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ABSTRACT
Federated learning (FL) is an increasingly popular paradigm for pro-

tecting data privacy inmachine learning systems. However, the data

heterogeneity and high computation cost/latency are challenging

barriers for employing FL in real-world applications with heteroge-

neous devices. In this paper, we propose a novel personalized FL

framework named CompFL allowing cooperative training of models

with varied structures to mitigate those issues. First, CompFL initial-
izes a set of expert models in varied sizes and allows each client to

choose one or multiple expert models for training according to its

capacity. Second, CompFL combines the model decoupling strategy

and local-global feature alignment to mitigate the adverse impact

of label heterogeneity, where clients only share the representation

layers of each model architecture. Third, to encourage mutual en-

hancement of various models, knowledge distillation in local train-

ing is further applied to improve the overall performance. To make

our framework workable in real systems, we implement it in both

centralized settings with server-coordinated parallel training and

decentralized settings by a newly developed device-to-device model

training-forwarding scheme. Extensive experiments on benchmark

datasets are conducted to verify the potential of our approach.
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Figure 1: CompFL with multiple model types and heteroge-
neous devices. Each client can select the proper model archi-
tecture from a shared model list based on local computation
capability. In server-based FL, server will aggregate each type
of models and broadcast back to nodes. In decentralized FL,
each type ofmodel can travel over the nodes by randomwalk.

1 INTRODUCTION
With the rapid advancement of machine learning techniques and

the growing demand for privacy protection, federated learning (FL)

has been developed to facilitate model training over distributed

data sources by exchanging gradients or parameters without explic-

itly collecting sensitive data [17, 26]. FL has exhibited promising

applications in many scenarios, e.g., Internet of Things [6] and

healthcare [15]. In a typical FL system, all clients jointly train the

same model while a central server is responsible for coordinating

the model aggregation. Besides, to mitigate the communication bot-

tleneck in server and tolerate node failures, decentralized FL is also

gaining popularity, where the clients directly exchange their model

parameters with neighbors in a peer-to-peer manner [14, 20, 21].

Despite the great potential of FL, however, various challenges

from system and statistical heterogeneity have been observed,

which will substantially hinder the deployment of FL in real ap-

plications [7]. System heterogeneity refers to the varied hardware

and network capabilities across clients, which mainly affects the

learning efficiency and commonly occurs with the emerging mobile

computing for wearable devices and smartphones [13]. For example,

it is capable for a CPU device to train a simple CNN mode within
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acceptable running time while it could be extremely slow to train a

ResNet-like model. Different GPU devices also vary significantly

in computational capability. To mitigate the system heterogene-

ity, a wide range of approaches have been investigated, such as

asynchronous updating [18], adaptive workload [24], and model

pruning [1, 9]. In particular, one promising solution is to allow het-

erogeneous models across clients depending on their capabilities.

However, existing methods usually allow arbitrarily different local

models and rely on either a large public dataset or a data genera-

tor [10, 16] to conduct knowledge transfer, making it infeasible in

many realistic scenarios. The statistical heterogeneity represents

the varied distributions of data sets across clients, which raises the

problem of non-IID data and significantly affects the model aggrega-

tion [27]. To address this issue, a popular direction is personalized

FL where each individual client aims to leverage the knowledge

from peer clients for a better customized model than that of stan-

dalone training [22]. Those two issues could co-exist in real-world

systems and further aggravate the training process [12].

In this work, we propose a novel Cooperative multiple model

training framework for personalized FL with various model sizes

to tackle the issues of heterogeneous computing capabilities and

tasks as shown in Fig. 1, we name it by CompFL. Different from
previous works that consider either a single model architecture or

independently varied architectures, we consider a mild setup with

multiple global model architectures to strike a balance between

the homogeneous (all clients share the same model structure) and

heterogeneous (each client independently defines its own model)

settings. More precisely, each client can choose one specific model

architecture from a predefined model list (e.g., small, base and large

model variants) that best matches its device capacity in terms of

computation. Moreover, to tolerate the label disparity among clients

andmaintain themodel accuracy, we follow the representation-only

aggregation strategy in [4] and apply local-global feature alignment-

based scheme to enhance the model learning. To the best of our

knowledge, we are the first to empirically show the benefit of local-

global feature alignment in remedying the shortcoming of only

sharing feature extractor schemes in FL. Furthermore, the inter-

action between different expert models is also explored through

local knowledge distillation. The proposed framework is evalu-

ated on benchmark datasets with various settings, which verifies

the effectiveness in mitigating the heterogeneity in heterogeneous

FL environments and improving personalized model performance.

