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ABSTRACT

Time series analysis plays a critical role in numerous applications, supporting tasks
such as forecasting, classification, anomaly detection, and imputation. In this work,
we present the time series pattern machine (TSPM), a model designed to excel
in a broad range of time series tasks through powerful representation and pattern
extraction capabilities. Traditional time series models often struggle to capture uni-
versal patterns, limiting their effectiveness across diverse tasks. To address this, we
define multiple scales in the time domain and various resolutions in the frequency
domain, employing various mixing strategies to extract intricate, task-adaptive
time series patterns. Specifically, we introduce TIMEMIXER++, a general-purpose
TSPM that processes multi-scale time series using (1) multi-resolution time imag-
ing (MRTI), (2) time image decomposition (TID), (3) multi-scale mixing (MCM),
and (4) multi-resolution mixing (MRM) to extract comprehensive temporal patterns.
MRTI transforms multi-scale time series into multi-resolution time images, captur-
ing patterns across both temporal and frequency domains. TID leverages dual-axis
attention to extract seasonal and trend patterns, while MCM hierarchically aggre-
gates these patterns across scales. MRM adaptively integrates all representations
across resolutions. TIMEMIXER++ achieves state-of-the-art performance across
8 time series analytical tasks, consistently surpassing both general-purpose and
task-specific models. Our work marks a promising step toward the next generation
of TSPMs, paving the way for further advancements in time series analysis.

1 INTRODUCTION

Time series analysis is crucial for identifying and predicting temporal patterns across various domains,
including weather forecasting (Bi et al., 2023), medical symptom classification (Kiyasseh et al., 2021),
anomaly detection in spacecraft monitoring (Xu et al., 2022), and imputing missing data in wearable
sensors (Wu et al., 2020). These diverse applications highlight the versatility and importance of time
series analysis in addressing real-world challenges. A key advancement in this field is the development
of time series pattern machines (TSPMs), which aim to create a unified model architecture capable
of handling a broad range of time series tasks across domains (Zhou et al., 2023; Wu et al., 2023).

At the core of TSPMs is their ability to recognize and generalize time series patterns inherent in time
series data, enabling the model to uncover meaningful temporal structures and adapt to varying time
series task scenarios. A line of research (Lai et al., 2018b; Zhao et al., 2017) has utilized recurrent
neural networks (RNNs) to capture sequential patterns. However, these methods often struggle to
capture long-term dependencies due to limitations like Markovian assumptions and inefficiencies.
Temporal convolutional networks (TCNs) (Wu et al., 2023; Wang et al., 2023a; Liu et al., 2022a; Wang
et al., 2024a) efficiently capture local patterns but face challenges with long-range dependencies (e.g.,

∗ Equal contribution ♠ Project lead † Corresponding author

1



Published as a conference paper at ICLR 2025

Long-term Forecasting
(MSE)

Classification
(Accuracy)

Multivariate Short-term Forecasting
(MAPE)

Imputation
(MSE)

Few-shot Forecasting
(MSE)

Zero-shot Forecasting
(MSE)

Univariate Short-term Forecasting
(SMAPE)

Anomaly Detection
(F1-score)

TimeMixer+ +
PatchTST
iTransformer
Crossformer
Fedformer
TimesNet
DLinear
TIDE
Autoformer

0.65 0.46 0.28

42

60

78

18.45

14.27

10.08

0.25

0.15

0.06

0.760.540.33

0.76

0.57

0.39

23.44

17.44

11.45

47

68

89

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98
CKA Similarity

0.24

0.26

0.28

0.30

0.32

0.34

M
SE r = -0.81

TimeMixer++
Autoformer
Fedformer
Stationary

Tide
Crossformer
iTransformer
PatchTST

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
CKA Similarity

0.08

0.10

0.12

0.14

0.16

0.18

M
SE

r = 0.30

TimeMixer++
TimesNet
TIDE
Crossformer

PatchTST
iTransformer
MICN
Fedformer

0.750 0.775 0.800 0.825 0.850 0.875 0.900
CKA Similarity

80

82

84

86

88

90

Ac
cu

ra
cy r = 0.88

TimeMixer++
TimesNet
PatchTST
MICN
iTransformer

Flowformer
Crossformer
Fedformer
MTS-Mixer

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98
CKA Similarity

72.5

75.0

77.5

80.0

82.5

85.0

87.5

F1
-S

co
re r = -0.90

TimeMixer++
iTransformer
Crossformer
Reformer
Informer

PatchTST
DLinear
MICN
TimesNet
MTS-Mixer

(a) Forecasting (Weather input-96-predict-336) (b) Imputation (Electricity)

(c) Classification (PEMS-SF) (d) Anomaly Detection (SMD)

Figure 1: Benchmarking model performance across eight tasks (left) and representation analysis in
four tasks (right). For each model on the right, the centered kernel alignment (CKA) similarity (Ko-
rnblith et al., 2019) is computed between the representations from the first and last layers.

seasonality and trends) because of their fixed receptive fields. While some approaches reshape time
series into 2D tensors based on frequency domain information (Wu et al., 2023) or downsample the
time domain (Liu et al., 2022a), they fall short in comprehensively capturing long-range patterns. In
contrast, transformer-based architectures (Nie et al., 2023; Liu et al., 2024; Zhou et al., 2022b; Wang
et al., 2022; Shi et al., 2024) leverage token-wise self-attention to model long-range dependencies
by allowing each token to attend to all others, overcoming the limitations of fixed receptive fields.
However, unlike language tasks where tokens usually belong to distinct contexts, time series data
often involve overlapping contexts at a single time point, such as daily, weekly, and seasonal patterns
occurring simultaneously. This overlap makes it difficult to represent time series patterns effectively
as tokens, posing challenges for transformer-based models in fully capturing the relevant temporal
structures.

The recognition of the above challenges naturally raises a pivotal question:

What capabilities must a model possess, and what challenges must it overcome, to function as a TSPM?

Before addressing the design of TSPMs, we first reconsider how time series are generated from
continuous real-world processes sampled at various scales. For example, daily data capture hourly
fluctuations, while yearly data reflect long-term trends and seasonal cycles. This multi-scale, multi-
periodicity nature presents a significant challenge for model design, as each scale emphasizes different
temporal dynamics that must be effectively captured. Figure 1 illustrates this challenge in constructing
a general TSPM. Specifically, lower CKA similarity (Kornblith et al., 2019) indicates more diverse
representations across layers, which is advantageous for tasks like imputation and anomaly detection
that require capturing irregular patterns and handling missing data. In these cases, diverse representa-
tions across layers help manage variations across scales and periodicities. Conversely, forecasting
and classification tasks benefit from higher CKA similarity, where consistent representations across
layers better capture stable trends and periodic patterns. This contrast emphasizes the challenge of
designing a universal model flexible enough to adapt to multi-scale and multi-periodicity patterns
across various analytical tasks, which may favor either diverse or consistent representations.

To address the aforementioned question and challenges, we propose TIMEMIXER++, a general-
purpose TSPM designed to capture general, task-adaptive time series patterns by tackling the com-
plexities of multi-scale and multi-periodicity dynamics. The key idea is to simultaneously capture
intricate time series patterns across multiple scales in the time domain and various resolutions in
the frequency domain. Specifically, TIMEMIXER++ processes multi-scale time series using (1)
multi-resolution time imaging (MRTI), (2) time image decomposition (TID), (3) multi-scale mix-
ing (MCM), and (4) multi-resolution mixing (MRM) to uncover comprehensive patterns. MRTI
transforms multi-scale time series into multi-resolution time images, enabling pattern extraction
across both temporal and frequency domains. TID applies dual-axis attention to disentangle seasonal
and trend patterns in the latent space, while MCM hierarchically aggregates these patterns across
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different scales. Finally, MRM adaptively integrates all representations across resolutions. As shown
in Figure 1, TIMEMIXER++ achieves state-of-the-art performance across 8 analytical tasks, outper-
forming both general-purpose and task-specific models. Its adaptability is reflected in its varying
CKA similarity scores across different tasks, indicating its ability to capture diverse task-specific
patterns more effectively than other models. Our contributions are summarized as follows:

1. We introduce TIMEMIXER++, a general-purpose time series analysis model that processes
multi-scale, multi-periodicity data by transforming time series into multi-resolution time images,
enabling efficient pattern extraction across both temporal and frequency domains.

2. To capture intricate patterns, we disentangle seasonality and trend from time images using time
image decomposition, followed by adaptive aggregation through multi-scale mixing and multi-
resolution mixing, enabling patterns integration across scales and periodicities.

3. TIMEMIXER++ sets a new state-of-the-art across 8 time series analytical tasks in different
benchmarks, consistently outperforming both general-purpose and task-specific models. This
marks a significant step forward in the development of next-generation TSPMs.

2 RELATED WORK

Time Series Analysis. A pivotal aspect of time series analysis is the ability to extract diverse patterns
from various time series while building powerful representations. This challenge has been explored
across various model architectures. Traditional models like ARIMA (Anderson & Kendall, 1976) and
STL (Cleveland et al., 1990) are effective for periodic and trend patterns but struggle with non-linear
dynamics. Deep learning models, such as those by (Lai et al., 2018b) and (Zhao et al., 2017),
capture sequential dependencies but face limitations with long-term dependencies. TCNs (Franceschi
et al., 2019) improve local pattern extraction but are limited in capturing long-range dependencies.
TimesNet (Wu et al., 2023) enhances long-range pattern extraction by treating time series as 2D
signals, while MLP-based methods (Zeng et al., 2023; Ekambaram et al., 2023; Liu et al., 2023; Wang
et al., 2023c) offer simplicity and effectiveness. Transformer-based models like PatchTST (Nie et al.,
2023) and iTransformer (Liu et al., 2024) leverage self-attention to model long-range dependencies,
demonstrating good forecasting performance. Given the strengths and limitations discussed above,
there is a growing need for a TSPM capable of effectively extracting diverse patterns, adapting to
various time series analytical tasks, and possessing strong generalization capabilities. As illustrated in
Figure 1, TIMEMIXER++ meets this requirement by constructing robust representational capabilities,
thereby demonstrating its potential for universal time series analysis.

Hierarchical Time Series Modeling. Numerous methodologies have been advanced utilizing
specialized deep learning architectures for time series analysis, with an emphasis on the decomposition
and integration of temporal patterns. For example, several studies (Wu et al., 2021; Wang et al.,
2024b; Zhou et al., 2022b; Luo et al., 2023; Wang et al., 2023b) utilize moving averages to discern
seasonal and trend components, which are subsequently modeled using attention mechanisms (Wu
et al., 2021; Zhou et al., 2022b; Shi et al., 2025), convolutional networks (Wang et al., 2023a), or
hierarchical MLP layers (Wang et al., 2024b; Wang, 2024). These components are individually
processed prior to aggregation to yield the final output. Nonetheless, such approaches frequently
depend on predefined and rigid operations for the disentanglement of seasonality and trends, thereby
constraining their adaptability to complex and dynamic patterns. In contrast, as depicted in Figure 2,
we propose a more flexible methodology that disentangles seasonality and trend directly within
the latent space via dual-axis attention, thereby enhancing adaptability to a diverse range of time
series patterns and task scenarios. Furthermore, by adopting a multi-scale, multi-resolution analytical
framework (Mozer, 1991; Harti, 1993), we facilitate hierarchical interaction and integration across
different scales and resolutions, substantially enhancing the effectiveness of time series modeling.

3 TIMEMIXER++

Building on the multi-scale and multi-periodic characteristics of time series, we introduce
TIMEMIXER++, a general-purpose time series pattern machine that processes multi-scale time
series using an encoder-only architecture, as shown in Figure 2. The architecture generally comprises
three components: (1) input projection, (2) a stack of Mixerblocks, and (3) output projection.
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Figure 2: The framework of TIMEMIXER++. The multi-scale time series is first embedded through
an input projection layer, followed by L stacked MixerBlocks. Each block converts the multi-scale
input into multi-resolution time images, disentangles seasonality and trend via dual-axis attention,
and mixes these patterns using multi-scale and multi-resolution mixing.

