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Abstract
Online content, despite being posted under001
pseudonyms, presents significant privacy risks002
as it often contains subtle stylistic cues that can003
be exploited to identify authors. Various stud-004
ies have highlighted the importance of adding005
noise to textual data for anonymization, par-006
ticularly through differential privacy; however,007
such methods often degrade the quality and util-008
ity of the original text. In this work, we propose009
an alternative approach to text anonymization010
that leverages the ability of pretrained large011
language models to capture and modify subtle012
stylistic attributes present in user generated text.013
Our method constructs an author’s stylistic pro-014
file from minimal text samples and rewrites it015
using targeted paraphrasing to obscure identi-016
fiable style markers while preserving the origi-017
nal content. This strategic style manipulation018
allows us to significantly reduce the effective-019
ness of Authorship attribution attacks. On a020
real-world Google review dataset, our approach021
achieves a 50% reduction in authorship attribu-022
tion success rates while maintaining content023
quality. We conduct extensive experiments024
across multiple datasets and rigorously eval-025
uate our approach to assess its effectiveness in026
balancing the privacy-utility trade off.027

1 Introduction028

The widespread sharing of online content has raised029

significant concerns about user privacy. Subtle030

stylistic patterns embedded within user-generated031

data can be leveraged to identify and trace the orig-032

inal author, even in cases where users attempt to033

remain anonymous. This practice, known as “au-034

thorship attribution”, poses a serious threat to indi-035

viduals’ privacy, as it can expose sensitive personal036

information and undermine their ability to control037

the dissemination of their digital footprint.038

Traditional anonymization techniques, such as039

removing explicit personal identifiers, are proven to040

be inadequate in the face of modern machine learn-041

ing models capable of extracting nuanced stylistic042

cues (Lison et al., 2021). This underscores a criti- 043

cal gap: current anonymization techniques largely 044

overlook stylistic fingerprints as privacy risks. 045

Recently, differential privacy (DP) based meth- 046

ods such as DP-VAE (Weggenmann et al., 2022), 047

DP-Prompt (Utpala et al., 2023) and DP-MLM 048

(Meisenbacher et al., 2024) have attracted grow- 049

ing attention for textual anonymization, typically 050

introducing calibrated noise or paraphrasing under 051

privacy budgets. DP provides a mathematically 052

grounded privacy guarantee, but the choice of pri- 053

vacy budget (ε) can drastically affect model utility: 054

High-ε settings may yield negligible noise and thus 055

poor privacy, whereas low-ε can degrade text utility 056

to the point of unreadability. 057

Figure 1 shows that the anonymized text gener- 058

ated by DP-VAE retains identifiable stylistic pat- 059

terns despite formal privacy guarantees. These 060

limitations stem from the inherent design of DP- 061

based anonymization methods, which typically in- 062

troduce perturbations either to latent representa- 063

tions or through alterations of individual output 064

tokens. Latent-level privacy mechanisms, often 065

designed to bound representation sensitivity, fre- 066

quently fail to disrupt higher-order syntactic struc- 067

tures or discourse patterns in the text. Conversely, 068

while token-level mechanisms effectively obscure 069

local patterns (e.g., word choice), their cumula- 070

tive noise injection often degrade text utility to the 071

point of unreadability. These findings challenge the 072

assumption that DP’s mathematical guarantees suf- 073

fice for anonymity, as privacy-driven noise harms 074

utility without fully erasing authorship cues. 075

Recent work has begun questioning whether rig- 076

orous DP is actually essential to guard against au- 077

thorship attribution (Meisenbacher and Matthes, 078

2024). In practice, many real-world scenarios 079

might benefit from less disruptive rewriting strate- 080

gies, which are more focused on neutralizing 081

author-specific style attributes rather than complete 082

reliance on random perturbations. This could poten- 083
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Figure 1: User generated text (left) and its anonymized version (right) by DP-VAE. Despite applying differential
privacy, many stylistic cues remain, potentially enabling a classifier to re-identify the author.

tially help strike a better balance between privacy084

and content utility. Hence, we posit the following085

research question:086

How can we leverage stylistic transformations to087

anonymize user-generated text while preserving088

content utility, without resorting to noise injection?089

To address this question, we propose a style-090

aware, prompt-driven anonymization technique091

that uses an LLM to extract an author’s key stylis-092

tic traits, and generate anonymized text. Our093

method first extracts core features such as text094

length and structure, punctuation patterns, vocab-095

ulary choices, and tone, which collectively form096

a concise style profile for each author. These di-097

mensions are grounded in classical stylometry re-098

search (Holmes, 1994; Stamatatos, 2009; Usha and099

Thampi, 2017). This profile then guides the gen-100

eration of anonymized text that preserves content101

utility while effectively masking author identity.102

Our experiments on two real-world datasets103

spanning short-form and long-form text scenar-104

ios confirm that style-focused rewriting can effec-105

tively reduce authorship attribution accuracy while106

maintaining near-original meaning and, even bet-107

ter, readability. By avoiding explicit noise injec-108

tion, our method focuses solely on removal of109

an author’s stylistic markers, yielding coherent,110

anonymized text for a variety of lengths and genres.111

Our work makes the following contributions to112

the study of text anonymization:113

1. We introduce a prompt-driven, style-aware114

text anonymization framework that modifies115

author-specific stylistic features to protect116

identity while maintaining the utility. Our117

approach is model-agnostic, making it com- 118

patible with a wide range of language models 119

and adaptable to diverse use cases. 120

2. We demonstrate that constructing a distinc- 121

tive style profile for each author requires only 122

a minimal number of samples. Our analysis 123

reveals, for the first time, the relative impor- 124

tance of stylistic features like text length, tone, 125

punctuation patterns, and vocabulary choices 126

in the anonymization process, providing an 127

explainable foundation for optimizing style- 128

aware rewriting techniques. 129

3. We establish, through empirical evaluation 130

on two user-generated datasets, that our ap- 131

proach reduces authorship-attribution accu- 132

racy by 50–70 % relative to strong baselines, 133

while achieving the highest utility scores and 134

preserving near-original readability. 135

2 Related Work 136

Text anonymization aims to obscure not only ex- 137

plicit identifiers but also subtle stylistic fingerprints 138

such as syntax, vocabulary, and discourse patterns 139

that can be leveraged for authorship attribution 140

(Sundararajan and Woodard, 2018). Earlier stud- 141

ies on text anonymization frequently employed se- 142

quence labeling techniques (Lison et al., 2021), 143

primarily focusing on removing explicit identifiers. 144

However, these methods often do not adequately 145

address higher-order linguistic structures contribut- 146

ing to an author’s unique style. Recent research has 147

increasingly explored approaches using either dif- 148

ferential privacy (DP) or paraphrasing-based meth- 149

ods to more comprehensively anonymize textual 150

data while balancing privacy and utility. 151
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2.1 DP-based Methods152