Note that other generic techniques of gradient compression and

model pruning are orthogonal to our work and can be integrated

to each type of model. The main contributions are three-fold:

• A novel cooperative training framework named CompFL is

proposed for FL over heterogeneous devices, where each

client can choose its own model structure from a predefined

model list to best fit its computing capability.

• A holistic training strategy with greedy model selection,

local-global feature alignment and cross-model knowledge

distillation is employed to optimize the personalized model

performance.

• The framework is implemented in both server-based and

decentralized settings with extensive experiments conducted

on label skew scenarios to verify its effectiveness.

2 PRELIMINARY AND MOTIVATION
2.1 Problem Setup
For a FL setup with𝑚 clients, where the goal of each client is to

collaboratively train a personalized model that performs better

than training based on local data only. The optimization objective

is formalized as follows:

min

𝑊
𝐹 (𝑊 ) := 1

𝑚

𝑚∑︁
𝑖=1

E𝜉𝑖∼D𝑖
[ℓ𝑖 (𝒘𝑖 ; 𝜉𝑖 )] + R(𝑊 ) (1)

where𝑊 = {𝒘1,𝒘2, ...,𝒘𝑚} denotes the collection of local models,

D𝑖 = {𝑥𝑘𝑖 , 𝑦
𝑘
𝑖
}𝑛𝑖
𝑘=1

denotes the local training data set drawn from an

underlying distribution P𝑖 on X𝑖 ×Y𝑖 , where X𝑖 and Y𝑖 denote the
instance space and label space for client 𝑖 , respectively. ℓ𝑖 (𝒘𝑖 ; 𝜉𝑖 )
denotes the local loss function and R(·) is an extra regularization

for information sharing among clients.

In this paper, we focus on the classification task with deep neural

networks (DNNs), which can be decoupled into the representation

layers and the final classifier head as 𝒘 = (𝜽 , 𝝓) 1. Following the

previous works [3, 4, 27], we will study the label shift induced

data heterogeneity, we further assume that X𝑖 = X𝑗 but potentially
Y𝑖 ≠ Y𝑗 for any pair of 𝑖 and 𝑗 . Let Y = ∪𝑚

𝑖=1
Y𝑖 denote the set of

all possible labels over all clients. Note that the one-hot encoding is

employed for treating the categorical variable of label in classifica-

tion tasks. When the labeling scheme is globally synchronized, the

corresponding data category of each class label is consistent across

clients (we call aligned label or unified label) and thus an output

layer with dimension |Y| could be used as the classifier head in all

local models. Otherwise, even two clients share the same one-hot

label set, it does not imply that they undertake the same task and

thus each client should maintain its own classifier head.

2.2 Motivation
(i) Multiple model architectures for heterogeneous devices.
Personalized hardware resources usually make it difficult for all

clients to train models with the same structure. As a toy exam-

ple, we conduct a set of experiments to train a simple CNN and a

ResNet-18 on 10 clients using CPU and GPU respectively. The av-

erage per-round simulation time and final performance are shown

in Table 1, where using CPU to train the ResNet-18 is unaccept-

ably slow. Therefore, using heterogeneous models become a key

requirement to enable personalized FL on heterogeneous devices.

Previous works usually assume the small model is a sub-network of

the large model, which limits the usage of other applicable model

architectures and even a sub-network could still be burdensome

to train for low-capability nodes. Alternatively, we propose to use

multiple model architectures (multiple expert models) as follows.

Assumption 1. There exists a set of expert models M = {1 :

W1, 2 : W2, .., 𝑀 : W𝑀 } with increasing model parameters such
that each client can select the suitable expert as its personalized model
based on the device capacity.

Remark 1. (Rationality) Since popular and commonly used model
structures are usually available at the open-source libraries (e.g.,

1
The part of representation layers 𝜽 is also known as the feature extractor while the

final classifier head is usually a single fully-connected layer.
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Figure 2: The overall workflow in server-based systems. The local training consists of model adaptation, feature-level alignment
and cross-model knowledge distillation, where the back-propagation only exists at the solid line during local model updating.

Table 1: Comparison of test accuracy and per-round simula-
tion time on CIFAR-10. 10 clients with IID data distribution.