Multi-scale Time Series. We approach time series analysis using a multi-scale framework. Given an
input time series x0 ∈ RT×C , where T represents the sequence length and C the number of variables,
we generate a multi-scale representation through downsampling. Specifically, the input time series
x0 is progressively downsampled across M scales using convolution operations with a stride of 21,
producing the multi-scale set Xinit = {x0, · · · ,xM}, where xm ∈ R⌊ T

2m ⌋×C . The downsampling
process follows the recursive relationship:

xm = Conv(xm−1, stride = 2), m ∈ {1, · · · ,M}. (1)

3.1 STRUCTURE OVERVIEW

Input Projection. Previous studies (2023; 2023) employ a channel-independence strategy to avoid
projecting multiple variables into indistinguishable channels (Liu et al., 2024). In contrast, we adopt
channel mixing to capture cross-variable interactions, which are crucial for revealing comprehensive
patterns in time series data. The input projection has two components: channel mixing and embedding.
We first apply self-attention to the variate dimensions at the coarsest scale xM ∈ R⌊ T

2M
⌋×C , as it

retains the most global context, facilitating the more effective integration of information across
variables. This is formulated as follows:

xM = Channel-Attn(QM ,KM ,VM ), (2)

where Channel-Attn denotes the variate-wise self-attention for channel mixing. The queries, keys,
and values QM ,KM ,VM ∈ RC×⌊ T

2M
⌋ are derived from linear projections of xM . Then, we

embed all multi-scale time series into a deep pattern set X0 using an embedding layer, which
can be expressed as X0 = {x0

0, · · · ,x0
M} = Embed(Xinit), where x0

m ∈ R⌊ T
2m ⌋×dmodel and dmodel

represents the dimensionality of the deep patterns.

MixerBlocks. Next, we apply a stack of L Mixerblocks with the goal to capture intricate patterns
across scales in the time domain and resolutions in the frequency domain. Within the MixerBlocks,
we convert multi-scale time series into multi-resolution time images, disentangle seasonal and

1Setting stride = 2 maximizes the number of scales from recursive downsampling.
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trend patterns through time image decomposition, and aggregate these patterns across different
scales and resolutions. The forward propagation is defined as Xl+1 = MixerBlock(Xl), where
Xl = {xl

0, · · · ,xl
M} and xl

m ∈ R⌊ T
2m ⌋×dmodel . We will elaborate on this block in the next section.

Output Projection. After L× MixerBlocks, we obtain the multi-scale representation set XL. Since
different scales capture distinct temporal patterns and tasks vary in demands, as discussed in Section 1,
we propose using multiple prediction heads, each specialized for a specific scale, and ensembling
their outputs. This design is task-adaptive, allowing each head to focus on relevant features at its
scale, while the ensemble aggregates complementary information to enhance prediction robustness.

output = Ensemble({Headm(xL
m)}Mm=0), (3)

where Ensemble(·) denotes the ensemble method (e.g., averaging or weighted sum), and Headm(·)
is the prediction head for the m-th scale, typically a linear layer.

3.2 MIXERBLOCK

We organize a stack of MixerBlocks in a residual way. For the (l + 1)-th block, the input is the
multi-scale representation set Xl, and the forward propagation can be formalized as:

Xl+1 = LayerNorm

(
Xl +MixerBlock

(
Xl

))
, (4)

where LayerNorm normalizes patterns across scales and can stabilize the training. Time series
exhibits complex multi-scale and multi-periodic dynamics. Multi-resolution analysis (Harti, 1993)
models time series as a composite of various periodic components in the frequency domain. We
introduce multi-resolution time images, converting 1D multi-scale time series into 2D images based
on frequency analysis while preserving the original data. This captures intricate patterns across time
and frequency domains, enabling efficient use of convolution methods for extracting temporal patterns
and enhancing versatility across tasks. Specifically, we processes multi-scale time series using (1)
multi-resolution time imaging (MRTI), (2) time image decomposition (TID), (3) multi-scale mixing
(MCM), and (4) multi-resolution mixing (MRM) to uncover comprehensive time series patterns.

Multi-Resolution Time Imaging. At the start of each MixerBlock, we convert the input Xl into
(M + 1) × K multi-resolution time images via frequency analysis (Wu et al., 2023). To capture
representative periodic patterns, we first identify periods from the coarsest scale xl

M , which enables
global interaction. Specifically, we apply the fast fourier transform (FFT) on xl

M and select the top-K
frequencies with the highest amplitudes:

A, {f1, · · · , fK}, {p1, · · · , pK} = FFT(xl
M ), (5)

where A = {Af1 , · · · , AfK} represents the unnormalized amplitudes, {f1, · · · , fK} are the top-K

frequencies, and pk =
⌈

T
fk

⌉
, k ∈ {1, . . . ,K} denotes the corresponding period lengths. Each time

series representation xl
m is then reshaped along the temporal dimension as follows:

MRTI(Xl) = {Zl
m}Mm=0 =

{
z(l,k)m | m = 0, . . . ,M ; k = 1, . . . ,K

}
=

{
Reshapem,k

1D→2D

(Paddingm,k(x
l
m)) | m = 0, . . . ,M ; k = 1, . . . ,K

}
,

(6)

where Paddingm,k(·) zero-pads the time series to a length of pk · ⌈ ⌊ T
2m ⌋
pk

⌉, and Reshapem,k
1D→2D

(·)

converts it into a pk × ⌈ ⌊ T
2m ⌋
pk

⌉ image, denoted as z
(l,k)
m . Here, pk represents the number of rows

(period length), and the number of columns, denoted by fm,k = ⌈ ⌊ T
2m ⌋
pk

⌉, represent the corresponding
frequency for scale m.

Time Image Decomposition. Time series patterns are inherently nested, with overlapping scales
and periods. For example, weekly sales data reflects both daily shopping habits and broader seasonal
trends. Conventional methods (Wu et al., 2021; Wang et al., 2024b) use moving averages across
the entire series, often blurring distinct patterns. To address this, we utilize multi-resolution time

5



Published as a conference paper at ICLR 2025

images, where each image z
(l,k)
m ∈ Rpk×fm,k×dmodel encodes a specific scale and period, enabling finer

disentanglement of seasonality and trend. By applying 2D convolution to these images, we capture
long-range patterns and enhance temporal dependency extraction. Columns in each image correspond
to time series segments within a period, while rows represent consistent time points across periods,
facilitating dual-axis attention: column-axis attention (Attentioncol) captures seasonality within
periods, and row-axis attention (Attentionrow) extracts trend across periods. Each axis-specific
attention focuses on one axis, preserving efficiency by transposing the non-target axis to the batch
dimension. For column-axis attention, queries, keys, and values Qcol,Kcol,Vcol ∈ Rfm,k×dmodel are
computed via 2D convolution, which are shared across all images, and similarly for row-axis attention
Qrow,Krow,Vrow. The seasonal and trend components are then computed as:

s(l,k)m = Attentioncol(Qcol,Kcol,Vcol), t(l,k)m = Attentionrow(Qrow,Krow,Vrow), (7)

where s
(l,k)
m , t

(l,k)
m ∈ Rpk×fm,k×dmodel represent the seasonal and trend images, respectively. Here, the

transposed axis is restored to recover the original image size after the attention.

Multi-scale Mixing. For each period pk, we obtain M + 1 seasonal time images and M + 1 trend
time images, denoted as {s(l,k)m }Mm=0 and {t(l,k)m }Mm=0, respectively. The 2D structure allows us to
model both seasonal and trend patterns using 2D convolutional layers, which are more efficient and
effective at capturing long-term dependencies than traditional linear layers (Wang et al., 2024b).
For multi-scale seasonal time images, longer patterns can be interpreted as compositions of shorter
ones (e.g., a yearly rainfall pattern formed by monthly changes). Therefore, we mix the seasonal
patterns from fine-scale to coarse-scale. To facilitate this bottom-up information flow, we apply the
2D convolutional layers at the m-th scale in a residual manner, formalized as:

form: 1 → M do: s(l,k)m = s(l,k)m + 2D-Conv(s
(l,k)
m−1), (8)

where 2D-Conv is composed of two 2D convolutional layers with a temporal stride of 2. Unlike
seasonal patterns, for multi-scale trend time images, coarser scales naturally highlight the overall
trend. Therefore, we adopt a top-down mixing strategy and apply the 2D transposed convolutional
layer at the m-th scale in a residual manner, formalized as:

form:M − 1 → 0 do: t(l,k)m = t(l,k)m + 2D-TransConv(t
(l,k)
m+1), (9)

where 2D-TransConv is composed of two 2D transposed convolutional layers with a temporal stride
of 2. After mixing, the seasonal and trend patterns are aggregated via summation and reshaped back
to a 1D structure, as follows:

z(l,k)m = Reshapem,k
2D→1D

(s(l,k)m + t(l,k)m ), m ∈ {0, · · · ,M}, (10)

where Reshapem,k
2D→1D

(·) convert a pk × fm,k image into a time series of length pk · fm,k.

Multi-resolution Mixing. Finally, at each scale, we mix the K periods adaptively. The amplitudes
A capture the importance of each period, and we aggregate the patterns {z(l,k)m }Kk=1 as follows:

{Âfk}Kk=1 = Softmax({Afk}Kk=1), xl
m =

K∑
k=1

Âfk ◦ z(l,k)m , m ∈ {0, · · · ,M}, (11)

where Softmax normalizes the weights, and ◦ denotes element-wise multiplication.

4 EXPERIMENTS

To verify the effectiveness of the proposed TIMEMIXER++ as a general time series pattern machine,
we perform extensive experiments across 8 well-established analytical tasks, including (1) long-term
forecasting, (2) univariate and (3) multivariate short-term forecasting, (4) imputation, (5) classification,
(6) anomaly detection, as well as (7) few-shot and (8) zero-shot forecasting. Overall, as summarized
in Figure 1, TIMEMIXER++ consistently surpasses contemporary state-of-the-art models in a
range of critical time series analysis tasks, which is demonstrated by its superior performance
across 30 well-known benchmarks and against 27 advanced baselines. The detailed experimental
configurations and implementations are in Appendix A.
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4.1 MAIN RESULTS

4.1.1 LONG-TERM FORECASTING

Setups. Long-term forecasting is pivotal for strategic planning in areas such as weather prediction,
traffic management, and energy utilization. To comprehensively assess our model’s effectiveness over
extended periods, we perform experiments on 8 widely-used real-world datasets, including the four
subsets of the ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2), as well as Weather, Solar-Energy,
Electricity, and Traffic, consistent with prior benchmarks set by Zhou et al. (2021b); Liu et al. (2022a).

Table 1: Long-term forecasting results. We average the results across 4 prediction lengths:
{96, 192, 336, 720}. The best performance is highlighted in red, and the second-best is underlined.
Full results can be found in Appendix H.

Models TimeMixer++ TimeMixer iTransformer PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer
(Ours) (2024b) (2024) (2023) (2023) (2023a) (2023) (2023) (2022a) (2022b) (2022c) (2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Electricity 0.165 0.253 0.182 0.272 0.178 0.270 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.193 0.296 0.227 0.338

ETT (Avg) 0.349 0.399 0.367 0.388 0.383 0.377 0.381 0.397 0.685 0.578 0.482 0.470 0.391 0.404 0.442 0.444 0.689 0.597 0.408 0.428 0.471 0.464 0.465 0.459

Exchange 0.357 0.391 0.391 0.453 0.378 0.360 0.403 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.461 0.454 0.613 0.539

Traffic 0.416 0.264 0.484 0.297 0.428 0.282 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340 0.628 0.379

Weather 0.226 0.262 0.240 0.271 0.258 0.278 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382

Solar-Energy 0.203 0.238 0.216 0.280 0.233 0.262 0.270 0.307 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381 0.261 0.381 0.885 0.711

Results. Table 1 shows TIMEMIXER++ outperforms other models in long-term forecasting across
various datasets. On Electricity, it surpasses iTransformer by 7.3% in MSE and 6.3% in MAE.
For ETT (Avg), TIMEMIXER++ achieves 4.9% lower MSE than TimeMixer. On the challenging
Solar-Energy dataset (Table 8), it exceeds the second-best model by 6.0% in MSE and 9.2% in MAE,
demonstrating its robustness in handling complex high-dimensional time series.