ER-AE (Bo et al., 2021) was among the first works153

in DP-based anonymization methods. It employs154

a Seq2Seq autoencoder architecture, perturbing155

latent embeddings through a two-set exponential156

mechanism. While effective in generating inter-157

pretable anonymized texts, ER-AE experiences158

limitations on longer texts due to stringent pri-159

vacy budgets. Other DP-based methods such as160

DP-Paraphrase (Mattern et al., 2022), DP-MLM161

(Meisenbacher et al., 2024), and DP-Prompt (Ut-162

pala et al., 2023) have been developed to introduce163

calibrated noise at the token level by adjusting to-164

ken probabilities during generation. For instance,165

DP-Prompt employs logit clipping and temperature166

scaling to achieve differential privacy guarantees;167

however, these modifications often negatively im-168

pact readability and semantic coherence at tighter169

privacy bounds (lower ε values).170

To mitigate some of these drawbacks, latent-171

space approaches such as DP-VAE (Weggenmann172

et al., 2022) perturb embeddings within an au-173

toencoder framework, preserving fluency better174

than token-level perturbations. Despite these ad-175

vantages, latent-space approaches may struggle176

with semantic coherence, particularly in short-form177

texts. Recently, (Meisenbacher and Matthes, 2024)178

proposed a Quasi-DP variant of DP-Prompt, remov-179

ing logit clipping and retaining only temperature-180

based sampling. However, this approach achieves181

better performance only at weak privacy guarantees182

(higher ε values), highlighting potential trade-offs183

between privacy bounds and data utility.184

2.2 Non-DP Paraphrasing Methods185

Early non-DP methods, such as Adversarial Sty-186

lometry (Brennan et al., 2012), relied on manual187

rewriting and editing, requiring significant effort188

from users to consciously alter their stylistic sig-189

natures. Recent automated approaches, such as190

JAMDEC (Fisher et al., 2024b), extract key con-191

tent tokens from texts and utilize constrained di-192

verse beam decoding with pre-trained language193

models (e.g., GPT2-XL) to generate paraphrases194

while maintaining semantic integrity. Similarly,195

STYLEREMIX (Fisher et al., 2024a) uses fine-196

grained LoRA adapters to systematically transform197

text over 7 specific style axes, such as formality198

and sentence length; however, this method neces-199

sitates additional pre-training on carefully curated200

style-specific corpora.201

Figure 2: Style Profiling. Given a set of example
texts from a single author, the large language model
is prompted to generate a concise textual summary of
the author’s writing style.

(Meisenbacher and Matthes, 2024) also intro- 202

duced a non-DP variant of DP-Prompt that discards 203

explicit differential privacy mechanisms (logit clip- 204

ping, temperature scaling) in favor of adjusting the 205

top-k sampling parameter alone. 206

Our proposed method aligns with recent work 207

in leveraging large language models (LLMs) for 208

text anonymization (Utpala et al., 2023; Meisen- 209

bacher and Matthes, 2024), but it significantly dif- 210

fers by utilizing explicit, prompt-driven stylistic 211

profiles. Unlike previous methods relying on ran- 212

dom noise injection or general paraphrasing, our 213

style-aware paraphrasing explicitly targets stylistic 214

markers, providing fine-grained control to balance 215

anonymization and semantic content preservation. 216

3 Method 217

Given a set of authors A = {A1, A2, . . . , AN}, 218

where each author Ai has a corpus of texts Di, our 219

objective is to produce an anonymized version of 220

Di such that an attacker is unlikely or less likely to 221

correctly identify the ground-truth author Ai. We 222

define the attacker model as an authorship attribu- 223

tion classifier F(·), which, given a text x ∈ Di, 224

returns either the predicted author label or a prob- 225
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ability distribution over authors. Let x̂ denote the226

anonymized version of x; our goal is to ensure:227

F(x̂) ̸= i (or low probability on i), (1)228

i.e., the classifier should either misclassify x̂ or229

assign a low likelihood to the true author i, while230

preserving the core semantic content of x.231

Unlike existing DP-based approaches that232

anonymize by injecting noise into x, we propose to233

achieve anonymization by identifying and altering234

the stylistic markers in x that distinguish the origi-235

nal author from others. Our pipeline (Algorithm 1)236

proceeds in two stages: (i) Style Profiling, and (ii)237

Rewriting, as described below.238

3.1 Style Profiling239

We define a function STYLESUMMARIZE(·) that240

uses a LLM to produce a short textual descriptor241

of an author’s stylistic cues. Let Dtrain
i ∈ Di be242

the training subset for author Ai. We randomly243

sample K texts from Dtrain
i , forming a mini-batch244

Si = {x1, x2, . . . , xK}.245

si = STYLESUMMARIZE
(
Si
)
, (2)246

where si is a short textual summary of the author’s247

writing style (Figure 2). Since Authorship attribu-248

tion typically relies on consistent lexical and syn-249

tactic patterns (Sundararajan and Woodard, 2018),250

capturing these stylometric clues can help us sys-251

tematically transform them during rewriting. In252

practice, STYLESUMMARIZE is implemented by253

prompting a pretrained LLM:254

si ∼ pθ
(
“Style summary” | Si

)
, (3)255

with some temperature or top-k sampling (Utpala256

et al., 2023).257

3.2 Zero-Shot Rewriting258

Given a text x and style profile si, our goal is to259

produce an anonymized x̂ that preserves meaning260

but reduces the author-specific style. We prompt261

the LLM with an instruction that references si and262

requests rewriting of x without those cues:263

x̂ = REWRITE
(
x, si

)
. (4)264

Here, REWRITE is implemented as a single for-265

ward pass of the LLM:266

x̂ ∼ pθ
(
“Rewrite: no style” | x, si

)
. (5)267

We assume no knowledge of the adversary’s classi-268

fier (i.e., zero-shot).269

Algorithm 1 Style-aware Paraphrasing for Text
Anonymization
Input: Language model (LM), Author cor-
pora {D1, . . . ,DN}, Style summarization function
STYLESUMMARIZE, Rewriting prompt function
REWRITE

Output: Anonymized corpus {D̂1, . . . , D̂N}

Style Summarization Prompt: “Below are exam-
ple texts from a single author: {Si}. Please sum-
marize the author’s writing style in bullet points.
Focus on details like: Sentence length and structure,
Vocabulary choice, Tone, Common punctuation or
expression patterns. Style summary:”

Rewriting Prompt: “Here is the author’s style
profile: {si}. Rewrite the following text so that it
does not reflect these style cues, but retains the
original meaning: {x} Answer with the rewritten
text only.”