Device Model Accuracy (%) Time/Round (s) (relative)

CPU

CNN 60.25 18.64 (1.0)

ResNet-18 N/A 974.55 (52.28)

GPU

CNN 60.56 13.74 (0.74)

ResNet-18 78.12 22.47 (1.21)

torchvision), it is possible to construct a model list that could of-
fer suitable models for nodes with diverse capacities. Moreover, in
realistic scenarios, devices with similar capacity could be clustered
into a group that adopts the same model architecture so that only
limited types of model are needed.

(ii) Cooperative model training. We observe that the accuracy
improvement over communication rounds is significant at
the initial stage but becomes marginal as training going on
(see Fig. 3). When the high-capacity model reaches convergence, it

would present little benefits if high-capability nodes always train

the big models. Therefore, those nodes could turn to assist the

training of smaller models to make them better by feeding more

diverse training data, where the larger models could further offer

soft-supervision for knowledge distillation.

3 OUR PROPOSED FRAMEWORK
3.1 Knowledge Distillation-Aided Training
Feature-based Distillation. Our preliminary results have shown

that inconsistent classifier heads across clients would cause de-

graded feature representation learning. To remedy this, we incor-

porate a simple-yet-effective local-global feature regularization to

encourage the locally learned features stay close to the global fea-

ture anchors (averaged feature vector).

𝐿𝑓 =
1

|𝑛𝑖 |

|𝑛𝑖 |∑︁
𝑘=1

∥𝑧𝑘 − 𝑧𝑦𝑘 ∥2, (2)

where 𝑧𝑘 = 𝑓 (𝑥𝑘 ) is the feature vector of the 𝑘-th data point ex-

tracted by current local model, and 𝑧𝑦𝑘 is the feature anchor of class

𝑦𝑘 from previous global model. Since the global data information

is not accessible, we use the local data to estimate 𝑧𝑦𝑘 . As a result,

the diversity/drift of locally learned feature distributions could be

reduced, which is beneficial for the generalization of aggregated

feature extractor.

Logits-based Ensemble Distillation. So far, the objective only

involves the specific local model, however, the knowledge of other

expert models is also beneficial for local model training. To this end,

we fit a local head for each other experts and apply the ensemble

knowledge distillationmethod for utilizing the rich knowledge from

other model architectures. Since each data point has its ground-

truth 𝒚𝑘 and the predictions of expert models might be unreliable,

we propose to use the average of true label and weighted prediction

as the final soft-label for knowledge distillation:

𝐿𝑘𝑑 =
1

|𝑛𝑖 |

|𝑛𝑖 |∑︁
𝑘=1

𝐾𝐿(𝒚̃𝑘 ∥0.5𝒚𝑘 + 0.5
𝑀∑︁
𝑗=1

𝑠 𝑗𝒚̂ 𝑗,𝑘 ), (3)

where 𝒚̃𝑘 is the prediction of local model, 𝑠 𝑗 and 𝒚̂ 𝑗,𝑘 are weight

and prediction of 𝑗-th expert model, respectively. Finally, the local

objective function is defined as follows:

𝐿𝑖 (𝒘𝑖 ) := 𝐿𝑐𝑒 + 𝜆𝐿𝑓 + 𝜇𝐿𝑘𝑑 , (4)

where 𝐿𝑐𝑒 denotes the basic cross-entropy loss, 𝜆 and 𝜇 are two

coefficients for balancing different terms.

3.2 Local Training Procedure
Here we present the main workflow of CompFL as in Fig. 2, which

implements the optimization steps in a cooperative fashion. For

simplicity, we use 𝑗𝑖 ∈ [𝑀] to denote the type of model at client 𝑖 .

At round 𝑡 , the local execution steps are listed as follows:

• Step 1: Model Adaptation For local model training, we first

replace the local representation layers by the global aggregate
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Table 2: Model accuracy (%) comparison of different methods under label heterogeneous scenarios.

Dataset Method Unified Labels Independent Labels

𝑁 = 3 𝑁 = 5 𝑁 = 10 𝑁 = 3 𝑁 = 5 𝑁 = 10

CIFAR-10

Standalone 78.28 (± 0.82) 60.25 (± 0.61) 40.17 (± 0.22) 78.17 (± 0.45) 61.03 (± 0.43) 39.78 (± 0.25)

FedAvg 60.73 (± 0.56) 64.85 (± 0.31) 68.27 (± 0.20) 40.88 (± 0.63) 28.73 (± 1.63) 17.68 (± 0.57)

FedAvg-FT 84.52 (± 0.51) 74.42 (± 0.65) 66.27 (± 0.87) 82.17 (± 0.64) 68.57 (± 0.53) 50.38 (± 0.47)