4.1.2 UNIVARIATE SHORT-TERM FORECASTING

Setups. Univariate short-term forecasting is crucial for demand planning and marketing. We evaluate
our model using the M4 Competition dataset Makridakis et al. (2018), comprising 100, 000 marketing
time series with six frequencies from hourly to yearly, enabling comprehensive assessment across
varied temporal resolutions.

Table 2: Univariate short-term forecasting results, averaged across all M4 subsets. Full results are
available in Appendix H

Models TimeMixer++ TimeMixer iTransformer TiDE TimesNet N-HiTS N-BEATS PatchTST MICN FiLM LightTS DLinear FED. Stationary Auto.
(Ours) (2024b) (2024) (2023a) (2023) (2023) (2019) (2023) (2023a) (2022a) (2022a) (2023) (2022b) (2022c) (2021)

SMAPE 11.448 11.723 12.684 13.950 11.829 11.927 11.851 13.152 19.638 14.863 13.525 13.639 12.840 12.780 12.909
MASE 1.487 1.559 1.764 1.940 1.585 1.613 1.559 1.945 5.947 2.207 2.111 2.095 1.701 1.756 1.771
OWA 0.821 0.840 0.929 1.020 0.851 0.861 0.855 0.998 2.279 1.125 1.051 1.051 0.918 0.930 0.939

Results. Table 2 demonstrates that TimeMixer++ significantly outperforms state-of-the-art models
across all metrics. Compared to iTransformer, it reduces SMAPE by 9.7% and MASE by 15.7%,
with even larger improvements over TiDE, achieving up to a 23.3% reduction in MASE. Additionally,
TimeMixer++ records the lowest OWA, outperforming TimesNet by 3.5% and iTransformer by
11.6%.

4.1.3 MULTIVARIATE SHORT-TERM FORECASTING

Setups. We further evaluate the short-term forecasting performance in multivariate settings on the
PeMS benchmark (Chen et al., 2001), which includes four publicly available high-dimensional traffic
network datasets: PEMS03, PEMS04, PEMS07, and PEMS08. These datasets feature a large number
of variables, ranging from 170 to 883, offering a challenging testbed for assessing the scalability and
effectiveness of our model in predicting complex time series patterns across multiple variables.
Results. The results in Table 3 highlight the superior performance of TIMEMIXER++ across all key
metrics in multivariate short-term forecasting. TIMEMIXER++ achieves a 19.9% reduction in MAE
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Table 3: Results of multivariate short-term forecasting, averaged across all PEMS datasets. Full
results can be found in Table 18 of Appendix H.

Models TimeMixer++ TimeMixer iTransformer TiDE SCINet Crossformer PatchTST TimesNet MICN DLinear FEDformer Stationary Autoformer
(Ours) (2024b) (2024) (2023a) (2022a) (2023) (2023) (2023) (2023a) (2023) (2022b) (2022c) (2021)

MAE 15.91 17.41 19.87 21.86 19.12 19.03 23.01 20.54 19.34 23.31 23.50 21.32 22.62
MAPE 10.08 10.59 12.55 13.80 12.24 12.22 14.95 12.69 12.38 14.68 15.01 14.09 14.89
RMSE 27.06 28.01 31.29 34.42 30.12 30.17 36.05 33.25 30.40 37.32 36.78 36.20 34.49

and a 19.6% reduction in MAPE compared to iTransformer, and an 8.6% and 4.8% reduction in
MAE and MAPE, respectively, compared to TimeMixer. Notably, PatchTST, a strong baseline, is
outperformed by TIMEMIXER++ with a 30.8% improvement in MAE, 32.5% in MAPE, and 24.9%
in RMSE, highlighting the effectiveness of TIMEMIXER++ in handling high-dimensional datasets.

4.1.4 IMPUTATION

Setups. Accurate imputation of missing values is crucial in time series analysis, affecting predictive
models in real-world applications. To evaluate our model’s imputation capabilities, we use datasets
from electricity and weather domains, selecting ETT (Zhou et al. (2021b)), Electricity (UCI), and
Weather (Wetterstation) as benchmarks.

Table 4: Results of imputation task across six datasets. To evaluate our model performance, we
randomly mask {12.5%, 25%, 37.5%, 50%} of the time points in time series of length 1024. The
final results are averaged across these 4 different masking ratios.

Models TimeMixer++ TimeMixer iTransformer PatchTST Crossformer FEDformer TIDE DLinear TimesNet MICN Autoformer
(Ours) (2024b) (2024) (2023) (2023) (2022b) (2023a) (2023) (2023) (2023a) (2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETT(Avg) 0.055 0.154 0.097 0.220 0.096 0.205 0.120 0.225 0.150 0.258 0.124 0.230 0.314 0.366 0.115 0.229 0.079 0.182 0.119 0.234 0.104 0.215

ECL 0.109 0.197 0.142 0.261 0.140 0.223 0.129 0.198 0.125 0.204 0.181 0.314 0.182 0.202 0.080 0.200 0.135 0.255 0.138 0.246 0.141 0.234

Weather 0.049 0.078 0.091 0.114 0.095 0.102 0.082 0.149 0.150 0.111 0.064 0.139 0.063 0.131 0.071 0.107 0.061 0.098 0.075 0.126 0.066 0.107

Results. Table 4 presents TIMEMIXER++’s performance in imputing missing values across six
datasets. It consistently outperforms all baselines, achieving the lowest MSE and MAE in the
majority of cases. Compared to the second-best model, TimesNet, TIMEMIXER++ reduces MSE
by an average of 25.7% and MAE by 17.4%. Notably, TIMEMIXER++ excels even when handling
imputation tasks with input lengths of up to 1024, demonstrating its robust capability as a TSPM.

4.1.5 FEW-SHOT FORECASTING

Setups. Transformer-based models excel in various forecasting scenarios, especially with limited
data. To evaluate their transferability and pattern recognition, we test across 6 diverse datasets,
training each model on only 10% of available timesteps. This approach assesses adaptability to sparse
data and the ability to discern general patterns, which is crucial for real-world predictive analysis
where data is often limited.

Table 5: Few-shot learning on 10% training data. All results are averaged from 4 prediction lengths:
{96, 192, 336, 720}.

Models TimeMixer++ TimeMixer iTransformer TiDE Crossformer DLinear PatchTST TimesNet FEDformer Autoformer Stationary ETSformer LightTS Informer Reformer
(Ours) (2024b) (2024) (2023a) (2023) (2023) (2023) (2023) (2022b) (2021) (2022c) (2022) (2022b) (2021b) (2020)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETT(Avg) 0.396 0.421 0.453 0.445 0.458 0.497 0.432 0.444 0.470 0.471 0.506 0.484 0.461 0.446 0.586 0.496 0.573 0.532 0.834 0.663 0.627 0.510 0.875 0.687 1.497 0.875 2.408 1.146 2.535 1.191

Weather 0.241 0.271 0.242 0.281 0.291 0.331 0.249 0.291 0.267 0.306 0.241 0.283 0.242 0.279 0.279 0.301 0.284 0.324 0.300 0.342 0.318 0.323 0.318 0.360 0.289 0.322 0.597 0.495 0.546 0.469

ECL 0.168 0.271 0.187 0.277 0.241 0.337 0.196 0.289 0.214 0.308 0.180 0.280 0.180 0.273 0.323 0.392 0.346 0.427 0.431 0.478 0.444 0.480 0.660 0.617 0.441 0.489 1.195 0.891 0.965 0.768

In few-shot learning, TIMEMIXER++ achieves superior performance across all datasets, reducing
MSE by 13.2% compared to PatchTST. DLinear performs well on some datasets but degrades in
zero-shot experiments, suggesting overfitting. TIMEMIXER++ outperforms TimeMixer with 9.4%
lower MSE and 4.6% lower MAE, attributed to its attention mechanisms enhancing general time
series pattern recognition.
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4.1.6 ZERO-SHOT FORECASTING

Setups. We explore zero-shot learning to evaluate models’ ability to generalize across different
contexts. As shown in Table 6, models trained on dataset Da are evaluated on unseen dataset Db

without further training. This direct transfer (Da → Db) tests models’ adaptability and predictive
robustness across disparate datasets.

Table 6: Zero-shot learning results. The results are averaged from 4 different prediction lengths:
{96, 192, 336, 720}.

Methods
TimeMixer++ TimeMixer LLMTime DLinear PatchTST TimesNet iTransformer Crossformer Fedformer Autoformer TiDE

(Ours) (2024b) (2023) (2023) (2023) (2023) (2024) (2023) (2022b) (2021) (2023a)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1→ ETTh2 0.367 0.391 0.427 0.424 0.992 0.708 0.493 0.488 0.380 0.405 0.421 0.431 0.481 0.474 0.555 0.574 0.712 0.693 0.634 0.651 0.593 0.582

ETTh1→ ETTm2 0.301 0.357 0.361 0.397 1.867 0.869 0.415 0.452 0.314 0.360 0.327 0.361 0.311 0.361 0.613 0.629 0.681 0.588 0.647 0.609 0.563 0.547

ETTh2→ ETTh1 0.511 0.498 0.679 0.577 1.961 0.981 0.703 0.574 0.565 0.513 0.865 0.621 0.552 0.511 0.587 0.518 0.612 0.624 0.599 0.571 0.588 0.556

ETTm1 → ETTh2 0.417 0.422 0.452 0.441 0.992 0.708 0.464 0.475 0.439 0.438 0.457 0.454 0.434 0.438 0.624 0.541 0.533 0.594 0.579 0.568 0.543 0.535

ETTm1→ ETTm2 0.291 0.331 0.329 0.357 1.867 0.869 0.335 0.389 0.296 0.334 0.322 0.354 0.324 0.331 0.595 0.572 0.612 0.611 0.603 0.592 0.534 0.527

ETTm2→ ETTm1 0.427 0.448 0.554 0.478 1.933 0.984 0.649 0.537 0.568 0.492 0.769 0.567 0.559 0.491 0.611 0.593 0.577 0.601 0.594 0.597 0.585 0.571

Results. As demonstrated in Table 6, TIMEMIXER++ consistently outperforms other models in our
zero-shot learning evaluation across all datasets. Notably, TIMEMIXER++ achieves a significant
reduction in MSE by 13.1% and in MAE by 5.9% compared to iTransformer. Moreover, it exhibits a
reduction in MSE of 9.6% and in MAE of 3.8% when compared with PatchTST. These improvements
demonstrate the superior generalization capability and robustness of TIMEMIXER++ in handling
unseen data patterns, highlighting its potential for real-world applications where adaptability to new
scenarios is crucial.

4.1.7 CLASSIFICATION AND ANOMALY DETECTION

Setups. Classification and anomaly detection test models’ ability to capture coarse and fine-grained
patterns in time series. We use 10 multivariate datasets from UEA Time Series Classification
Archive (2018) for classification. For anomaly detection, we evaluate on SMD (2019), SWaT (2016),
PSM (2021), MSL and SMAP (2018).

Figure 3: Results of classification and anomaly detection. The results are averaged from several
datasets. Higher accuracy and F1 score indicate better performance. ∗. indicates the Transformer-
based models. See Table 19 and 20 in the Appendix H for full results.