1: for each author Ai in {1, . . . , N} do
2: Si ← random sample from Dtrain

i

3: si ← STYLESUMMARIZE(Si) ▷ Style
Summarization Prompt

4: end for
5: for each author Ai in {1, . . . , N} do
6: for each text x in Di do
7: p← REWRITE(x, si) ▷ Rewriting

Prompt
8: x̂← LM(p) ▷ One forward pass for

rewritten text
9: D̂i ← D̂i ∪ {x̂}

10: end for
11: end for
12: return {D̂1, . . . , D̂N}

3.3 Anonymization Framework 270

The anonymization pipeline is explained in Algo- 271

rithm 1. Lines 1–4 describe the style-profiling step 272

for each author, while lines 5–11 illustrate how we 273

rewrite each text in a single pass, with an optional 274

retry if the output is empty. 275

We highlight key advantages of our approach. 276

First, the method is model-agnostic, requiring 277

no training or fine-tuning to integrate with other 278

LLMs. Second, unlike black-box anonymization 279

techniques, it provides human-readable style pro- 280

files, which ensures transparency by identifying 281

targeted linguistic patterns for removal. Third, the 282

system generalizes effectively from as few as 5 283

samples per author, while handling texts with vary- 284
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ing length and genres without domain adaptation,285

addressing scenarios common in real-world appli-286

cations. The style-aware rewriting step preserves287

semantic content while suppressing style markers,288

as validated by both privacy and utility evaluations.289

4 Experimental Setup290

4.1 Baselines291

Our baselines are originated from the study pro-292

posed by (Meisenbacher and Matthes, 2024), who293

extended the DP-Prompt method of (Utpala et al.,294

2023) and create three variants: (i) DP, a strict im-295

plementation of DP-Prompt with varying ϵ values;296

(ii) Quasi-DP, a relaxed version omitting logit clip-297

ping but retaining temperature-based sampling tied298

to ϵ; and (iii) Non-DP, a paraphrasing variant re-299

moving DP constraints entirely. In our experiments,300

we compare against all three, with Non-DP serv-301

ing as a particularly relevant baseline since it para-302

phrases the input without noise injection and also303

yields better results compared to the DP variants304

in most cases (Table 3). We report results for three305

representative parameter values per method: DP306

(ϵ = 25, 100, 250), Quasi-DP (ϵ = 25, 100, 250),307

and Non-DP (k = 50, 10, 3). These values capture308

the low, moderate, and high privacy levels. Due to309

space limitation, we exclude intermediate settings310

(e.g., ϵ = 50, 150 or k = 25, 5) presented in the311

original study, as their results closely follow the312

expected trend between adjacent values. Addition-313

ally, we do not report results for other approaches314

discussed in 2.1, as their evaluation frameworks315

often diverge significantly from ours, particularly316

in terms of datasets. The selected baselines are not317

only methodologically aligned with our approach318

(e.g., LLM-based frameworks) but also share com-319

parable evaluation protocols, enabling a fair and320

meaningful comparison.321

4.2 Dataset322

Similar to (Meisenbacher and Matthes, 2024), we323

adopt the Author10 subset from the Blog Author-324

ship Corpus (Schler et al., 2006). In addition to325

this, we consider a smaller, short-form text scenario326

using a subset of Google Reviews (Li et al., 2022).327

The original Google Reviews dataset contains over328

666 million reviews from more than 113 million329

users across the United States. In this paper, we330

focus on the state of Illinois, one of the states with331

the largest number of reviews, and then select the332

top 9 most frequent reviewers. This yields a set of333

Dataset Authors Docs D/A W/S S/D

Author10 10 15,070 1,507 14.3
(±12.8)

4.74
(±4.56)

Illinois9 9 3,959 439.89 9.19
(±4.82)

2.24
(±1.89)

Table 1: Dataset statistics for Author10 (long-form
blogs) and Illinois9 (short reviews). D/A = documents
per author, W/S = words per sentence, S/D = sentences
per document. Values in (.) indicate standard deviations.

approximately 3,959 reviews, each typically 1–2 334

sentences in length. We refer to this dataset as 335

Illinois9 in our experiments. A summary of both 336

datasets, including document length distributions, 337

is provided in Table 1. 338

4.3 Evaluation Metrics 339

We follow the overall evaluation protocol from 340

(Meisenbacher and Matthes, 2024) using both util- 341

ity and privacy metrics to assess our anonymization 342

strategy. However, to better capture the divergence 343

from the informational content of the original text, 344

we also report the distance between the original 345

and paraphrased text using a weighted KL diver- 346

gence, which penalizes the disappearance of rare, 347

informative tokens by weighting the KL divergence 348

with their IDF. 349

Utility metrics. We evaluate model utility by 350

measuring the semantic similarity between the orig- 351

inal and anonymized versions of the text. As in 352

(Meisenbacher and Matthes, 2024), we embed each 353

text with three pre-trained models ALL-MINILM- 354

L6-V2, ALL-MPNET-BASE-V2, and GTE-SMALL 355

(Li et al., 2023) and report the averaged cosine 356

similarity (CS) across the models. In addition, we 357

report the perplexity (PPL) (Weggenmann et al., 358

2022) for both versions of texts, where the perplex- 359

ity is computed with GPT-2 (Radford et al., 2019). 360

A higher CS and lower PPL typically signify better 361

content preservation and readability. For meth- 362

ods delivering comparable privacy scores (Table 5), 363

we additionally report a weighted KL divergence 364

that is sensitive to the loss of rare yet informa- 365

tive tokens. Let P and Q denote the normalized 366

term–frequency distributions of the original docu- 367

ment and its anonymized counterpart, respectively; 368

rare tokens are up-weighted by their inverse docu- 369

ment frequency IDF: 370

DW-KL(P ∥ Q) =
∑
t∈V

IDF(t)P (t) log
P (t)

Q(t)
, 371
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CS(P,Qi) DKL(P ∥Qi) DW−KL(P ∥Qi)

Q1 0.67 7.31 7.31
Q2 0.67 7.31 36.55

Table 2: Toy example against P : “quokka quietly
grazes”→{quokka, quietly, grazes}. Q1: “quokka qui-
etly munches”→{quokka, quietly, munches}. Q2: “ani-
mal quietly grazes”→{animal, quietly, grazes}. All KL
divergences are computed with smoothing ϵ = 10−10.