LG-FedAvg 79.61 (± 0.54) 64.31 (± 0.48) 43.86 (± 0.53) 79.71 (± 0.53) 64.24 (± 0.43) 43.66 (± 0.74)

FedPer 82.71 (± 0.35) 72.58 (± 0.17) 61.17 (± 0.16) 81.62 (± 0.27) 71.78 (± 0.16) 59.08 (± 0.11)

FedRep 83.48 (± 0.21) 73.62 (± 0.14) 61.62 (± 0.31) 83.87 (± 0.20) 73.72 (± 0.43) 61.19 (± 0.33)

FedBABU 85.52 (± 0.26) 75.13 (± 0.33) 67.68 (± 0.43) 82.38 (± 0.26) 68.95 (± 0.37) 51.58 (± 0.55)

Ditto 85.37 (± 0.23) 76.37 (± 0.21) 67.53 (± 0.09) 84.03 (± 0.24) 71.12 (± 0.11) 53.56 (± 0.14)

FedRoD 84.32 (± 0.32) 76.12 (± 0.21) 68.38 (± 0.12) 82.38 (± 2.13) 68.58 (± 0.93) 52.55 (± 1.05)

CompFL 86.22 (± 0.33) 79.98 (± 0.25) 74.29 (± 0.24) 84.17 (± 0.23) 77.25 (± 0.25) 68.85 (± 0.24)

CIFAR-100

Standalone 76.37 (± 0.20) 60.32 (± 0.19) 38.94 (± 0.21) 76.31 (± 0.22) 61.27 (± 0.17) 37.94 (± 0.32)

FedAvg 39.68 (± 0.33) 41.75 (± 0.43) 43.28 (± 0.54) 50.92 (± 0.35) 30.41 (± 0.34) 17.86 (± 0.38)

FedAvg-FT 77.28 (± 0.54) 66.57 (± 0.48) 48.77 (± 0.53) 75.21 (± 0.53) 60.81 (± 0.43) 40.10 (± 0.74)

LG-FedAvg 75.62 (± 0.54) 60.49 (± 0.48) 39.79 (± 0.53) 76.19 (± 0.53) 60.78 (± 0.43) 39.31 (± 0.74)

FedPer 76.25 (± 0.31) 64.66 (± 0.25) 45.95 (± 0.41) 73.13 (± 0.29) 61.82 (± 0.24) 44.54 (± 0.32)

FedRep 75.43 (± 0.28) 63.53 (± 0.27) 46.21 (± 0.34) 75.78 (± 0.27) 63.64 (± 0.22) 46.45 (± 0.30)

FedBABU 77.75 (± 0.35) 66.21 (± 0.43) 48.42 (± 0.31) 74.76 (± 0.41) 60.87 (± 0.37) 40.96 (± 0.62)

Ditto 77.92 (± 0.43) 65.21 (± 0.44) 48.65 (± 0.46) 73.64 (± 0.44) 59.16 (± 0.41) 33.93 (± 0.72)

FedRoD 76.14 (± 0.39) 65.35 (± 0.39) 51.23 (± 0.55) 75.15 (± 0.47) 59.97 (± 0.56) 38.52 (± 0.61)

CompFL 78.26 (± 0.25) 68.65 (± 0.33) 55.95 (± 0.23) 77.72 (± 0.62) 65.78 (± 0.22) 49.78 (± 0.21)

and remain the private classifier:

𝒘 (𝑡 )
𝑖

:= { ˜𝜽 (𝑡 )
𝑗𝑖
, 𝝓 (𝑡 )

𝑖
}. (5)

We can then re-initialize the head 𝝓𝑖 by computing the class pro-

totypes on private data and (optionally) fine-tune it by gradient

descent for one epoch:

𝝓 (𝑡 )
𝑖
← 𝝓 (𝑡 )

𝑖
− 𝜂𝑔∇𝝓ℓ (𝜽 (𝑡 )𝑖

, 𝝓 (𝑡 )
𝑖

; 𝜉𝑖 ), (6)

where 𝜉𝑖 denotes the mini-batch of data, 𝜂𝑔 is the learning rate

for updating classifier head. For other expert models, if a client

wants to utilize them for knowledge distillation, it also needs to

fit a local classifier head. We use the class-wise prototypes as

the initialization and train the low-dimensional classifier for one

epoch efficiently.

