 + log u1, . . . , 1− t∗(ũ)M + log uM ,−1

)
= λ∗(ũ)

(
1 + log

u1

v∗(ũ)1
, . . . , 1 + log

uM

v∗(ũ)M
,−1

)
Finally, recalling Equivalence (10), namely ∇ũf

∗
ℓ (ũ) ≡ ∇ũF (t∗(ũ)), we see that the above742

expression gives the derivatives ∂f∗
ℓ

∂uj
(ũ) and ∂f∗

ℓ

∂c (ũ) stated in the proposition, thus completing the743

proof.744
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