Results. Results for both tasks are shown in Figure 4.1.7. For classification, TIMEMIXER++ achieves
75.9% accuracy, surpassing TimesNet by 2.3% and outperforming other models. Forecasting
models like iTransformer and PatchTST perform poorly, highlighting TIMEMIXER++’s versatility. In
anomaly detection, TIMEMIXER++ achieves an F1-score of 87.47%, exceeding TimesNet by 2.59%,
SCINet by 3.09%, and Anomaly Transformer by 6.62%. These results emphasize TIMEMIXER++’s
strong pattern learning capability, attributed to its multi-scale and multi-resolution architecture.
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4.2 MODEL ANALYSIS

Ablation Study. To verify the effectiveness of each component of TIMEMIXER++, we con-
ducted an ablation study by removing individual components (w/o). The results are in Table 7.
TIMEMIXER++ with all components—channel mixing, time image decompose, multi-scale mixing,
and multi-resolution mixing—achieves the best performance. On datasets like ECL, Traffic, and
Solar, channel-mixing improves performance by 5.36%. Time image decomposition yields an 8.81%
improvement, especially on seasonal datasets like ECL and Traffic. Multi-scale mixing provides a
6.25% improvement, particularly for less predictable datasets like ETT. Multi-resolution mixing
adds a 5.10% improvement, highlighting the importance of a multi-resolution hybrid ensemble. We
provide more ablation studies in Appednix C.

Table 7: MSE for long-term forecasting across 8 benchmarks, evaluated with different model
components. We provide more analysis on other tasks in Tables 11 and 12.

ETTh1 ETTh2 ETTm1 ETTm2 ECL Traffic Weather Solar Average Promotion

TIMEMIXER++ 0.419 0.339 0.369 0.269 0.165 0.416 0.226 0.203 0.300 -
w/o channel mixing 0.424 0.346 0.374 0.271 0.197 0.442 0.233 0.245 0.317 5.36%
w/o time image decomposition 0.441 0.358 0.409 0.291 0.198 0.445 0.251 0.241 0.329 8.81%
w/o multi-scale mixing 0.447 0.361 0.391 0.284 0.172 0.427 0.239 0.234 0.320 6.25%
w/o multi-resolution mixing 0.431 0.350 0.374 0.280 0.181 0.432 0.241 0.233 0.316 5.10%
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Figure 4: Visualization of representation on Time Image
under Traffic dataset. More showcases in Figure 10, 11, 13.

Representation Analysis. Our anal-
ysis, depicted in Figure 4, present the
original, seasonality, and trend images
across two scales and three resolu-
tions (periods: 12, 8, 6; frequencies:
16, 24, 32). TIMEMIXER++ demon-
strates efficacy in the separation of dis-
tinct seasonality and trends, precisely
capturing multi-periodicities and time-
varying trends. Notably, the periodic
characteristics vary across different
scales and resolutions. This hierarchi-
cal structure permits the simultaneous
capture of these features, underscor-
ing the robust representational capabilities of TIMEMIXER++ as a pattern machine.

Furthermore, as on the right side of Figure 1, from the perspective of representation learning,
TIMEMIXER++ shows superior performance in prediction and anomaly detection with higher CKA
similarity 2019, compared to imputation and classification tasks. Lower CKA similarity indicates
more distinctive layer-wise representations, suggesting a hierarchical structure. Figure 1 demonstrates
that TIMEMIXER++ captures distinct low-level representations for forecasting and anomaly detection,
and hierarchical ones for imputation and classification. This highlights TIMEMIXER++’s potential
as a general time series pattern machine, capable of identifying diverse patterns across tasks and
domains, essential for universal predictive analysis in time series. See Appendix D for more details.

5 CONCLUSION

In this paper, we present TIMEMIXER++, a novel framework designed as a universal time series
pattern machine for predictive analysis. By leveraging multi-resolution imaging, we construct
time images at various resolutions, enabling enhanced representation of temporal dynamics. The
use of dual-axis attention allows for effective decomposition of these time images, disentangling
seasonal and trend components within deep representations. With multi-scale and multi-resolution
mixing techniques, TIMEMIXER++ seamlessly fuses and extracts information across different
hierarchical levels, demonstrating strong representational capabilities. Through extensive experiments
and comprehensive evaluations, TIMEMIXER++ consistently outperforms existing general-purpose
and task-specific time series models , establishing itself as a state-of-the-art solution with significant
potential for broad applications in time series analysis. Limitations and directions for future research
are discussed in Appendix K.
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A IMPLEMENTATION DETAILS

Datasets Details. We evaluate the performance of different models for long-term forecasting on
8 well-established datasets, including Weather, Traffic, Electricity, Exchange, Solar-Energy, and
ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2). Furthermore, we adopt PeMS and M4 datasets
for short-term forecasting. We detail the descriptions of the dataset in Table 8.To comprehensively
evaluate the model’s performance in time series analysis tasks, we further introduced datasets for
classification and anomaly detection. The classification task is designed to test the model’s ability to
capture coarse-grained patterns in time series data, while anomaly detection focuses on the recognition
of fine-grained patterns. Specifically, we used 10 multivariate datasets from the UEA Time Series
Classification Archive (2018) for the evaluation of classification tasks. For anomaly detection, we
selected datasets such as SMD (2019), SWaT (2016), PSM (2021), MSL, and SMAP (2018). We
detail the descriptions of the datasets for classification and anomaly detection in Table 9 and Table 10.

Table 8: Dataset detailed descriptions. The dataset size is organized in (Train, Validation, Test).

Tasks Dataset Dim Series Length Dataset Size Frequency Forecastability∗ Information

ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min 0.46 Temperature

ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min 0.55 Temperature

ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 15 min 0.38 Temperature

ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 15 min 0.45 Temperature

Long-term Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly 0.77 Electricity

Forecasting Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly 0.68 Transportation

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Daily 0.41 Weather

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min 0.75 Weather

Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10min 0.33 Electricity

PEMS03 358 12 (15617,5135,5135) 5min 0.65 Transportation

PEMS04 307 12 (10172,3375,3375) 5min 0.45 Transportation

PEMS07 883 12 (16911,5622,5622) 5min 0.58 Transportation

Short-term PEMS08 170 12 (10690,3548,265) 5min 0.52 Transportation

Forecasting M4-Yearly 1 6 (23000, 0, 23000) Yearly 0.43 Demographic

M4-Quarterly 1 8 (24000, 0, 24000) Quarterly 0.47 Finance

M4-Monthly 1 18 (48000, 0, 48000) Monthly 0.44 Industry

M4-Weakly 1 13 (359, 0, 359) Weakly 0.43 Macro

M4-Daily 1 14 (4227, 0, 4227) Daily 0.44 Micro

M4-Hourly 1 48 (414, 0, 414) Hourly 0.46 Other

∗ The forecastability is calculated by one minus the entropy of Fourier decomposition of time series (Goerg, 2013). A
larger value indicates better predictability.

Table 9: Datasets and mapping details of UEA dataset (Bagnall et al., 2018).

Dataset Sample Numbers(train set,test set) Variable Number Series Length
EthanolConcentration (261, 263) 3 1751
FaceDetection (5890, 3524) 144 62
Handwriting (150, 850) 3 152
Heartbeat (204, 205) 61 405
JapaneseVowels (270, 370) 12 29
PEMSSF (267, 173) 963 144
SelfRegulationSCP1 (268, 293) 6 896
SelfRegulationSCP2 (200, 180) 7 1152
SpokenArabicDigits (6599, 2199) 13 93
UWaveGestureLibrary (120, 320) 3 315
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Table 10: Datasets and mapping details of anomaly detection dataset.
Dataset Dataset sizes(train set,val set, test set) Variable Number Sliding Window Length
SMD (566724, 141681, 708420) 38 100
MSL (44653, 11664, 73729) 55 100
SMAP (108146, 27037, 427617) 25 100
SWaT (396000, 99000, 449919) 51 100
PSM (105984, 26497, 87841) 25 100

Baseline Details. To assess the effectiveness of our method across various tasks, we select
27 advanced baseline models spanning a wide range of architectures. Specifically, we utilize
CNN-based models: MICN (2023a), SCINet (2022a), and TimesNet (2023); MLP-based mod-
els: TimeMixer (2024b), LightTS (2022a), and DLinear (2023); RMLP&RLinear (2023a) and
Transformer-based models: iTransformer (2024), PatchTST (2023), Crossformer (2023), FED-
former (2022b), Stationary (2022c), Autoformer (2021), and Informer (2021b). These models
have demonstrated superior capabilities in temporal modeling and provide a robust framework
for comparative analysis. For specific tasks, TiDE (2023b), FiLM (2022a), N-HiTS (2023), and
N-BEATS (2019) address long- or short-term forecasting; Anomaly Transformer (2022) and MTS-
Mixers (2023b) target anomaly detection; while Rocket (2023a), LSTNet (2018c), LSSL (2022a),
and Flowformer (2022) are utilized for classification. Few/zero-shot forecasting tasks employ ETS-
former (2022), Reformer (2020), and LLMTime (2023).

Metric Details. Regarding metrics, we utilize the mean square error (MSE) and mean absolute
error (MAE) for long-term forecasting. In the case of short-term forecasting, we follow the metrics
of SCINet (Liu et al., 2022a) on the PeMS datasets, including mean absolute error (MAE), mean
absolute percentage error (MAPE), root mean squared error (RMSE). As for the M4 datasets, we
follow the methodology of N-BEATS (Oreshkin et al., 2019) and implement the symmetric mean
absolute percentage error (SMAPE), mean absolute scaled error (MASE), and overall weighted
average (OWA) as metrics. It is worth noting that OWA is a specific metric utilized in the M4
competition. The calculations of these metrics are:

RMSE = (

F∑
i=1

(Xi − X̂i)
2)

1
2 , MAE =

F∑
i=1

|Xi − X̂i|,

SMAPE =
200

F

F∑
i=1

|Xi − X̂i|
|Xi|+ |X̂i|

, MAPE =
100

F

F∑
i=1

|Xi − X̂i|
|Xi|

,

MASE =
1

F

F∑
i=1

|Xi − X̂i|
1

F−s

∑F
j=s+1 |Xj −Xj−s|

, OWA =
1

2

[
SMAPE

SMAPENaïve2
+

MASE
MASENaïve2

]
,

where s is the periodicity of the data. X, X̂ ∈ RF×C are the ground truth and prediction results of
the future with F time pints and C dimensions. Xi means the i-th future time point.

Experiment Details. All experiments were run three times, implemented in Pytorch (Paszke et al.,
2019), and conducted on multi NVIDIA A100 80GB GPUs. We set the initial learning rate as a range
from 10−3 to 10−1 and used the ADAM optimizer (Kingma & Ba, 2015) with L2 loss for model
optimization. And the batch size was set to be 512. We set the number of resolutions K to range
from 1 to 5. Moreover, we set the number of MixerBlocks L to range from 1 to 3. We choose the
number of scales M according to the time series length to balance performance and efficiency. To
handle longer series in long-term forecasting, we usually set M to 3. As for short-term forecasting
with limited series length, we usually set M to 1. We pretrained the model with learning rate decay
after linear warm-up. For baselines under the same experimental settings as our main study, we
directly report the results from TimesNet (Wu et al., 2023). In scenarios where experimental settings
differed or tasks were not previously implemented, we reproduced the baseline results referring to
the benchmark framework from the Time-Series Library 2. The source code and pretrained model
will be provided in GitHub (https://github.com/kwuking/TimeMixer).

2https://github.com/thuml/Time-Series-Library
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B DETAILS OF MODEL DESIGN

In this section, we present a comprehensive exposition of our model design, encompassing five key
components: channel mixing and embedding (input projection), multi-resolution time imaging, time
image decomposition, multi-scale mixing, and multi-resolution mixing. To enhance comprehension,
we provide visual illustrations that afford an intuitive understanding of our structural design.