• Step 2: Model Evaluation As mentioned before, the local en-

semble knowledge distillation need to obtain a weighted average

of soft-labels for guiding local training. Intuitively, the higher

accuracy a model can achieve, the higher weight it should be

assigned. Therefore, we simply allocate the weights based on the

normalized local validation accuracy. More precisely, we use the

following normalization method to generate the weights:

𝑠 𝑗 =
exp

(
𝑎 𝑗/𝜏

)∑𝑀
𝑗=1 exp

(
𝑎 𝑗/𝜏

) , (7)

where 𝑎 𝑗 is the 0-1 normalized value and a positive constant

0 < 𝜏 <1 is further introduced to sharpen the weight allocation

as we empirically found that it is more beneficial to assign higher

weights to the high performance models.

• Step 3: Model Selection In the traditional FL, a client will only

train the local model by default. However, the high-capability

nodes actually could help train the feature extractors of low-

capacitymodels aswell, which ismore computation-communication

efficient. Thus, we propose to use the 𝜀-greedy model selection

strategy for a high-capability node that has a chance to sample

model 𝑗𝑖 uniformly with a probability of 𝜀, instead of always

choosing the local model 𝑗𝑖 .

𝑗𝑖 ←
{
𝑗𝑖 with prob. 1 − 𝜀
U {1, ..., 𝑗𝑖 | 𝑗𝑖 ≤ 𝑀} with prob. 𝜀

(8)

• Step 4: Model UpdatingWe consider the basic cross-entropy

loss, feature alignment loss and knowledge distillation loss to-

gether. Then, we apply the stochastic gradient decent (SGD) to

train the local model for multiple epochs:

𝒘 (𝑡 )
𝑖
← 𝒘 (𝑡 )

𝑖
− 𝜂∇𝒘𝐿𝑖 (𝒘 (𝑡 )𝑖

) (9)

Note that we train the whole model in an end-to-end manner

instead of alternating training of representation layers and clas-

sifier head as in FedRep, as we already conducted local model

adaptation and the end-to-end manner training could avoid addi-

tional data iteration with is time-consuming.

Global Model Aggregation. The server will generate a common

feature extractor for each type of architecture:

˜𝜽 (𝑡+1)
𝑗

=

𝑚 𝑗∑︁
𝑖=1

𝛼𝑖𝜽
(𝑡 )
𝑗,𝑖
, s.t.

𝑚 𝑗∑︁
𝑖=1

𝛼𝑖 = 1 (10)
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where𝑚 𝑗 is the number of clients connecting to server and return-

ing 𝑗-th architecture in 𝑡-th round, 𝛼𝑖 ≥ 0 is the weight of client 𝑖

and we choose 𝛼𝑖 = 𝑛𝑖/
∑𝑚 𝑗

𝑐=1
𝑛𝑐 , which is proportional to the local

data size. After the global aggregation, the server will broadcast the

model set to the selected clients to start the next round and each

individual client could choose to download either partial or full set

of the expert models based on the personalized need. By default,

we assume that each client will only download the expert models

that have less memory and computation requirements than its own

personalized choice as mentioned in the model selection part.

4 EVALUATION
In this part, we provide some main results in server-based setup,

while more results as well as extension to decentralized setup can

refer to the Appendix D-E.

4.1 Experimental Setup
Datasets and Models. We focus on the image classification tasks

on popular benchmark datasets Fashion-MNIST [25] and CIFAR-

10/CIFAR-100 [8]. In this work, we consider 𝑀=2 expert mod-

els. For Fashion-MNIST, we build two convolutional neural net-

works (CNNs) with different numbers of convolution-pooling/fully-

connected layers. For CIFAR-10/CIFAR-100, a CNN model [17] and

a ResNet-18 [5] are selected as the expert models.

Data Partitioning. Like previous study [23], we sample a subset

of classes 𝐶𝑖 ⊆ Y with |𝐶𝑖 | = 𝑁 for client 𝑖 and each client will

have access to data of only 𝑁 classes. And the number of samples

belonging to each class in 𝐶𝑖 is balanced. We use the coarse labels

with 20 categories for CIFAR-100.

4.2 Evaluation Results and Analyses
Performance of PersonalizedModels.We choose𝑁 from {3, 5, 10}
on three datasets, respectively. We keep local data size as 500 on
each client and evaluate all methods under the same training

conditions. The results of average test accuracy across clients are

reported in Table 2, where our CompFL is able to achieve the high-

est average test accuracy for most local tasks. The improvement by

our method increases as the local task becomes harder. For example,

our method improve the accuracy by more than 5% when 𝑁=10 and

more than 2% when 𝑁=5 on the CIFAR-10. The performance gaps

between FedPer/FedRep and FedBABU on various cases indicate

that though learning a shared feature extractor is promising, diverse

local classifiers could make the feature learning sub-optimal. By

contrast, our framework leverages the explicit local-global feature

alignment to facilitate the representation learning. We also sepa-

rately provide the curves of average model accuracy over rounds

for each group to verify how our framework improves the overall

performance. The results in Fig. 3 show that our method can im-

prove the performance of both expert models when only the feature

extractor layers are shared.