where V is the vocabulary of the original corpus.372

For instance, as shown in Table 2, the weighted KL373

divergence can capture the semantic importance of374

missing “quokka”. While both paraphrased sen-375

tences, i.e., Q1 and Q2 share the same cosine simi-376

larity with the original sentence, P , the weighted377

KL score sharply penalizes Q2 for dropping a rare,378

informative word. As can be seen, lower values379

indicate that the anonymized text better retains the380

informative token distribution of the original text.381

Privacy metrics. We report the BLEU (Pa-382

pineni et al., 2002) score between the original383

and anonymized versions of the text. A lower384

BLEU may indicate greater lexical transforma-385

tion, potentially beneficial for privacy. Second,386

we quantify privacy by measuring how effectively387

anonymized text conceals the identity of its orig-388

inal author. Specifically, we adopt an authorship389

attribution scenario (Mattern et al., 2022; Weggen-390

mann et al., 2022), where an authorship classifier391

is trained on the original training set but tested392

on the anonymized test set. A lower F1 indicates393

stronger privacy, as it reflects the classifier’s dimin-394

ished ability to link anonymized text to the cor-395

rect author. For the Author10 dataset, we trained396

a DEBERTA-V3 (He et al., 2021) model for au-397

thorship attribution using the same parameters as398

(Meisenbacher and Matthes, 2024). For the Illi-399

nois9 dataset, we employed BERT (Devlin, 2018),400

as it has demonstrated high performance, particu-401

larly on short-form review datasets such as IMDb,402

which closely resemble Illinois9 (Fabien et al.,403

2020). To jointly assess the balance between utility404

preservation and privacy protection, we addition-405

ally report the relative gain metric γ (Mattern et al.,406

2022; Meisenbacher and Matthes, 2024):407

γ :=
Sp

So
− Ap

Ao
,408

where A and S are authorship F1 scores and CS on409

original (subscript o) and anonymized (subscript p)410

data, respectively.411

4.4 Parameter Variations and Setup 412

LLM Models. We adopt LLAMA-3.2-3B- 413

INSTRUCT (Touvron et al., 2023) as our primary 414

model due to its instruction-tuned architecture, 415

which makes it well suited for generating rich 416

style profiles. Furthermore, its open-source na- 417

ture aligns with our privacy-centric design goals, 418

ensuring transparency and reproducibility in our 419

framework. To demonstrate the model-agnostic na- 420

ture of our framework, we also run our experiment 421

with MINICPM3-4B (Hu et al., 2024), a versa- 422

tile and highly capable model that surpasses many 423

larger models (e.g., GPT-3.5-Turbo and Phi-3.5- 424

mini-Instruct) on various benchmarks demonstrat- 425

ing its generalization, reasoning, and instruction- 426

following capabilities. 427

Sample Size for Building Style Profiles. We ex- 428

perimented with K ∈ {2, 5, 10, 20} texts per au- 429

thor to prompt the LLM for a “style profile,” as 430

introduced in Section 3.1, where K denotes the 431

number of example texts used to capture an au- 432

thor’s stylistic features. As shown in Appendix C, 433

even K = 5 examples are sufficient to produce ro- 434

bust and distinctive profiles for both Author10 and 435

Illinois9, so we adopt this as our default setting. 436

5 Results & Discussion 437

Table 3 summarizes the performance of three major 438

approaches listed in Section 2.1 and 2.2, i.e., DP- 439

Prompt with varying ε, Quasi-DP, and Non-DP 440

against Ours. 441

5.1 Privacy Performance 442

As shown in Table 3, our method reduces author- 443

ship attribution accuracy by 50–70%, achieving 444

an F1 score of 26.02 (vs. original 66.45) on the 445

Author10 dataset and 20.76 (vs. original 76.78) 446

on the short-form Illinois9 corpus. These results 447

significantly outperform the Non-DP paraphrasing 448

baseline and surpass DP-Prompt at nearly all pri- 449

vacy levels. For example, on Author10 at k=3, our 450

method reduces F1 to 26.02, a 51% improvement 451

over the Non-DP paraphrasing method (53.10), 452

which retains identifiable authorship signals. The 453

performance on Illinois9 in particular demonstrates 454

robust anonymization even in short-text domains 455

where stylistic cues are sparse, contrasting with 456

Non-DP paraphrasing, which struggles to disrupt 457

authorship patterns in such settings. 458

As far as DP-Prompt is concerned, the sole ex- 459

ception is Author10 at ε=25, where DP achieves 460
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Baseline DP (ε) Quasi-DP (ε) Non-DP (k) Ours

ε / k 25 100 250 25 100 250 50 10 3 LLAMA MINICPM

Author10

CS ↑ 1 0.589 0.812 0.832 0.347 0.810 0.833 0.710 0.750 0.787 0.702 0.82
BLEU ↓ 1 0.077 0.123 0.153 0.001 0.121 0.153 0.049 0.063 0.088 0.023 0.213
PPL ↓ 41 8770 928 905 16926 982 925 816 1080 837 42.47 61.53

Author F1 (s) ↓ 66.45 7.13 58.10 60.60 6.59 57.84 61.13 46.83 49.88 53.10 26.02 49.46
Gain (γ) - 0.482 -0.062 -0.080 0.248 -0.060 -0.087 0.005 -0.001 -0.012 0.31 0.076

Illinois9

CS ↑ 1 0.592 0.894 0.914 0.595 0.892 0.916 0.812 0.84 0.879 0.709 0.89
BLEU ↓ 1 0.013 0.432 0.497 0.015 0.424 0.52 0.255 0.292 0.373 0.022 0.31
PPL ↓ 98.83 220.66 89.15 96.99 222.16 89.63 94.93 82.19 75.89 84.72 53.36 43.05

Illinois F1 (s) ↓ 76.78 23.42 61.73 64.86 21.84 59.90 65.35 49.32 51.22 54.94 20.76 47.90
Gain (γ) - 0.287 0.09 0.069 0.311 0.112 0.065 0.17 0.173 0.163 0.439 0.266

Table 3: Privacy and Utility performance on the Author10 and Illinois9 datasets. Metrics include Cosine Similarity
(CS), BLEU, Perplexity (PPL), Authorship F1 (static), and Relative Gain (γ). Baseline refers to the original
(unaltered) input text. For DP-based methods, smaller ϵ values correspond to tighter privacy guarantees.

stronger anonymity with F1 = 7.13 vs. ours (26.02).461

However, this comes at a significant cost: DP’s per-462

plexity at ε=25 is 8,770, more than 200× higher463

than ours (42.47) which suggests that such privacy464

guarantees have come at the cost of significantly465

reduced readability.466

5.2 Utility Preservation467

We report near-baseline perplexity for the LLAMA468

variant (42.47 and 53.36 vs. original 41 and 98.83),469

and even lower perplexity for MINICPM on Illi-470

nois9 (Table 3). This outperforms DP meth-471

ods at strong privacy levels (PPL >1,000) and472

Non-DP paraphrasing on Author10 (PPL 800–473

1,080). Quasi-DP performs even worse in some474

settings: on Author10 at ε=25, its perplexity ex-475

ceeds 16,000, and remains well above baseline even476

at higher ε levels. It is important to highlight that477

despite significant stylistic perturbation (BLEU478

= 0.023), the perplexity remains stable, indicat-479

ing that our approach successfully targets stylistic480

rather than semantic features. This is further con-481

firmed by the high cosine similarity (≈ 0.70) even482

as the authorship F1 drops.483

5.3 Full vs. Single-Dimension Style Profiles484

All earlier results rely on the default configura-485

tion of Algorithm 1. During STYLEPROFILING486

(lines 1–4) the LLM produces a Full profile based487

on four features: tone, vocabulary choice, length,488

and punctuation. To measure the impact of each489

cue, we repeat exactly the same procedure with490

four single-dimension profiles (Tone, Length, Vo-491

cab, and Punc). We then supply the chosen profile492

together with the source text in a separate rewriting493

Metric Baseline Full Profile Length

CS ↑ 1.000 0.709 0.713
BLEU ↓ 1.000 0.022 0.022
PPL ↓ 98.83 53.36 54.71
Author F1 (s) ↓ 76.78 20.76 19.32
Gain (γ) – 0.439 0.461

Table 4: Ablation on style-profile types (Illinois9). See
Appendix C for full results.