Channel Mixing and Embedding. We employ a channel mixing approach to effectively cap-
ture inter-variable dependencies crucial for uncovering rich temporal patterns. Our method first
applies variate-wise self-attention, as formulated in Equation 2, at the coarsest temporal scale
xM ∈ R⌊ T

2M
⌋×C , ensuring the preservation of global context. This mechanism fuses information

across variables, enabling the extraction of inter-variable patterns. Subsequently, the multivariate time
series is projected into an embedding space via the function Embed(·) : R⌊ T

2M
⌋×C → R⌊ T

2M
⌋×dmodel ,

capturing temporal structure at different scales and facilitating comprehensive pattern learning across
the input time series.

Time Variate-wise Attention
for Channel Mixing Embedding

𝐸𝑚𝑏𝑒𝑑

Va
lu

e

Channel 1

Channel 2

Channel 3

Channel 4

𝜽

Figure 5: Illustration of the channel mixing approach and embedding function in the input projection
process. This process highlights how variate-wise self-attention captures inter-variable dependencies
at the coarsest scale, followed by the projection into an embedding space.

Multi-resolution Time Imaging. Starting from the coarsest scale xl
M , the fast fourier transform

(FFT) is applied to extract the top-K frequencies, corresponding to dominant periods in the series.
These top-K periods, which capture global patterns, are applied across all scales. At each scale m, the
input time series xl

m is reshaped into K time images by padding the series according to the identified
periods and reshaping it (Equation. 6). The size of each image, denoted as z(l,k)m , is pk × fm,k. As
shown in Figure 6, this process produces multi-resolution time images that capture both temporal and
frequency domain patterns, enabling the extraction of comprehensive periodic structures.

Figure 6: Multi-resolution Time Imaging. We illustrate the generation of multi-resolution images
using the top-3 frequencies and three scales.

Time Image Decomposition. As depicted in Figure 7. each time image z
(l,k)
m ∈ Rpk×fm,k×dmodel

corresponds to a specific scale and period. The columns represent time segments within each period,
while the rows track consistent points across periods. This structure allows us to apply column-axis
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Figure 7: Time Image Decomposition. We demonstrate how the identified periods are used to convert
the time series into the time image, and how dual-axis attention is applied to extract both seasonal
and trend patterns from this image.

attention, capturing seasonality within a period, and row-axis attention, capturing trend across periods.
Column-axis attention processes temporal dependencies within periods using 2D convolution to
compute the queries, keys, and values (Qcol,Kcol,Vcol ∈ Rfm,k×dmodel ), with the row axis transposed
into the batch dimension. Similarly, row-axis attention employs 2D convolution to compute queries,
keys, and values (Qrow,Krow,Vrow ∈ Rpk×dmodel ), where the column axis is transposed into the
batch dimension. By leveraging this dual-axis attention, we disentangle seasonality and trends for
each image. The seasonal image s

(l,k)
m and the trend image t

(l,k)
m effectively preserve key patterns,

facilitating the extraction of long-range dependencies and enabling clearer temporal analysis.

Multi-scale Mixing. The Figure 8 illustrates the process of multi-scale mixing as formalized
in Equations 8 and 9. In this approach, we hierarchically mix the multi-scale seasonal and trend
patterns. For seasonal patterns, the mixing begins at the finest scale s

(l,k)
0 and proceeds in a bottom-

up fashion through successive scales. Conversely, for trend patterns, the mixing starts from the
coarsest scale t

(l,k)
M and flows top-down to finer scales. This hierarchical flow enables effective

integration of both long-term and short-term patterns, allowing finer patterns to be aggregated into
seasonal representations, while coarser trend information is propagated downward to refine trend
representations at finer scales. The effectiveness of this multi-scale mixing is further demonstrated by
the representation analysis provided in Appendix D.
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Figure 8: Multi-Scale Mixing. We illustrate the hierarchical mixing of multi-scale seasonal and trend
images. Each scale’s output (red symbol) integrates all preceding information. 2D convolutions
are used in the bottom-up path, while transposed convolutions are applied in the top-down path to
accommodate changes in size.
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Scale 𝑀 ⨁ Embedding (scale 𝑀)

Scale 0 ⨁ Embedding (scale 0)

…

FFT weights

FFT weights

Figure 9: Multi-resolution Mixing. At each scale, K period-based representations are fused after
season-trend mixing to produce M scale-specific embeddings, which can be further ensembled for
the final output.

Multi-resolution Mixing. As shown in Figure 9, at each scale m, the K period-based representa-
tions, denoted as z(l,k)m , are first weighted by their corresponding FFT amplitudes Afk , which capture
the importance of each period, and then summed to produce the final representation for that scale.
This process, repeated across all scales, yields a comprehensive embedding for each scale, capturing
multi-resolution information.

C ADDITIONAL ABLATION STUDIES

To verify the effectiveness of each component of TIMEMIXER++, we conducted a detailed ablation
study by performing experiments that remove individual components (w/o) across various tasks, in-
cluding univariate short-term forecasting, multivariate short-term forecasting, and anomaly detection.
Based on the Table 11 12 provided, the conclusions are as follows: TIMEMIXER++ outperforms
other configurations in short-term forecasting with the lowest average SMAPE and MAPE scores,
indicating the importance of each component. As for PEMS datasets with large variable dimensions,
the most significant improvement is observed with channel mixing, showing a 14.95% improvement.
In anomaly detection, TIMEMIXER++ achieves the highest average F1 score, with time image decom-
position contributing the most to performance, showing a 9.8% improvement. Other components like
channel mixing, multi-scale mixing, and multi-resolution mixing also enhance performance. Overall,
each component plays a crucial role in the effectiveness of TIMEMIXER++ for all tasks.

Table 11: SMAPE&MAPE for short-term forecasting across 5 benchmarks, evaluated with different
model components.

M4 PEMS03 PEMS04 PEMS07 PEMS08 Average Promotion

TIMEMIXER++ 11.45 13.43 11.34 7.32 8.21 10.35 -
w/o channel mixing 11.44 15.57 13.31 9.74 10.78 12.17 14.95%
w/o time image decompostion 12.37 15.59 12.97 9.65 9.97 12.11 14.51%
w/o multi-scale mixing 11.98 14.97 13.02 9.17 9.69 11.79 12.06%
w/o multi-resolution mixing 11.87 15.02 13.14 8.72 9.53 11.68 11.23%

Table 12: F1 score for anomaly detection across 5 benchmarks, evaluated with different model
components.

SMD MSL SMAP SWAT PSM Average Promotion

TIMEMIXER++ 86.50 85.82 73.10 94.64 97.60 87.47 -
w/o channel mixing 84.51 74.03 70.91 90.41 96.17 83.21 4.94%
w/o time image decompostion 81.21 72.43 66.02 82.41 92.53 78.92 9.84%
w/o multi-scale mixing 82.37 75.12 92.79 86.48 94.53 86.26 1.46%
w/o multi-resolution mixing 83.37 79.24 77.49 88.46 96.02 86.26 2.99%
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D ADDITIONAL REPRESENTATION ANALYSIS

To evaluate the representational capabilities of TIMEMIXER++, we selected three datasets: Traffic,
Electricity, and ETTm1, each exhibiting distinct periodic and trend characteristics. We conducted
comprehensive analyses across various scales and resolutions. Initially, 1D convolution was employed
to downsample the original time series, yielding different scales. Subsequently, frequency spectrum
analysis was utilized to identify the primary frequency components within the time series, selecting
the top three components by magnitude as the primary resolutions. This process transformed the
original time series into a multi-scale time image. Time image decomposition was then applied to
disentangle seasonality and trends from the original time image, resulting in distinct seasonality and
trend images. Hierarchical mixing was performed to facilitate interactions across different scales.
The visualization of the resulting representations is depicted in Figures 10, 11, and 13.
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Figure 10: Visualization of representation on Time Image under Traffic dataset. We provide different
scales and different resolutions in Time Image, seasonality, and trend.

As shown in the Figure 10, we visualized the representation of the time series in the Traffic dataset
across three different scales (length: 192, 96, 48) and three resolutions (periods: 12, 8, 6; frequencies:
16, 24, 32). From the visualization, we can observe that we successfully disentangled the seasonality
and trend within the traffic time series. The seasonal patterns vary across different scales and
resolutions: at a fine scale (scale: 0), higher frequency seasonality (period:32; freq: 6) is more
prominent, while at a coarse scale (scale: 2), lower frequency seasonality (period:16; freq: 12) is
more evident. Additionally, we successfully isolated the upward trend across all scales and resolutions.
This demonstrates the strong representational capability of TIMEMIXER++, highlighting its potential
as a general time series pattern machine.

We can observe the visualization of the representation of the ETTm1 dataset, which exhibits multi-
period characteristics and a downward trend, in Figure 11. We obtained findings consistent with
previous observations: higher frequency components are more prominent at a fine scale, while lower
frequency components are more easily observed at a coarse scale. This observation aligns perfectly
with theoretical intuition (Harti, 1993), as the fine scale retains more detailed information, such as
higher frequency seasonality, from a microscopic perspective, whereas the coarse scale provides
a macroscopic view where more low-frequency global information is more evident. Moreover, it
is important to note that the powerful representational capability of TIMEMIXER++ allows it to
accurately capture the downward trend. These conclusions further underscore the necessity of our
multi-scale and multi-resolution design.
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Figure 11: Visualization of representation on Time Image under ETTm1 dataset. We provide different
scales and different resolutions in Time Image, seasonality, and trend.

In Figure 13, we present the visualization of the representation of the Electricity dataset. A prominent
feature is that the trend is time-varying, initially declining and then rising over time. TIMEMIXER++
successfully captures this time-varying characteristic in its representation. From the figure, we can
observe the gradient features in the trend image, which undoubtedly demonstrate the powerful repre-
sentational capability of the TIMEMIXER++. Especially when combined with our multi-scale and
multi-resolution design, the representation exhibits hierarchical performance across different scales
and resolutions. This greatly enhances the richness of the representation, making TIMEMIXER++
adept at handling universal predictive analysis.

Through the preceding analyses, it is evident that the paradigm of multi-scale time series modeling
(Mozer, 1991) and multi-resolution analysis (Harti, 1993) endows TIMEMIXER++ with robust
representational capabilities. This enables proficient handling of high-frequency, low-frequency,
seasonal, and trend components within time series data. Such capabilities are pivotal to achieving
state-of-the-art performance across diverse and comprehensive time series analysis tasks, underscoring
its essential role as a time series pattern machine.

As shown in Figure 12, TIMEMIXER++ consistently excels across all four tasks, achieving state-of-
the-art performance in each scenario. The model effectively adapts its representation transformations
to meet the demands of different tasks. Whether preserving representations or enabling significant

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98
CKA Similarity

0.24

0.26

0.28

0.30

0.32

0.34

M
SE r = -0.81

TimeMixer++
Autoformer
Fedformer
Stationary

Tide
Crossformer
iTransformer
PatchTST

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
CKA Similarity

0.08

0.10

0.12

0.14

0.16

0.18

M
SE

r = 0.30

TimeMixer++
TimesNet
TIDE
Crossformer

PatchTST
iTransformer
MICN
Fedformer

0.750 0.775 0.800 0.825 0.850 0.875 0.900
CKA Similarity

80

82

84

86

88

90

Ac
cu

ra
cy r = 0.88

TimeMixer++
TimesNet
PatchTST
MICN
iTransformer

Flowformer
Crossformer
Fedformer
MTS-Mixer

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98
CKA Similarity

72.5

75.0

77.5

80.0

82.5

85.0

87.5

F1
-S

co
re r = -0.90

TimeMixer++
iTransformer
Crossformer
Reformer
Informer

PatchTST
DLinear
MICN
TimesNet
MTS-Mixer

(a) Forecasting (Weather input-96-predict-336) (b) Imputation (Electricity) (c) Classification (PEMS-SF) (d) Anomaly Detection (SMD)

Figure 12: Representation analysis in four tasks. For each model, the centered kernel alignment
(CKA) similarity is computed between representations from the first and the last layers.
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Figure 13: Visualization of representation on Time Image under Electricity dataset. We provide
different scales and different resolutions in Time Image, seasonality, and trend.

changes across layers, TimeMixer++ demonstrates its versatility and robustness in handling a wide
range of time-series analysis challenges.