Ablation Studies. Since there are three key components in CompFL,

including feature self-alignment (Align), greedy model selection

strategy (Greedy) and cross-model knowledge distillation (KD), it

is necessary to conduct ablation studies to verify their individual

efficacy. We choose the CIFAR-10/100 datasets under N=10 cases

with unified labels. For performance comparison, we report both

0 40 80 120 160 200
Training Rounds

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-10 (N=10, Group 1)

Standalone
FedAvg
FedRep
CompFL

(a) Local model is CNN

0 40 80 120 160 200
Training Rounds

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-10 (N=10, Group 2)

(b) Local model is ResNet-18
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(c) Local model is CNN
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Figure 3: Group-wise average test accuracy over training rounds on
CIFAR-10. (a)-(b): unified labels; (c)-(d):independent labels.

Table 3: Ablation studies of the N=10 case with unified labels.
Baseline is equivalent to FedPer with 61.17%/45.95% Acc..

Align Greedy KD Final Acc. & # Rnds to Target
CIFAR-10 CIFAR-100

! 68.65 — 52.28 100

! 65.69 — 46.57 —

! 68.21 — 49.63 —

! ! 70.68 89 52.94 104

! ! 71.88 81 53.24 83

! ! ! 74.29 63 55.95 61

the average final accuracy and the number of rounds to achieve a

target accuracy (70%/50%). From the results presented in Table 3,

it can be found that any arbitrary combination of the designed

components can always outperforms the baseline of FedPer with

a non-trivial improvement, which demonstrates that leveraging

knowledge from global model and other expert models is effective

in improving personalized performance.

5 CONCLUSION
In this paper, we study the FL with both label skew and heteroge-

neous devices. We propose a new framework that allows each client

to cooperatively train multiple models with varied architectures

and choose the suitable one for inference. It shows potential in

striking a good balance between high personalized performance

and training efficiency. As future work, it would be interesting to

investigate training with multi-modal data and extend CompFL to

other complicated computer vision tasks.
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Figure 4: Preliminary results on CIFAR-10. FedAvg with fine-
tuning outperforms FedPer that only keeps private head even
in the presence of permuted labels among clients.

A MODEL DECOUPLING IS SUB-OPTIMAL
Generally, the deep neural network for classification task can be

decoupled into the representation layers and the final classifier

head as 𝒘 = (𝜽 , 𝝓), where the former is also known as feature

extractor. Previous work has shown the potential of decoupling

the feature extractor (the common role across similar local tasks)

and the classifier head (the personalized part for each specific task)

during model aggregation. As a preliminary experiment, we con-

sider a FL setup with 20 clients and each of them has 500 samples

from 5 classes of CIFAR-10. We construct a simple CNN model

with a 10-class classifier head and evaluate both globally aligned
and locally randomly permuted labels scenarios. Fig. 4 presents

the results of FedAvg, FedAvg with local classifier fine-tuning, and

FedPer that only aggregates the feature extractor. It can be observed

that the vanilla FedAvg is vulnerable to label shift and local fine-

tuning could lead to promising performance. In contrast, FedPer

is more robust to label heterogeneity but results in slightly lower

performance than FedAvg-FT. We provide the following analyses

to explain such phenomenons. First, the last classifier head only

accounts for a limited percentage of parameters and is more robust

to local over-fitting. Therefore, it could be learned locally given suf-

ficient local data when the feature learning is accomplished, which

explains the satisfactory performance of FedAvg-FT. Second, when

the local data is limited, locally learned classifier parameters are

still inaccurate and lead to non-negligible diversity across clients,

which will have an adverse effect on the feature learning as the rep-

resentations and classifiers are highly coupled during the training

process. As a result, the locally learned representations may have

limited transferability to other clients. Therefore, it is crucial to

learn more consistent feature representations across clients so as to

improve the generalization ability of the shared feature extractor.