prompt, asking the LLM to preserve the original 494

meaning while removing the style markers named 495

in the profile. As Table 4 shows, the Full profile 496

delivers the best overall privacy–utility trade-off. 497

However, the Length-only variant comes surpris- 498

ingly close for Illinois9. It matches or slightly ex- 499

ceeds the Full profile in privacy gain (∆F1) while 500

preserving marginally higher cosine similarity. We 501

attribute this to the short, structurally uniform na- 502

ture of review texts, where sentence length is al- 503

ready a strong authorial fingerprint. On the more 504

varied Author10 corpus the gap narrows: Tone, 505

Length, and even Vocab come within 0.2–0.3 pt 506

of the Full profile on both F1 and CS (see Ap- 507

pendix C). While no single cue dominates across 508

datasets, the Full profile remains the most stable 509

choice, delivering strong privacy–utility trade-offs. 510

5.4 Effect of the Base LLM: LLAMA-3.2-3B 511

vs. MINICPM3-4B 512

Table 3 also shows how the choice of LLM af- 513

fects the performance of our method. Across both 514

datasets, LLAMA consistently yields substantially 515

lower Authorship-F1 and BLEU scores, indicat- 516

ing that it is more effective at neutralising stylistic 517
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cues and tends to perform more aggressive lexical518

rewrites. By contrast, MINICPM produces higher519

CS scores, reflecting stronger surface-level con-520

tent preservation, but also higher Authorship-F1,521

signalling that a greater share of stylistic signal re-522

mains detectable. With regard to perplexity, the two523

models display complementary behaviour. LLAMA524

demonstrates slightly higher PPL on short texts,525

while MINICPM consistently maintains lower per-526

plexity, but at the cost of weaker privacy. There-527

fore, choosing LLAMA leads to a balanced privacy-528

utility tradeoff as indicated by the higher relative529

gain. This advantage likely stems from LLAMA’s530

stronger instruction-following capabilities.531

5.5 Style-Guided, Semi-Guided, and532

Unguided (Paraphrase) Rewrites533

Rewrite variants. Our default style-guided pipeline534

gives the LLM an explicit style profile and asks it to535

"rewrite the text so it no longer reflects these cues."536

We ablate two other variants: (i) Semi-guided uses537

the same prompt as above but without supplying538

a profile, and (ii) Unguided / Paraphrase does539

not mention style at all; the model is prompted540

to "rewrite the text."541

Table 5 contrasts our standard style-guided542

rewrite with the other two variants (LLAMA-3.2-543

3B-INSTRUCT). On Author10 the semi-guided set-544

ting achieves slightly better Author-F1 scores but545

at the cost of noticeably worse utility: PPL rises,546

CS falls, and weighted KL divergence increases,547

indicating greater distortion of informative tokens.548

Further analyses in Appendix A (GPT-4 preference549

judgements and named-entity retention) confirm550

that our style-guided rewrite maintains more infor-551

mational content while achieving nearly the same552

privacy levels as the semi-guided variant. Taken553

together, these patterns also hint that the authorship554

classifier is not relying solely on stylistic cues but555

also draws on residual content when identifying the556

author. A fully unguided/paraphrase version does557

even worse, yielding the largest utility loss while558

leaving a sizable authorship signal, underscoring559

the value of explicit style guidance.560

5.6 Discussion561

Our results confirm that explicit, multi-dimension562

style profiles are the key to a favourable pri-563

vacy–utility balance. Style guided rewrites consis-564

tently suppress authorship signal by 50–70% while565

maintaining high CS and near baseline PPL scores,566

something neither DP noise nor token-level para-567

Style-Guided Semi-Guided Paraphrase

Author10
CS ↑ 0.702 0.694 0.752
BLEU ↓ 0.023 0.018 0.034
PPL 42.47 42.39 56.04
Author F1 ↓ 26.02 24.10 36.61
Weighted KL ↓ (All) 48.75 49.48 41.11
Weighted KL ↓ (Subset) 39.39 42.96 33.60

Illinois9
CS ↑ 0.709 0.746 0.791
BLEU ↓ 0.022 0.027 0.039
PPL 53.36 52.85 61.46
Author F1 ↓ 20.76 22.64 29.37
Weighted KL ↓ (All) 58.33 57.16 46.87
Weighted KL ↓ (Subset) 52.10 49.97 41.59

Table 5: Comparison of Style-Guided vs. Semi-
guided and Paraphrase rewrites on Author10 and Illi-
nois9.“Subset” shows performance on only the subset
of samples where one method successfully prevented
author re-identification while the other method did not.

phrasing can match. Although the semi-guided 568

variant trims Author-F1 slightly further on Au- 569

thor10, the extra privacy gain is achieved at a 570

clear utility cost: the weighted KL divergence rises 571

while CS falls. Further analysis provided in Ap- 572

pendix. A.1 and Appendix A.2 also confirms that 573

the higher privacy levels of semi-guided variant is 574

achieved largely by discarding meaning rather than 575

by precise style removal. 576

The ablation in Table 4 adds nuance: on the 577

short, uniform Illinois9 reviews, Length-only guid- 578

ance nearly matches the Full profile, suggesting 579

that minimal cues can suffice when structure is con- 580

sistent. For longer, more varied posts, however, the 581

full profile remains clearly superior. 582

Overall, our findings reinforce that structured, 583

style-aware guidance offers a reliable way to navi- 584

gate the privacy–utility tradeoff in anonymized text 585

generation. 586

6 Conclusion 587

We present a novel text anonymization framework 588

that employs explicit, prompt-driven stylistic pro- 589

filing to effectively mask authors’ identity while 590

preserving semantic content. Our approach demon- 591

strated robust performance across both long-form 592

(blogs) and short-form (reviews) text datasets, sig- 593

nificantly outperforming differential privacy-based 594

and paraphrasing baselines. Comprehensive evalua- 595

tions suggests that our style-guided anonymization 596

better retains the original content and meaning com- 597

pared to noise-based anonymization approaches. 598

By rigorously analyzing the privacy–utility trade- 599

off, we highlighted the critical role of precise stylis- 600

tic manipulation in anonymization effectiveness. 601
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7 Limitations602

While this study demonstrates promising outcomes,603

it also presents several avenues for future investiga-604

tion. Notably, the proposed method depends on the605

capacity of LLMs to accurately extract and gener-606

alize stylistic features such as syntactic construc-607

tions (e.g. passive-voice preferences), idiosyncratic608

collocations, or rhetorical patterns (parallelism,609

anaphora). As illustrated in Appendix D (Table 9),610

certain authorial fingerprints can slip through our611

hand-picked cues.Therefore, anonymization per-612

formance may be shaped by the quality and char-613

acteristics of the specific LLM employed. This614

highlights the need for further research into model615

selection and refinement, as well as the develop-616

ment of automated or unsupervised style profiling617

techniques to reduce potential biases associated618

with manually selected features.619

Privacy in our study is primarily assessed via620

the drop in F1 of an authorship classifier trained621

on the original corpus, which has been a standard622

approach in prior work. However, as shown in623

Section 5.5, the classifier may also leverage content624

signals, meaning lower F1 can reflect both style625

obfuscation and content loss. This underscores626

the need for more nuanced evaluation frameworks627

that disentangle these factors and provide clearer628

guidance for improving stylistic anonymization.629

8 Ethical Consideration and Potential630

Risks631

Our style-aware paraphrasing framework effec-632

tively conceals authorship, but it also carries the633

risk of adversarial misuse. Malicious actors could634

leverage this technique to disguise the provenance635

of disinformation, hate speech, or other harmful636

content, thereby evading forensic attribution and637

undermining content moderation efforts. Such638

abuse underscores the need for responsible deploy-639

ment. For detailed results on demographic-attribute640

inference (gender and age), see Appendix B.641
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A Supplementary Analyses on Guided vs.880

Semi-guided Rewriting881

To better understand the small privacy edge of the882

Semi-guided Rewrite over the Style-guided vari-883

Style-Guided Semi-guided

Full Corpus 847 649
Subset (n=121) 105 16

Table 6: GPT-4 preferences for content retention
between style-guided and semi-guided rewrites (Au-
thor10).