E EFFICIENCY ANALYSIS

We comprehensively compare the forecasting and imputation in performance, training speed,
and memory footprint of the following models: TIMEMIXER++, iTransformer(Liu et al., 2024),
PatchTST(Nie et al., 2023), TimeMixer(Wang et al., 2024b), TIDE(Das et al., 2023b), Fed-
former(Zhou et al., 2022b), TimesNet(Wu et al., 2023), MICN(Wang et al., 2023a), and SCINet(Liu
et al., 2022a).

Figure 14: Model efficiency comparison under imputation and long-term forecasting.

As shown in Figure 14, TIMEMIXER++ achieves a comparable balance among memory footprint,
training time, and performance in both the Weather imputation and long-term forecasting tasks on
ETTm1, delivering the MSE scores.
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F HYPERPARAMTER SENSITIVITY

We conduct a hyperparameter sensitivity analysis focusing on the four important hyperparameters
within TIMEMIXER++: namely, the number of scales M , the number of layers L, the time series
input length T , and the selection of the top K periods with the highest amplitudes in the spectrogram.
The related findings are presented in Figure 15. Based on our analysis, we have made the following
observations: (1) As the number of scales increases, the MSE generally decreases. Increasing
the number of scales benefits model performance across all prediction lengths, with noticeable
improvements observed between 3 and 4 scales. Considering overall performance and efficiency, the

Figure 15: Analysis of hyperparameter sensitivity on ETTm1 dataset.

marginal benefits of increasing M significantly diminish, so we can set M from 1 to 3. (2) Adding
more layers typically reduces MSE, particularly between 1 and 2 layers where the change is most
pronounced. For shorter prediction lengths (e.g., predict-96), increasing the number of layers results
in more significant performance gains. (3) Increasing the selection of Top-K generally leads to a
reduction in MSE. For longer prediction lengths, the choice of Top-K has a more substantial impact
on the results. (4) As the input length increases, the MSE gradually decreases. Longer input lengths
help improve prediction accuracy across all prediction lengths, which indicates that using longer
inputs may achieve better predictive performance for the TIMEMIXER++.

G ERROR BARS

In this paper, we repeat all the experiments three times. Here we report the standard deviation of our
model and the second best model, as well as the statistical significance test in Table 13, 14, 15.
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Table 13: Standard deviation and statistical tests for our TIMEMIXER++ and second-best method
(iTransformer) on ETT, Weather, Solar-Energy, Electricity and Traffic datasets.

Model TimeMixer++ iTransformer (2024) Confidence

Dataset MSE MAE MSE MAE Level

Weather 0.226± 0.008 0.262± 0.007 0.258± 0.009 0.278± 0.006 99%
Solar-Energy 0.203± 0.027 0.238± 0.026 0.233± 0.009 0.262± 0.011 95%
Electricity 0.165± 0.017 0.253± 0.019 0.178± 0.002 0.270± 0.017 99%
Traffic 0.416± 0.027 0.264± 0.030 0.428± 0.008 0.282± 0.027 95%
ETTh1 0.419± 0.023 0.432± 0.021 0.454± 0.004 0.447± 0.007 99%
ETTh2 0.339± 0.020 0.380± 0.019 0.383± 0.004 0.407± 0.007 95%
ETTm1 0.369± 0.019 0.378± 0.026 0.407± 0.004 0.410± 0.009 99%
ETTm2 0.269± 0.021 0.320± 0.019 0.288± 0.010 0.332± 0.003 95%

Table 14: Standard deviation and statistical tests for our TimeMixer++ method and second-best
method (TimeMixer) on PEMS dataset.

Model TimeMixer++ TimeMixer (2024b) Confidence

Dataset MAE MAPE RMSE MAE MAPE RMSE Level

PEMS03 13.99± 0.271 13.43± 0.292 24.03± 0.269 14.63± 0.471 14.54± 0.502 23.28± 0.468 99%
PEMS04 17.46± 0.951 11.34± 0.970 28.83± 0.916 19.21± 0.511 12.53± 0.523 30.92± 0.519 95%
PEMS07 18.38± 0.991 7.32± 0.977 31.75± 0.890 20.57± 0.372 8.62± 0.399 33.59± 0.375 95%
PEMS08 13.81± 0.827 8.21± 0.836 23.62± 0.877 15.22± 0.311 9.67± 0.332 24.26± 0.317 99%

Table 15: Standard deviation and statistical tests for our TimeMixer++ method and second-best
method (TimesMixer) on M4 dataset.

Model TimeMixer++ TimesMixer (2024b) Confidence

Dataset SMAPE MASE OWA SMAPE MASE OWA Level

Yearly 13.179± 0.021 2.934± 0.012 0.769± 0.001 13.206± 0.121 2.916± 0.022 0.776± 0.002 95%
Quarterly 9.755± 0.001 1.159± 0.005 0.865± 0.009 9.996± 0.101 1.166± 0.015 0.825± 0.008 95%
Monthly 12.432± 0.015 0.904± 0.012 0.841± 0.001 12.605± 0.115 0.919± 0.011 0.869± 0.003 95%
Others 4.698± 0.114 2.931± 0.027 1.01± 0.011 4.564± 0.114 3.115± 0.027 0.982± 0.011 99%
Averaged 11.448± 0.007 1.487± 0.010 0.821± 0.002 11.723± 0.011 1.559± 0.022 0.840± 0.001 99%

H FULL RESULTS

Due to the space limitation of the main text, we place the full results of all experiments in the following:
long-term forecasting in Table 16, univariate short-term forecasting in Table 17, multivariate short-
term forecasting in Table 18, classification in Table 19 and anomaly detection in Table 20.

I SHOWCASES

To assess the performance of various models, we perform a qualitative comparison by visualiz-
ing the final dimension of the forecasting results derived from the test set of each dataset (Fig-
ures 16, 17, 18, 19, 20, 22, 23, 24, 25, 21). Among the various models, TIMEMIXER++ exhibits
superior performance.

J BROADER IMPACT

Real-world applications TIMEMIXER++ has achieved state-of-the-art (SOTA) performance as
a general time series pattern machine in various time series analysis tasks, including forecasting,
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Table 16: Full results for the long-term forecasting task. We compare extensive competitive
models under different prediction lengths. Avg is averaged from all four prediction lengths, that
{96, 192, 336, 720}.

Models TimeMixer++ TimeMixer iTransformer PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer
(Ours) (2024b) 2024 2023 2023 2023a 2023 2023 2022a 2022b 2022c 2021

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.155 0.205 0.163 0.209 0.174 0.214 0.186 0.227 0.195 0.271 0.202 0.261 0.172 0.220 0.195 0.252 0.221 0.306 0.217 0.296 0.173 0.223 0.266 0.336
192 0.201 0.245 0.208 0.250 0.221 0.254 0.234 0.265 0.209 0.277 0.242 0.298 0.219 0.261 0.237 0.295 0.261 0.340 0.276 0.336 0.245 0.285 0.307 0.367
336 0.237 0.265 0.251 0.287 0.278 0.296 0.284 0.301 0.273 0.332 0.287 0.335 0.280 0.306 0.282 0.331 0.309 0.378 0.339 0.380 0.321 0.338 0.359 0.395
720 0.312 0.334 0.339 0.341 0.358 0.347 0.356 0.349 0.379 0.401 0.351 0.386 0.365 0.359 0.345 0.382 0.377 0.427 0.403 0.428 0.414 0.410 0.419 0.428

Avg 0.226 0.262 0.240 0.271 0.258 0.278 0.265 0.285 0.264 0.320 0.271 0.320 0.259 0.287 0.265 0.315 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382

So
la

r-
E

ne
rg

y 96 0.171 0.231 0.189 0.259 0.203 0.237 0.265 0.323 0.232 0.302 0.312 0.399 0.373 0.358 0.290 0.378 0.237 0.344 0.286 0.341 0.321 0.380 0.456 0.446
192 0.218 0.263 0.222 0.283 0.233 0.261 0.288 0.332 0.371 0.410 0.339 0.416 0.397 0.376 0.320 0.398 0.280 0.380 0.291 0.337 0.346 0.369 0.588 0.561
336 0.212 0.269 0.231 0.292 0.248 0.273 0.301 0.339 0.495 0.515 0.368 0.430 0.420 0.380 0.353 0.415 0.304 0.389 0.354 0.416 0.357 0.387 0.595 0.588
720 0.212 0.270 0.223 0.285 0.249 0.275 0.295 0.336 0.526 0.542 0.370 0.425 0.420 0.381 0.357 0.413 0.308 0.388 0.380 0.437 0.375 0.424 0.733 0.633

Avg 0.203 0.238 0.216 0.280 0.233 0.262 0.287 0.333 0.406 0.442 0.347 0.417 0.403 0.374 0.330 0.401 0.282 0.375 0.328 0.383 0.350 0.390 0.586 0.557

E
le

ct
ri

ci
ty

96 0.135 0.222 0.153 0.247 0.148 0.240 0.190 0.296 0.219 0.314 0.237 0.329 0.168 0.272 0.210 0.302 0.247 0.345 0.193 0.308 0.169 0.273 0.201 0.317
192 0.147 0.235 0.166 0.256 0.162 0.253 0.199 0.304 0.231 0.322 0.236 0.330 0.184 0.322 0.210 0.305 0.257 0.355 0.201 0.315 0.182 0.286 0.222 0.334
336 0.164 0.245 0.185 0.277 0.178 0.269 0.217 0.319 0.246 0.337 0.249 0.344 0.198 0.300 0.223 0.319 0.269 0.369 0.214 0.329 0.200 0.304 0.231 0.443
720 0.212 0.310 0.225 0.310 0.225 0.317 0.258 0.352 0.280 0.363 0.284 0.373 0.220 0.320 0.258 0.350 0.299 0.390 0.246 0.355 0.222 0.321 0.254 0.361

Avg 0.165 0.253 0.182 0.272 0.178 0.270 0.216 0.318 0.244 0.334 0.251 0.344 0.192 0.304 0.225 0.319 0.268 0.365 0.214 0.327 0.193 0.296 0.227 0.338

Tr
af

fic

96 0.392 0.253 0.462 0.285 0.395 0.268 0.526 0.347 0.644 0.429 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.612 0.338 0.613 0.388
192 0.402 0.258 0.473 0.296 0.417 0.276 0.522 0.332 0.665 0.431 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.613 0.340 0.616 0.382
336 0.428 0.263 0.498 0.296 0.433 0.283 0.517 0.334 0.674 0.420 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.618 0.328 0.622 0.337
720 0.441 0.282 0.506 0.313 0.467 0.302 0.552 0.352 0.683 0.424 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.653 0.355 0.660 0.408

Avg 0.416 0.264 0.484 0.297 0.428 0.282 0.529 0.341 0.667 0.426 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340 0.628 0.379

E
xc

ha
ng

e 96 0.085 0.214 0.090 0.235 0.086 0.206 0.088 0.205 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.267 0.396 0.148 0.278 0.111 0.237 0.197 0.323
192 0.175 0.313 0.187 0.343 0.177 0.299 0.176 0.299 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.351 0.459 0.271 0.315 0.219 0.335 0.300 0.369
336 0.316 0.420 0.353 0.473 0.331 0.417 0.301 0.397 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 1.324 0.853 0.460 0.427 0.421 0.476 0.509 0.524
720 0.851 0.689 0.934 0.761 0.847 0.691 0.901 0.714 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.058 0.797 1.195 0.695 1.092 0.769 1.447 0.941