B EXPERIMENTAL DETAILS
Compared Methods.We adopt the following baselines from FL to

aggregate each model architecture: (i) FedAvg [17]; (ii) FedPer [2]

and FedRep [4] that keep personal classifiers, and FedBABU [19]

that freezes the initialized classifier head during feature learning

and re-trains the head during local adaptation; (iii) Ditto [11] that

conducts bi-level optimization; (iv) FedRoD [3] that combines the

local and global heads. For our method, after careful tuning we fix

𝜆=1.0, 𝜀=0.3, 𝜏=0.1 and 𝜇=1.0 for all experiments.

https://arxiv.org/abs/1910.03581
https://arxiv.org/abs/2104.11375
https://doi.org/10.1109/TNNLS.2022.3160699
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Algorithm 1 CompFL

Input: Learning rate 𝜂, communication rounds 𝑇 , number of

clients𝑚, local epochs 𝐸

Initialize: Initial models {𝒘0

𝑗
∈ 𝑅 |W𝑗 | }𝑀

𝑗=1

Main Loop:
1: for 𝑡 = 0, 1, ...,𝑇 − 1 do
2: Server Executes:
3: Select active client set 𝑆𝑡
4: Clients request the chosen model 𝑗𝑖
5: Send {𝜽 𝑡

𝑗𝑖
}𝑖∈𝑆𝑡 to selected clients

6: for Client 𝑖 ∈ 𝑆𝑡 in parallel do

7: {𝜽 (𝑡+1)
𝑗𝑖 ,𝑖

, 𝝓 (𝑡+1)
𝑗𝑖 ,𝑖
} ← LocalTraining(𝑖 , 𝜽 𝑡

𝑗𝑖
)

8: Send Δ𝜽 (𝑡+1)
𝑗𝑖 ,𝑖

:= 𝜽 (𝑡+1)
𝑗𝑖 ,𝑖

− 𝜽 (𝑡 )
𝑗𝑖

back

9: end for
10: Server aggregates { ˜𝜽 (𝑡+1)

𝑗
}𝑀
𝑗=1

:

11:
˜𝜽 (𝑡+1)
𝑗

= 𝜽 (𝑡 )
𝑗
+∑𝑚 𝑗

𝑘=1
𝛼𝑘Δ𝜽

(𝑡+1)
𝑗,𝑘

12: end for
LocalTraining(𝑖 , 𝜃𝑡

𝑗𝑖
):

1: Retain local model:𝒘 (𝑡 )
𝑖
← { ˜𝜽 (𝑡 )

𝑗𝑖
, 𝝓 (𝑡 )

𝑖
}

2: for local epoch 𝑒 = 0, 1, ..., 𝐸 − 1 do
3: for mini-batch 𝜉𝑖 ∈ D𝑖 do
4: Update model:𝒘 (𝑡 )

𝑖
← 𝒘 (𝑡 )

𝑖
− 𝜂∇𝒘𝐿𝑖 (𝒘 (𝑡 )𝑖

)
5: end for
6: end for
7: return {𝜽 (𝑡+1)

𝑗𝑖 ,𝑖
, 𝝓 (𝑡+1)

𝑗𝑖 ,𝑖
} := 𝒘𝑖 (𝑡 )

Training Settings.We launch𝑚 = 20 clients and equally divide

them into 2 groups with two levels of capability corresponding

to two different model selections. SGD is employed as the local

optimizer with batch size 𝐵 = 50, momentum coefficient 0.5 and

weight decay 5e-4. We run 200 communication rounds with local

epochs 𝐸 = 5.

C PRACTICAL CONSIDERATION
During the uplink communication, no extra information except the

parameters of one specific feature extractor will be transmitted for

each client, compatible with the general settings. For efficiency, we

let 𝑖-th client conduct ensemble knowledge distillation only from

expert models that have less parameters than its own model 𝑗𝑖 after

some warm-up rounds. Depending on the device capability, a client

could choose to only use the selected local model or the ensemble

of locally adapted expert models for inference. In this work, we

consider the former option for cost efficiency and leave the local

mixture-of-experts direction as the future work. The pseudo-code

is listed in Algorithm 1.

D FURTHER DISCUSSIONS
Effect of Local Data Size. To investigate how local data size affects

the overall model performance, we fix 𝑁=5 and vary the local

data size over {100, 300, 500, 1000, 1500, 2000}, recording the average
accuracy in Fig. 5. The results clearly indicate that clients with
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Figure 5: Accuracy on CIFAR-10 with varying local data size.
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Figure 6:Model accuracy (%) comparison of differentmethods
on CIFAR-100 under Dirichlet sampling based label shifts.

different data sizes can consistently benefit from participating FL

and our method always achieves higher performance gain than

FedAvg-FT and FedRep.