ant in Author10 dataset, we ran two complemen- 884

tary analyses: an LLM-based content judgement 885

and a named-entity retention study, alongside the 886

weighted KL results already reported in Table 5. 887

Each analysis was carried out on (i) the full test set 888

and (ii) the subset where the semi-guided method 889

achieves lower Author-F1 (121 cases). 890

A.1 LLM-Based Content Judgment 891

Recent NLP studies have utilized LLMs such as 892

GPT-4 (OpenAI et al., 2024) for human-aligned 893

evaluative tasks, demonstrating strong agreement 894

with human judgments on content quality and in- 895

formativeness (Liu et al., 2023) (Li et al., 2024). 896

Leveraging this capability, we employ GPT-4 897

to objectively compare our style-guided and semi- 898

guided rewriting methods with respect to content 899

retention. Such automated evaluations have been 900

shown to correlate strongly with human annotation, 901

providing a scalable and consistent measurement 902

approach (Wang et al., 2023). 903

We conducted a comparative evaluation using 904

GPT-4 to systematically assess content retention 905

between the two anonymized versions. For each 906

triplet ⟨x, x̂style−guided, x̂semi−guided⟩, GPT-4 was 907

prompted to select the anonymized variant that bet- 908

ter preserves the semantic content of the original. 909

On the full corpus, GPT-4 preferred the style- 910

guided version in 847 cases compared to 649 for 911

the semi-guided Rewrite (Table 6), highlighting that 912

incorporating explicit stylistic profiles significantly 913

improves semantic preservation. Even within the 914

122-text subset where the semi-guided Rewrite 915

demonstrated better privacy than the style-guided 916

version for all samples, the style-guided method 917

was overwhelmingly favored 105 to 16. This in- 918

dicates that the marginal privacy gains achieved 919

by the semi-guided method were largely due to 920

excessive removal or distortion of meaningful con- 921

tent, rather than targeted style anonymization. Our 922

style-guided approach demonstrates superior per- 923

formance in maintaining semantic integrity, effec- 924

tively balancing the trade-off between privacy and 925

utility. 926

11

https://www.cnts.ua.ac.be/~walter/educational/material/Stamatatos_survey2009.pdf
https://www.cnts.ua.ac.be/~walter/educational/material/Stamatatos_survey2009.pdf
https://www.cnts.ua.ac.be/~walter/educational/material/Stamatatos_survey2009.pdf
https://aclanthology.org/C18-1238/
https://doi.org/10.18653/v1/2023.findings-emnlp.566
https://doi.org/10.18653/v1/2023.findings-emnlp.566
https://doi.org/10.18653/v1/2023.findings-emnlp.566
https://doi.org/10.18653/v1/2023.newsum-1.1
https://doi.org/10.18653/v1/2023.newsum-1.1
https://doi.org/10.18653/v1/2023.newsum-1.1
https://doi.org/10.1145/3485447.3512232
https://doi.org/10.1145/3485447.3512232
https://doi.org/10.1145/3485447.3512232
https://doi.org/10.1145/3485447.3512232
https://doi.org/10.1145/3485447.3512232


A.2 Named-Entity Retention927

We evaluated named-entity retention, which is a928

critical indicator of semantic fidelity given the na-929

ture of our datasets. In blog posts (Author10),930

named entities often include personal references,931

locations, and events crucial for maintaining narra-932

tive coherence. We define the entity retention loss933

per document as:934

∆ents(m) = |ents(x)| − |ents(x̂m)|,935

936
m ∈ {style− guided, semi− guided}.937

Across the full test set (N = 1,503), the938

profile-guided method yielded an average loss of939

1.95 entities per text, whereas the semi-guided940

Rewrite exhibited a higher average loss of 2.11941

entities. Of the total 5,434 entities originally iden-942

tified, the profile-guided approach preserved 2,507943

entities (46.1%), significantly outperforming the944

semi-guided Rewrite, which retained only 2,267945

entities (41.7%). These results confirm that the946

semi-guided Rewrite attains marginally better pri-947

vacy metrics by at the cost of sacrificing named948

entities that are inherently crucial to the semantic949

and contextual value of the original text.950

B Age and Gender Inference951

Prior work on text privatization, most notably952

(Meisenbacher et al., 2024) also measures privacy953

by how well an adversary can infer sensitive at-954

tributes such as gender and age. To keep our results955

comparable, we adopt their static evaluation setting956

on Author10. A DEBERTA-V3-BASE classifier is957

fine-tuned for three epochs on the original train958

split and then evaluated on the anonymized test959

split.1 Because Author10 is less demographically960

diverse than Topic10 (the dataset used by (Meisen-961

bacher et al., 2024)), we can form only three age962

bins (rather than five)963

As shown in Table 7, we observe significant964

drops in attribute inference: Gender-F1 falls from965

0.66 to 0.55 (17%), and age F1 from 0.73 to 0.43966

(41%). These gains are achieved without any967

attribute-specific paraphrasing, suggesting that de-968

mographic signals are strongly encoded in writing969

style and are attenuated as a by-product of our style970

neutralization, echoing prior sociolinguistic find-971

ings (Johannsen et al., 2015).972

1Adaptive results are omitted because our focus is author-
ship obfuscation; the static scores are sufficient to illustrate
the trend.

Method Gender F1 ↓ Age F1 ↓

Baseline 0.66 0.73
Full 0.56 0.44
Len 0.56 0.44
Tone 0.57 0.43
Vocab 0.55 0.44
Punc 0.55 0.43

Table 7: Adversarial inference of gender and age on
anonymized Author10. Lower F1 implies stronger pri-
vacy.

C Change in Style Profiles 973

Table 8 reports performance when the LLM is 974

guided by either a full style profile or a single stylis- 975

tic dimension (Length, Tone, Vocab, Punc). While 976

the full profile performs best overall, the margin 977

over single-feature profiles is surprisingly small; in 978

several cases Length even matches the full profile 979

on relative gain (γ) while preserving slightly higher 980

cosine similarity. This suggests that the LLM can 981

implicitly infer additional stylistic cues even when 982

prompted with only one salient feature. 983

Distinctiveness of individual profiles. To under- 984

stand why some single features still work well, 985

we measure two corpus-level statistics for each 986

feature-specific profile set, varying the number 987

of training examples used to create the profile 988

(K ∈ {2, 5, 10, 20}). We run this analysis on the 989

shorter Illinois9 reviews, because with longer Au- 990

thor10 posts the K=20 prompt would exceed the 991

LLM’s context window, preventing reliable profile 992

generation. 993

• Average TF–IDF T (Fig. 3a, left) estimates how 994

much unique lexical information each profile car- 995

ries. Length consistently yields the highest T , 996

followed by Vocab, whereas Punc scores lowest. 997

• Average pairwise cosine similarity C (Fig. 3b, 998

right) gauges how distinct profiles are across 999

authors. Lower values imply stronger author 1000

discrimination; again Length is most distinctive, 1001

while Punc clusters tightly. 1002

Both T and C increase modestly from K=2 to 1003

K=5 and then level off, confirming that as few 1004

as five random examples are sufficient to capture 1005

a representative style profile. The strong perfor- 1006

mance of Length in the privacy metrics aligns with 1007

its combination of high lexical uniqueness and clear 1008

inter-author separability. 1009

Correlation with downstream performance. 1010

Across the 16 feature–size combinations (four fea- 1011
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(a) Average TF-IDF (b) Average Pairwise CS

Figure 3: Lexical uniqueness (T , left) and inter-author distinctiveness (C, right) of single-feature style profiles on
Illinois9, across different profile sizes K.