Avg 0.357 0.391 0.391 0.453 0.360 0.403 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.461 0.454 0.613 0.539

E
T

T
h1

96 0.361 0.403 0.375 0.400 0.386 0.405 0.460 0.447 0.423 0.448 0.479 0.464 0.384 0.402 0.397 0.412 0.654 0.599 0.395 0.424 0.513 0.491 0.449 0.459
192 0.416 0.441 0.429 0.421 0.441 0.512 0.477 0.429 0.471 0.474 0.525 0.492 0.436 0.429 0.446 0.441 0.719 0.631 0.469 0.470 0.534 0.504 0.500 0.482
336 0.430 0.434 0.484 0.458 0.487 0.458 0.546 0.496 0.570 0.546 0.565 0.515 0.491 0.469 0.489 0.467 0.778 0.659 0.530 0.499 0.588 0.535 0.521 0.496
720 0.467 0.451 0.498 0.482 0.503 0.491 0.544 0.517 0.653 0.621 0.594 0.558 0.521 0.500 0.513 0.510 0.836 0.699 0.598 0.544 0.643 0.616 0.514 0.512

Avg 0.419 0.432 0.447 0.440 0.454 0.447 0.516 0.484 0.529 0.522 0.541 0.507 0.458 0.450 0.461 0.457 0.747 0.647 0.498 0.484 0.570 0.537 0.496 0.487

E
T

T
h2

96 0.276 0.328 0.289 0.341 0.297 0.349 0.308 0.355 0.745 0.584 0.400 0.440 0.340 0.374 0.340 0.394 0.707 0.621 0.358 0.397 0.476 0.458 0.346 0.388
192 0.342 0.379 0.372 0.392 0.380 0.400 0.393 0.405 0.877 0.656 0.528 0.509 0.402 0.414 0.482 0.479 0.860 0.689 0.429 0.439 0.512 0.493 0.456 0.452
336 0.346 0.398 0.386 0.414 0.428 0.432 0.427 0.436 1.043 0.731 0.643 0.571 0.452 0.452 0.591 0.541 1.000 0.744 0.496 0.487 0.552 0.551 0.482 0.486
720 0.392 0.415 0.412 0.434 0.427 0.445 0.436 0.450 1.104 0.763 0.874 0.679 0.462 0.468 0.839 0.661 1.249 0.838 0.463 0.474 0.562 0.560 0.515 0.511

Avg 0.339 0.380 0.364 0.395 0.383 0.407 0.391 0.411 0.942 0.684 0.611 0.550 0.414 0.427 0.563 0.519 0.954 0.723 0.437 0.449 0.526 0.516 0.450 0.459

E
T

T
m

1

96 0.310 0.334 0.320 0.357 0.334 0.368 0.352 0.374 0.404 0.426 0.364 0.387 0.338 0.375 0.346 0.374 0.418 0.438 0.379 0.419 0.386 0.398 0.505 0.475
192 0.348 0.362 0.361 0.381 0.390 0.393 0.374 0.387 0.450 0.451 0.398 0.404 0.374 0.387 0.382 0.391 0.439 0.450 0.426 0.441 0.459 0.444 0.553 0.496
336 0.376 0.391 0.390 0.404 0.426 0.420 0.421 0.414 0.532 0.515 0.428 0.425 0.410 0.411 0.415 0.415 0.490 0.485 0.445 0.459 0.495 0.464 0.621 0.537
720 0.440 0.423 0.454 0.441 0.491 0.459 0.462 0.449 0.666 0.589 0.487 0.461 0.478 0.450 0.473 0.451 0.595 0.550 0.543 0.490 0.585 0.516 0.671 0.561

Avg 0.369 0.378 0.381 0.395 0.407 0.410 0.406 0.407 0.513 0.495 0.419 0.419 0.400 0.406 0.404 0.408 0.485 0.481 0.448 0.452 0.481 0.456 0.588 0.517

E
T

T
m

2

96 0.170 0.245 0.175 0.258 0.180 0.264 0.183 0.270 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.293 0.286 0.377 0.203 0.287 0.192 0.274 0.255 0.339
192 0.229 0.291 0.237 0.299 0.250 0.309 0.255 0.314 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.361 0.399 0.445 0.269 0.328 0.280 0.339 0.281 0.340
336 0.303 0.343 0.298 0.340 0.311 0.348 0.309 0.347 0.597 0.542 0.377 0.422 0.321 0.351 0.382 0.429 0.637 0.591 0.325 0.366 0.334 0.361 0.339 0.372
720 0.373 0.399 0.391 0.396 0.412 0.407 0.412 0.404 1.730 1.042 0.558 0.524 0.408 0.403 0.558 0.525 0.960 0.735 0.421 0.415 0.417 0.413 0.433 0.432

Avg 0.269 0.320 0.275 0.323 0.288 0.332 0.290 0.334 0.757 0.610 0.358 0.404 0.291 0.333 0.354 0.402 0.954 0.723 0.305 0.349 0.306 0.347 0.327 0.371
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Table 17: Short-term forecasting results in the M4 dataset with a single variate. All prediction lengths
are in [6, 48]. A lower SMAPE, MASE or OWA indicates a better prediction. ∗. in the Transformers
indicates the name of ∗former. Stationary means the Non-stationary Transformer.

Models TimeMixer++ TimeMixer iTransformer TiDE TimesNet N-HiTS N-BEATS∗ PatchTST MICN FiLM LightTS DLinear FED. Stationary Auto.
(Ours) (2024b) (2024) (2023a) (2023) (2023) (2019) (2023) (2023a) (2022a) (2022a) (2023) (2022b) (2022c) (2021)

Y
ea

rl
y SMAPE 13.179 13.206 13.923 15.320 13.387 13.418 13.436 16.463 25.022 17.431 14.247 16.965 13.728 13.717 13.974

MASE 2.934 2.916 3.214 3.540 2.996 3.045 3.043 3.967 7.162 4.043 3.109 4.283 3.048 3.078 3.134
OWA 0.769 0.776 0.830 0.910 0.786 0.793 0.794 1.003 1.667 1.042 0.827 1.058 0.803 0.807 0.822

Q
ua

rt
er

ly SMAPE 9.755 9.996 10.757 11.830 10.100 10.202 10.124 10.644 15.214 12.925 11.364 12.145 10.792 10.958 11.338
MASE 1.159 1.166 1.283 1.410 1.182 1.194 1.169 1.278 1.963 1.664 1.328 1.520 1.283 1.325 1.365
OWA 0.865 0.825 0.956 1.050 0.890 0.899 0.886 0.949 1.407 1.193 1.000 1.106 0.958 0.981 1.012

M
on

th
ly SMAPE 12.432 12.605 13.796 15.180 12.670 12.791 12.677 13.399 16.943 15.407 14.014 13.514 14.260 13.917 13.958

MASE 0.904 0.919 1.083 1.190 0.933 0.969 0.937 1.031 1.442 1.298 1.053 1.037 1.102 1.097 1.103
OWA 0.841 0.869 0.987 1.090 0.878 0.899 0.880 0.949 1.265 1.144 0.981 0.956 1.012 0.998 1.002

O
th

er
s SMAPE 4.698 4.564 5.569 6.120 4.891 5.061 4.925 6.558 41.985 7.134 15.880 6.709 4.954 6.302 5.485

MASE 2.931 3.115 3.940 4.330 3.302 3.216 3.391 4.511 62.734 5.09 11.434 4.953 3.264 4.064 3.865
OWA 1.01 0.982 1.207 1.330 1.035 1.040 1.053 1.401 14.313 1.553 3.474 1.487 1.036 1.304 1.187

W
ei

gh
te

d
A

ve
ra

ge SMAPE 11.448 11.723 12.684 13.950 11.829 11.927 11.851 13.152 19.638 14.863 13.525 13.639 12.840 12.780 12.909
MASE 1.487 1.559 1.764 1.940 1.585 1.613 1.559 1.945 5.947 2.207 2.111 2.095 1.701 1.756 1.771
OWA 0.821 0.840 0.929 1.020 0.851 0.861 0.855 0.998 2.279 1.125 1.051 1.051 0.918 0.930 0.939

∗ The original paper of N-BEATS (2019) adopts a special ensemble method to promote the performance. For fair
comparisons, we remove the ensemble and only compare the pure forecasting models.

Table 18: Short-term forecasting results in the PEMS datasets with multiple variates. All input lengths
are 96 and prediction lengths are 12. A lower MAE, MAPE or RMSE indicates a better prediction.

Models TimeMixer++ TimeMixer iTransformer TiDE SCINet Crossformer PatchTST TimesNet MICN DLinear FEDformer Stationary Autoformer
(Ours) (2024b) (2024) (2023a) (2022a) (2023) (2023) (2023) (2023a) (2023) (2022b) (2022c) (2021)

PEMS03
MAE 13.99 14.63 16.72 18.39 15.97 15.64 18.95 16.41 15.71 19.70 19.00 17.64 18.08

MAPE 13.43 11.54 15.81 17.39 15.89 15.74 17.29 15.17 15.67 18.35 18.57 17.56 18.75
RMSE 24.03 23.28 27.81 30.59 25.20 25.56 30.15 26.72 24.55 32.35 30.05 28.37 27.82

PEMS04
MAE 17.46 19.21 21.81 23.99 20.35 20.38 24.86 21.63 21.62 24.62 26.51 22.34 25.00

MAPE 11.34 12.53 13.42 14.76 12.84 12.84 16.65 13.15 13.53 16.12 16.76 14.85 16.70
RMSE 28.83 30.92 33.91 37.30 32.31 32.41 40.46 34.90 34.39 39.51 41.81 35.47 38.02

PEMS07
MAE 18.38 20.57 23.01 25.31 22.79 22.54 27.87 25.12 22.28 28.65 27.92 26.02 26.92

MAPE 7.32 8.62 10.02 11.02 9.41 9.38 12.69 10.60 9.57 12.15 12.29 11.75 11.83
RMSE 31.75 33.59 35.56 39.12 35.61 35.49 42.56 40.71 35.40 45.02 42.29 42.34 40.60

PEMS08
MAE 13.81 15.22 17.94 19.73 17.38 17.56 20.35 19.01 17.76 20.26 20.56 19.29 20.47

MAPE 8.21 9.67 10.93 12.02 10.80 10.92 13.15 11.83 10.76 12.09 12.41 12.21 12.27
RMSE 23.62 24.26 27.88 30.67 27.34 27.21 31.04 30.65 27.26 32.38 32.97 38.62 31.52

Table 19: Full results for the anomaly detection task. The P, R and F1 represent the precision, recall
and F1-score (%) respectively. F1-score is the harmonic mean of precision and recall. A higher value
of P, R and F1 indicates a better performance.