Other Label Distribution Shift. The main results focus on the

typical pathological setting where the data-heterogeneity is deter-

mined by the distinct types of available labels. Here, we evaluate

another typical setting with label distribution shift determined

by the Dirichlet sampling with a concentration parameter 𝛼 . The

following Fig. 6 reports the numerical results of several baselines

and our methods under independent labeling setting on coarsely-

labeled CIFAR-100, where our framework always outperforms the

baselines with non-marginal gains when 𝛼 varies over {0.1, 0.5, 1.0},
demonstrating its effectiveness in a wide range of label shifts.

Leverage Pre-trained Expert Models. So far, we always train the

expert models from scratch, however, plentiful pre-trained models

are widely applied in real-world applications and also promising

to accelerate the decentralized federated learning. For the Proof
of Concept, we simply adopt the CNN / ResNet-18 pre-trained on

CIFAR-100 as the backbone followed by a re-initialized private head.

We evaluate such system designs on the CIFAR-10, where each client

is assigned with 5 distinct classes. The resulted average accuracy

and consumed communication rounds for achieving the target

accuracy are reported in Table 4, which show that leveraging the

pre-trained model parameters could lead to better local models with
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Table 4: Performance comparison on CIFAR-10 for methods
with and without model pre-training.

Method Performance Metric

Accuracy (%) # Rounds for 75 %

Standalone 60.25 —

+ pre-training 77.04 —

FedAvg-FT 74.42 —

+ pre-training 80.19 4

CompFL 79.98 44

+ pre-training 83.21 3

Table 5: The test accuracy (%) with varying number of clients
(𝑚) on CIFAR-10. 50 clients are active in each training round.

Method System Size

𝑚 = 50 𝑚 = 100 𝑚 = 150

FedAvg 59.71 62.38 68.38

FedAvg-FT 73.81 76.81 80.04

FedBABU 71.48 74.75 76.78

FedRep 63.19 63.85 65.68

Ditto 72.63 75.88 77.83

FedRoD 72.81 76.76 79.51

CompFL (ours) 76.67 79.59 82.54

less transmitting bits, demonstrating the extraordinary advantage

and extensibility of our proposed framework.

Scale the System. Finally, to further verify the adaptability and

scalability of our framework, we set the number of clients over

{50, 100, 150} and local data size to 200 for simulating larger sys-

tems with data scarcity in clients. Each client will be allocated with

5 classes of CIFAR-10 and the number of expert models is set to 3

for the 150 clients setting, including the simple CNN, ResNet-9 and

ResNet-18. Client sampling is employed for communication reduc-

tion, where only 20 clients are active in each round. We compare

our CompFL with baselines in Table 5. As expected, our method

achieved the best performance, demonstrating its adaptability and

robustness in a wide range of environments.

E EXTENSION TO DECENTRALIZED SYSTEMS
Extending the multi-model training scheme from the server-based

systems to the decentralized systems with only device-to-device

communication is non-trivial as each client may need to send and

receive multiple models from each neighboring peer, which could

make the communication protocol too complicated to design or

increase the overhead significantly. In this work, we propose two

simple yet effective frameworks by (1) sequential training over

clients for each model architecture, where each model is trained by

random walk over clients as illustrated in Figure 1, and different

architectures can be trained simultaneously (device-by-device,
D/D); (2) distributed parallel training over clients for each model

architecture, where the model training is conducted as standard

decentralized optimization and different architectures are sorted

according the sizes in a descending manner and sequentially trained
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Figure 7: Performance comparison of server-based and two decen-
tralized variants. Decentralized implementations can generally have
similar accuracy as server-based implementation and sparsely con-
nected network will result in slightly lower accuracy.

such that the smaller model can benefit from the larger model dur-

ing training (model-by-model, M/M). By this way, the proposed

training scheme in Section 3 can be easily adopted to support de-

centralized multi-model training. In the D/D settings, each client

can decide whether to receive each expert model to conduct local

training or directly forward to the next client. In the M/M settings,

each expert model is trained in order and each client could choose

to save the historically trained models to benefit future training.

We provide empirical evaluation results to verify the effective-

ness in those two system settings. We apply the Erdos-Renyi graph

model to simulate fully-connected network with edge creation

probability p=1.0 and sparsely connected network with p=0.6. The

experiment results in Figure 7 show that decentralized implemen-

tations can result in similar performance under various settings,

which demonstrates the potential of our scheme in broader systems.
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