Illinois9 Author10

Metric Baseline Full Length Tone Vocab Punc Baseline Full Length Tone Vocab Punc

CS ↑ 1 0.709 0.713 0.711 0.712 0.714 1 0.702 0.702 0.703 0.704 0.703
BLEU ↓ 1 0.022 0.022 0.021 0.021 0.023 1 0.023 0.027 0.024 0.029 0.028
PPL ↓ 98.83 53.36 54.71 54.67 55.66 54.57 41 42.47 42.75 42.27 41.96 42.57
Authorship F1(s) ↓ 76.78 20.76 19.32 20.36 21 19.24 66.45 26.02 25.85 24.35 24.78 24.77
Gain (γ) - 0.439 0.461 0.446 0.438 0.463 - 0.31 0.313 0.337 0.331 0.33

Table 8: Performance using full vs. single-feature profiles on Illinois9 and Author10. Lower is better for BLEU,
PPL, and Authorship F1; higher is better for CS and γ.

tures, four values of K), a random-forest LOOCV1012

indicates the same pattern suggested by Figure 3:1013

the average TF–IDF score T is the strongest predic-1014

tor of privacy gain ∆F1 (feature importance = 0.67;1015

R2 = 0.19), whereas average pairwise cosine C is1016

most predictive of utility loss in PPL (importance =1017

0.55; R2 = 0.48). Although the explained variance1018

is moderate, there is still a trend. Profiles that are1019

both lexically rich and author-distinctive (most no-1020

tably Length) produce larger privacy gains with an1021

acceptable utility cost, helping single-feature guid-1022

ance approach the performance of the full profile1023

in many cases.1024

D Qualitative Case Study1025

The central dilemma of text anonymization lies1026

in removing stylistic fingerprints without erasing1027

essential content. Low–ε DP outputs clearly pri-1028

oritise privacy, but the added noise obliterates the1029

meaning of a sentence. Conversely, Non-DP and1030

Quasi-DP varaints often seem to rephrase fluently1031

but semantically drift from the original text. For ex-1032

ample in Table 9, the original text is a back-handed1033

compliment: it sounds positive while implicitly1034

teasing the person for merely meeting a low bar. 1035

Temperature sampling flattens this nuance into a 1036

bland affirmation like “Rosie is a great speaker.” 1037

Although grammatically correct, the rewrite erases 1038

the original sarcasm, thereby degrading informa- 1039

tion fidelity while still leaving enough anchors for 1040

re-identification. 1041

Our style-guided rewrites deliberately keep a 1042

named entity such as “Rosie” when it is essential 1043

to the sentence’s meaning, accepting a slight pri- 1044

vacy cost to avoid distorting the author’s intent. 1045

This leads to the identification of the author, echo- 1046

ing with our earlier findings in section 5.6 that the 1047

authorship classifier not just relies on style cues 1048

but also content cues. Erasing every salient token 1049

would prevent identification but at the price of los- 1050

ing the intended message. Across all other cases, 1051

our style-guided variant successfully replaces dis- 1052

tinctive tokens or restructures the sentence, deliver- 1053

ing strong privacy gains while consistently preserv- 1054

ing the meaning. Additional examples are provided 1055

in Table 10 and Table 11. 1056
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Method ϵ/k Anonymized Text Identified? Weighted KL

Original text — Wow. I’m glad Rosie talks in complete sentences. It’d be kind
of annoying if she didn’t.

Yes —

DP
25 Wow, it will be like “wow if they doesn’t!” so you’ve probably

heard what Rosie’s heard. “Wow, and indeed Rosie spelled
it correctly,” this was a reaction the ghuggish female leader
honed.

No 42.06

50 Rosie is a complete speaker. Yes 62.84
100 Rosie is a complete speaker. Yes 62.84
150 Rosie is very good at talking in sentences. Yes 61.13
250 Rosie is a good speaker. Yes 67.93

Quasi-DP
25 Sore words No 71.88
50 Wow. I’m glad Rosie talks in complete sentences. It would be

kind of annoying if she didn’t.
Yes 3.03

100 Rosie talks in complete sentences. Yes 49.35
150 Rosie is good at talking. Yes 67.93
250 Rosie is very good at speaking. Yes 67.97

Non-DP
3 I’m glad Rosie talks in complete sentences. Yes 25.59
5 Rosie is a great speaker. Yes 67.93
10 Rosie is good at words. Yes 67.93
25 Rosie talks in full sentences. Yes 54.44
50 I’m glad Rosie talks in terms of sentences. Yes 29.96

Ours
Style guided Rosie’s ability to speak in full sentences is refreshing; other-

wise, her conversations might become tedious.
Yes 44.40

Semi-guided It’s refreshing to hear someone communicate effectively and
clearly without filler words or short phrases.

No 54.00

Table 9: Rewritten texts (short form) from Author10 dataset. Note: For DP-based methods, smaller ϵ values
correspond to tighter privacy guarantees.

E Implementation and Hyperparameter1057

Settings1058

All experiments were run on a single-GPU kernel1059

in Amazon SageMaker Studio, using the default1060

PyTorch pytorch_p310 container (Python 3.10.8).1061

We used NVIDIA T4 (16 GB) or A10G (24 GB)1062

GPUs with CUDA driver/toolkit 12.1. The soft-1063

ware stack comprised PyTorch 2.2.2, Transformers1064

4.51.3, Hugging Face Hub 0.31.2 and the OpenAI1065

Python client 1.23.6. Additional packages included1066

sentence-transformers 4.1.0, evaluate 0.4.3,1067

sentencepiece 0.2.0, bitsandbytes 0.45.5,1068

spaCy 3.7.4 (model en_core_web_sm 3.7), pandas1069

2.2.3, numpy 1.26.4, tqdm 4.67.1, seaborn 0.13.21070

and scikit-learn 1.4.2.1071

E.1 Large-Language-Model Inference1072

All LLM calls were inference only (no fine-1073

tuning, LoRA or gradient checkpointing). We1074

ran both MINICPM (openbmb/MiniCPM3-4B) and1075

LLAMA (meta-llama/Llama-3.2-3B-Instr.)1076

in BF16 with automatic device mapping. For each1077

model, style profiling used a temperature of 0.3,1078

top-p of 0.9, up to 256 new tokens and a repetition 1079

penalty of 1.2. Rewriting used a temperature of 1080

0.7, top-p of 0.7, up to 64 new tokens and the same 1081

repetition penalty. Unguided paraphrasing also ran 1082

in BF16 with temperature 1.0, top-p 0.9, up to 64 1083

new tokens and repetition penalty 1.2. Judgments 1084

were obtained via the GPT-4 API (gpt-4-0314) 1085

with temperature set to 0 and a 2048-token context 1086

window. 1087

E.2 Style-Profiling Parameters 1088

Each style profile was built from up to five author 1089

snippets (max_examples=5). We experimented 1090

with five prompt variants (prompt_type ∈ {full, 1091

length, vocab, tone, punc}) and allowed up to three 1092

retry attempts for both profile generation and rewrit- 1093

ing. 1094

E.3 Authorship and Attribute Classifiers 1095

We trained a BERT-base(Devlin, 2018) sequence 1096

classifier on the Illinois9 data for three epochs 1097

(batch size 32; learning rate 2 × 10−5; warm- 1098

up ratio 0.1; weight decay 10−2; max-norm 1.0). 1099
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Method ϵ/k Anonymized Text Identified? Weighted KL

Original text — So much to see and do. Shops are upscale and offer such a
great selection of products.