Datasets SMD MSL SMAP SWaT PSM Avg F1

Metrics P R F1 P R F1 P R F1 P R F1 P R F1 (%)

LSTM (1997) 78.52 65.47 71.41 78.04 86.22 81.93 91.06 57.49 70.48 78.06 91.72 84.34 69.24 99.53 81.67 77.97
Transformer (2017) 83.58 76.13 79.56 71.57 87.37 78.68 89.37 57.12 69.70 68.84 96.53 80.37 62.75 96.56 76.07 76.88
LogTrans (2019) 83.46 70.13 76.21 73.05 87.37 79.57 89.15 57.59 69.97 68.67 97.32 80.52 63.06 98.00 76.74 76.60
TCN (2019) 84.06 79.07 81.49 75.11 82.44 78.60 86.90 59.23 70.45 76.59 95.71 85.09 54.59 99.77 70.57 77.24
Reformer (2020) 82.58 69.24 75.32 85.51 83.31 84.40 90.91 57.44 70.40 72.50 96.53 82.80 59.93 95.38 73.61 77.31
Informer (2021a) 86.60 77.23 81.65 81.77 86.48 84.06 90.11 57.13 69.92 70.29 96.75 81.43 64.27 96.33 77.10 78.83
Anomaly∗ (2022) 88.91 82.23 85.49 79.61 87.37 83.31 91.85 58.11 71.18 72.51 97.32 83.10 68.35 94.72 79.40 80.50
Pyraformer (2022b) 85.61 80.61 83.04 83.81 85.93 84.86 92.54 57.71 71.09 87.92 96.00 91.78 71.67 96.02 82.08 82.57
Autoformer (2021) 88.06 82.35 85.11 77.27 80.92 79.05 90.40 58.62 71.12 89.85 95.81 92.74 99.08 88.15 93.29 84.26
LSSL (2022b) 78.51 65.32 71.31 77.55 88.18 82.53 89.43 53.43 66.90 79.05 93.72 85.76 66.02 92.93 77.20 76.74
Stationary (2022c) 88.33 81.21 84.62 68.55 89.14 77.50 89.37 59.02 71.09 68.03 96.75 79.88 97.82 96.76 97.29 82.08
DLinear (2023) 83.62 71.52 77.10 84.34 85.42 84.88 92.32 55.41 69.26 80.91 95.30 87.52 98.28 89.26 93.55 82.46
ETSformer (2022) 87.44 79.23 83.13 85.13 84.93 85.03 92.25 55.75 69.50 90.02 80.36 84.91 99.31 85.28 91.76 82.87
LightTS (2022a) 87.10 78.42 82.53 82.40 75.78 78.95 92.58 55.27 69.21 91.98 94.72 93.33 98.37 95.97 97.15 84.23
FEDformer (2022b) 87.95 82.39 85.08 77.14 80.07 78.57 90.47 58.10 70.76 90.17 96.42 93.19 97.31 97.16 97.23 84.97
TimesNet (2023) 88.66 83.14 85.81 83.92 86.42 85.15 92.52 58.29 71.52 86.76 97.32 91.74 98.19 96.76 97.47 86.34
TiDE (2023a) 76.00 63.00 68.91 84.00 60.00 70.18 88.00 50.00 64.00 98.00 63.00 76.73 93.00 92.00 92.50 74.46
iTransformer (2024) 78.45 65.10 71.15 86.15 62.65 72.54 90.67 52.96 66.87 99.96 65.55 79.18 95.65 94.69 95.17 76.98
TimesMixer++ (Ours) 88.59 84.50 86.50 89.73 82.23 85.82 93.47 60.02 73.10 92.96 94.33 94.64 98.33 96.90 97.60 87.47

∗ The original paper of Anomaly Transformer (Xu et al., 2022) adopts the temporal association and recon-
struction error as a joint anomaly criterion. For fair comparisons, we only use reconstruction error here.

26



Published as a conference paper at ICLR 2025

Table 20: Full results for the classification task. ∗. in the Transformers indicates the name of ∗former.
We report the classification accuracy (%) as the result. The standard deviation is within 0.1%.

Datasets / Models
Classical methods RNN TCN Transformers MLP CNN

DTWXGBoost Rocket LSTM LSTNet LSSL TCN Trans. Re. In. Pyra. Auto.Station. FED. ETS. Flow.iTrans.DLinearLightTS.TiDETimesNetTimesMixer++
(1994) (2016) (2020)(1997)(2018a)(2022b)(2019) (2017) (2020)(2021a)(2022b)(2021) (2022c) (2022b)(2022)(2022) (2024) (2023) (2022a) (2023) (2023a) (Ours)

EthanolConcentration 32.3 43.7 45.2 32.3 39.9 31.1 28.9 32.7 31.9 31.6 30.8 31.6 32.7 28.1 31.2 33.8 28.1 32.6 29.7 27.1 35.7 39.9
FaceDetection 52.9 63.3 64.7 57.7 65.7 66.7 52.8 67.3 68.6 67.0 65.7 68.4 68.0 66.0 66.3 67.6 66.3 68.0 67.5 65.3 68.6 71.8
Handwriting 28.6 15.8 58.8 15.2 25.8 24.6 53.3 32.0 27.4 32.8 29.4 36.7 31.6 28.0 32.5 33.8 24.2 27.0 26.1 23.2 32.1 26.5

Heartbeat 71.7 73.2 75.6 72.2 77.1 72.7 75.6 76.1 77.1 80.5 75.6 74.6 73.7 73.7 71.2 77.6 75.6 75.1 75.1 74.6 78.0 79.1
JapaneseVowels 94.9 86.5 96.2 79.7 98.1 98.4 98.9 98.7 97.8 98.9 98.4 96.2 99.2 98.4 95.9 98.9 96.6 96.2 96.2 95.6 98.4 97.9

PEMS-SF 71.1 98.3 75.1 39.9 86.7 86.1 68.8 82.1 82.7 81.5 83.2 82.7 87.3 80.9 86.0 83.8 87.9 75.1 88.4 86.9 89.6 91.0
SelfRegulationSCP1 77.7 84.6 90.8 68.9 84.0 90.8 84.6 92.2 90.4 90.1 88.1 84.0 89.4 88.7 89.6 92.5 90.2 87.3 89.8 89.2 91.8 93.1
SelfRegulationSCP2 53.9 48.9 53.3 46.6 52.8 52.2 55.6 53.9 56.7 53.3 53.3 50.6 57.2 54.4 55.0 56.1 54.4 50.5 51.1 53.4 57.2 65.6
SpokenArabicDigits 96.3 69.6 71.2 31.9 100.0 100.0 95.6 98.4 97.0 100.0 99.6 100.0 100.0 100.0 100.0 98.8 96.0 81.4 100.0 95.0 99.0 99.8

UWaveGestureLibrary 90.3 75.9 94.4 41.2 87.8 85.9 88.4 85.6 85.6 85.6 83.4 85.9 87.5 85.3 85.0 86.6 85.9 82.1 80.3 84.9 85.3 88.2

Average Accuracy 67.0 66.0 72.5 48.6 71.8 70.9 70.3 71.9 71.5 72.1 70.8 71.1 72.7 70.7 71.0 73.0 70.5 67.5 70.4 69.5 73.6 75.3

classification, anomaly detection, as well as few-shot and zero-shot tasks, demonstrating remarkable
capabilities. This gives it broad prospects in various real-world applications, such as energy and
power forecasting with significant seasonal fluctuations, complex and variable weather forecasting,
rapidly changing financial market predictions, and demand forecasting in supply chains, all of which
it is highly applicable to. It can also excel in various anomaly detection scenarios commonly found
in the industry. By leveraging the capabilities of TIMEMIXER++, we can effectively promote the
development of various real-world applications related to time series analysis tasks.

Academic research As the pioneering study on a general time series pattern machine, we posit that
TIMEMIXER++ holds significant potential to advance research in the domain of time series analysis.
Our innovative approach involves converting time series data into time images and implementing
hierarchical mixing across different scales and resolutions, which can provide substantial inspira-
tion for future research endeavors in this field. Furthermore, it is noteworthy that our method of
employing axial attention within the depth space to extract seasonality and trends from time images
surpasses traditional shallow decomposition techniques, such as moving averages and FFT-based
decomposition. This represents the first effective methodology for decomposing time series within
the deep embedding, promising to catalyze further scholarly investigation.

Model Robustness The robustness of TIMEMIXER++ is evidenced by its performance across
a diverse range of time series analysis tasks. In our extensive evaluation, TIMEMIXER++ was
tested on 8 different types of tasks and over 30 well-known benchmarks, competing against 27
advanced baseline models. The results highlight its ability to consistently deliver high performance,
demonstrating resilience to the variability and complexity inherent in time series data. This robustness
is indicative of TIMEMIXER++’s capability to maintain accuracy and reliability across various
scenarios, making it a versatile tool in the field of time series analysis. Its robust nature ensures that it
can effectively handle noise and fluctuations within data, providing stable and dependable outcomes
even in challenging conditions.

K LIMITATIONS AND FUTURE WORK

TIMEMIXER++ consistently delivers state-of-the-art performance across a wide range of tasks,
including long-term and short-term forecasting, classification, anomaly detection, as well as few-
shot and zero-shot learning. This underscores its exceptional representational capacity and robust
generalization as a time series pattern machine. However, it is important to acknowledge the recent
shift in focus toward large time series language and foundation models, which emphasize continuous
scaling of data and parameters, becoming a dominant paradigm in the field. In contrast, due to
limitations in the quality and scale of available time series data, the parameter sizes of current
advanced deep time series models remain relatively modest. Addressing the challenge of applying
scaling laws to time series pattern machines is therefore essential. In this study, we introduced an
effective backbone model as a first step toward building a universal time series pattern machine.
Future research will focus on constructing large-scale time series datasets to further explore scaling
laws for TIMEMIXER++, an exciting and promising direction for continued investigation.
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(a) TimeMixer++ (b) iTransformer (c) PatchTST

(i)	FEDformer

(f)	Stationary(e) TiDE

(h) DLinear

(d) Crossformer

(g) Autoformer

Figure 16: Prediction cases from ETTh1 by different models under the input-96-predict-96 settings.
Blue lines are the ground truths and orange lines are the model predictions.
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(a) TimeMixer++ (b) iTransformer (c) PatchTST

(f)	Stationary(e) TiDE(d) Crossformer

(i)	FEDformer(h) DLinear(g) Autoformer

Figure 17: Prediction cases from Electricity by different models under input-96-predict-96 settings.
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(a) TimeMixer++ (b) iTransformer (c) PatchTST

(f)	Stationary(e) TiDE(d) Crossformer

(i)	FEDformer(h) DLinear(g) Autoformer

Figure 18: Prediction cases from Traffic by different models under the input-96-predict-96 settings.
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(a) TimeMixer++ (b) iTransformer (c) PatchTST

(f)	Stationary(e) TiDE(d) Crossformer

(i)	FEDformer(h) DLinear(g) Autoformer

Figure 19: Prediction cases from Weather by different models under the input-96-predict-96 settings.
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(a) TimeMixer++ (b) iTransformer (c) PatchTST

(f)	Stationary(e) TiDE(d) Crossformer

(i)	FEDformer(h) DLinear(g) Autoformer

Figure 20: Showcases from Solar-Energy by different models under the input-96-predict-96 settings.
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(a) TimeMixer++ (b) iTransformer (c) PatchTST

(f)	Stationary(e) TiDE(d) TimesNet

(i)	FEDformer(h) DLinear(g) Autoformer

Figure 21: Showcases from the M4 dataset by different models under the input-36-predict-18 settings.
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(a) TimeMixer++ (b) iTransformer (c) PatchTST

(f)	Stationary(e) TiDE(d) Crossformer

(i)	FEDformer(h) DLinear(g) Autoformer

Figure 22: Showcases from PEMS03 by different models under the input-96-predict-12 settings.
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(a) TimeMixer++ (b) iTransformer (c) PatchTST

(f)	Stationary(e) TiDE(d) Crossformer

(i)	FEDformer(h) DLinear(g) Autoformer

Figure 23: Showcases from PEMS04 by different models under the input-96-predict-12 settings.
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(a) TimeMixer++ (b) iTransformer (c) PatchTST

(f)	Stationary(e) TiDE(d) Crossformer

(i)	FEDformer(h) DLinear(g) Autoformer

Figure 24: Showcases from PEMS07 by different models under the input-96-predict-12 settings.
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(a) TimeMixer++ (b) iTransformer (c) PatchTST

(f)	Stationary(e) TiDE(d) Crossformer

(i)	FEDformer(h) DLinear(g) Autoformer

Figure 25: Showcases from PEMS08 by different models under the input-96-predict-12 settings.
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