Yes —

DP
25 Visit. Also love going shopping by shopping street. Yes 62.76
50 Among the many shopping shops: the high-end resorts, all-

inclusive resort or just the old-fashioned way.
No 57.32

100 The shops are upscale and offer such a great selection of prod-
ucts.

No 17.59

150 Great shopping and restaurants. No 58.65
250 The shopping is upscale and the restaurants are very good. No 52.12

Non-DP
3 There are so many things to see and do in the city. No 43.65
5 The shops offer a wide range of goods and services. No 45.71
10 The upscale shopping area is a great place to visit if you are in

the mood for upscale shopping.
No 49.44

25 Shops at Luxor are very well appointed and have beautiful
architecture. The hotel is very good for family or business.

No 52.63

50 Amazing shopping and unique shops. Yes 54.97

Quasi-DP
25 One can travel around city—there are so much to look at and

do.
No 44.04

50 They have numerous boutiques and restaurants, all in a nice
hotel.

No 59.76

100 The shopping area is spacious and well kept. No 60.80
150 The shops are upscale and offer such a great selection of prod-

ucts.
No 17.59

250 The shops are upscale and offer such a great selection of prod-
ucts.

No 17.59

Ours
Style guided The area boasts an impressive array of high-end shopping op-

tions, featuring a diverse range of premium goods.
No 59.71

Semi-guided There is plenty to explore in this area, with high-end stores
providing an extensive range of goods available for purchase.

No 59.15

Table 10: Rewritten texts from Illinois9 dataset. Note: For DP-based methods, smaller ϵ values correspond to tighter
privacy guarantees.

For Author10 (including gender and age), we fine-1100

tuned DeBERTa-v3-base (He et al., 2021) using the1101

identical optimizer settings, batch size, and training1102

schedule as in (Meisenbacher and Matthes, 2024).1103

E.4 Evaluation Metrics1104

Perplexity was computed with GPT-2-base (Rad-1105

ford et al., 2019) (max_length=512); cosine1106

similarity by averaging sentence embeddings1107

from all-MiniLM-L6-v2, all-mpnet-base-v2 and1108

thenlper/gte-small (batch size 32); BLEU (Pap-1109

ineni et al., 2002) via the Hugging Face Evalu-1110

ate v0.4.3 bleu metric; weighted KL divergence1111

over a BERT-base-uncased word-piece tokens with1112

smoothing ε = 10−10; and named-entity retention1113

by comparing original versus anonymized entity1114

counts extracted with spaCy’s en_core_web_sm.1115

E.5 Dataset Splits 1116

The Illinois9 data were split into 3,167 training 1117

examples (80%) and 792 test examples (20%). 1118

For Author10, we adopted the original 90/10 split 1119

(13,562 training examples and 1,507 test examples) 1120

as provided by (Meisenbacher and Matthes, 2024). 1121

E.6 Compute Budget 1122

Style profiling and rewriting with MINICPM3–4B 1123

on NVIDIA T4 GPUs consumed approximately 1124

2.8 GPU-hours for the Author10 dataset and 1.5 1125

GPU-hours for Illinois9. Using LLAMA-3.2-3B 1126

on NVIDIA A10G GPUs required about 1.0 GPU- 1127

hour on Author10 and 0.3 GPU-hours on Illinois9. 1128
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Method ϵ/k Anonymized Text Identified? Weighted KL

Original text — I read an interesting article on human stupidity. It is a pretty
much long article, but it is kind of interesting. Read ‘The
Basic Laws of Stupidity’. It has been a couple of weeks since I
posted some laws. So consider this a continuation from where
I left off. So urlLink Friday the Thirteenth. And tomorrow
is urlLink Saturday the Fourteenth. urlLink Valentine’s day.
Wonderful. I am looking out for new designs for this blog and
urlLink QSS. Anyone having any good color schemes, send
them to me. BTW, does anyone else use an RSS reader?

Yes —

DP
25 Tomorrow is 3:30 am Sunday so Sundays are 2-day Saturday

evening. . . and 3 hours Sunday the 31 February for Friday
afternoon for Sundatnl. The New Year’s of 2004. I can write
blog content on my birthday but haven’t posted it and must go
to college. This page can. . .

No 44.67

50 Yes, the website is on ‘the web’. Hopefully it becomes ‘blog
to the gnters’—‘The World’s Next Top News site’. If you
need directions—either look at our FAQ page.

No 51.84

100 I am looking for new designs for this blog and urlLink QSS. No 48.62
150 I am looking out for new designs for this blog and urlLink

QSS. Anyone having any good color schemes, send them to
me.

Yes 41.17

250 I am looking for new designs for this blog and urlLink QSS.
Anyone having any good color schemes, send them to me.

Yes 41.51

Quasi-DP
25 Just two days after we announced something! Yes 56.88
50 They have another deadline for posting one or more of your

articles. I am ready. . .
Yes 55.02

100 I am looking out for new designs for this blog and urlLink
QSS. Anyone having any good color schemes, send them to
me.

No 41.17

150 I am looking out for new designs for this blog and urlLink
QSS. Anyone having any good color schemes, send them to
me.

No 41.17

250 I am looking out for new designs for this blog and urlLink
QSS. Anyone having any good color schemes, send them to
me.

No 41.17

Non-DP
3 I am looking for new designs for the website and urlLink QSS. No 49.50
5 ‘I’m going to the dentist’, ‘I am going to be out on a date with

a friend.’
Yes 51.94

10 I am looking for new designs. No 52.85
25 I am looking for new designs for this blog and urlLink QSS. Yes 48.62
50 On the blog side. Today was urlLink Friday. Tomorrow

was urlLink Saturday. Sunday was urlLink Valentine’s day.
Fantastic.

Yes 47.50

Ours
Style guided I recently came across an intriguing piece about human behav-

ior patterns. The lengthy article explores “The Basic Laws of
Stupidity,” which I found particularly thought-provoking. This
post serves as a follow-up to my previous discussion on the
topic, now two weeks ago. For those interested in continuing
the conversation, you can. . .

No 43.54

Semi-guided I recently came across an intriguing piece about human be-
havior and its limitations. The topic spans multiple pages, yet
holds my attention due to its relevance. For those interested
in exploring similar ideas, I recommend checking out ‘The
Basic Laws of Stupidity.’ This concept has been discussed
previously, with a follow-up installment scheduled soon.

Yes 42.59

Table 11: Rewritten texts (long form) from Author10 dataset. Note: For DP-based methods, smaller ϵ values
correspond to tighter privacy guarantees.
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