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Boundary-Aware Periodicity-based Sparsification Strategy for
Ultra-Long Time Series Forecasting

A EXPERIMENTAL DETAILS
A.1 Dataset
The benchmark datasets utilized in multivariate time series fore-
casting tasks predominantly consist of the following eight datasets:
Traffic, Electricity, Weather, Exchange, ETT (ETTm1/2, ETTh1/2),
and ILI. These benchmark datasets are widely recognized and em-
ployed across the field of multivariate time series forecasting, serv-
ing as standard evaluation benchmarks for assessing the perfor-
mance of proposed models.

In time series forecasting tasks, existingmainstreammodels can
achieve good prediction performance when the number of vari-
ables is relatively small. However, the data sparsification strategy
proposed in this paper primarily addresses the issue of computa-
tional costs when dealing with excessively long sequence lengths
and a large number of variables in ULTSF tasks. Therefore, for the
experimental datasets in this paper, we specifically selected the
Traffic, Electricity, and Weather datasets , as indicated in Table 1,
which have a higher number of variables, while excluding datasets
with fewer variables, such as the Exchange dataset with only 9 vari-
ables and the ETT (ETTm1/2, ETTh1/2), and ILI datasets with only
8 variables. The detailed information of the Traffic, Electricity, and
Weather datasets is as follows:

(1) Weather:TheWeather dataset[5] comprises 21 meteorolog-
ical factors collected by the Max Planck Institute for Biogeo-
chemistry’s weather station. The data spans from January
2020 to December 2020, covering a duration of one year.

(2) Electricity: The Electricity dataset[5] consists of electric-
ity consumption data from 321 customers, recorded at an
hourly frequency. The data spans from July 2016 to July
2019, covering a duration of three years.

(3) Traffic: The Traffic dataset[5] consists of road occupancy
measurements from 862 sensors deployed in the San Fran-
cisco Bay Area highways. The data spans from July 2016 to
July 2018, covering a duration of two years.

When the input length is set to 720, the detailed information
about the data partitioning for the three benchmark datasets is pre-
sented in Table 1. In this table, the column ”VaS” denotes the num-

Table 1: Details of the three benchmark datasets.

Dataset VaS (Train,Val,Test) Fre Span
Traffic 862 (10526,3510,3508) 1 Hour 120Days
Electricity 321 (31617,10540,10539) 1 Hour 120Days
Weather 21 (15782,5262,5260) 10 MIN 20Days

ber of variables in each dataset. The columns ”(Train, Val, Test)”
represent the number of samples allocated to the training, valida-
tion, and testing sets, respectively. The column ”Fre” indicates the
sampling interval of the timestamps, specifying how frequently the
data is collected or recorded. Lastly, the column ”Span” indicates

the actual time duration covered by the predicted results when the
prediction length is set to 2880, considering the dataset’s sampling
frequency.

A.2 Experimental Settings
Baselines In this paper, we have selected six well-acknowledged
modelswith different structures as our baselinemodels.Thesemod-
els include: TiDE[1] based on the Multilayer Perceptron (MLP) ar-
chitecture, Transformer-based Model, TimesNet[4] based on CNN,
DLinear[6]model based on a pure linear structure, iTransformer[3]
based on Transformers, and PatchTST[2]. These models have been
widely recognized in the literature for their superior performance
in time series forecasting tasks.
Experimental Environment.All models were trained and tested
in the same experimental environment, which consisted of anNVIDIA
GeForce RTX 4090 GPU with 24GB of memory.
TrainingParameters.The training parameters for all modelswere
set as follows: a learning rate of 0.001, a batch size of 32, 10 train-
ing epochs, the Adam optimizer, and the mean squared error (MSE)
loss function.
Data Allocation. To ensure an equal distribution of samples for
the validation set, the training and testing datasetswere partitioned
in the same manner for all models. The training set accounted for
60% of the data, the validation set accounted for 20%, and the test-
ing set accounted for the remaining 20%. The detailed information
about the partitioning of each dataset is presented in Table 1.
The Length of Inputs and Outputs. In previous studies on LTSF
tasks, a prediction length of 720 has already been achieved. How-
ever, this paper focuses on exploring ULTSF, where the prediction
length is doubled compared to the maximum length of the LTSF.
The length of the experimental backtracking window is set to 720,
which is 7.5 times the original length, and the prediction sequence
lengths are set to 1440, 2160, 2880, which are twice, three times,
and four times the length of the original longest sequence, respec-
tively.
Evaluation Metrics. The evaluation metrics employed for assess-
ing the model performance were the mean squared error (MSE)
and the mean absolute error (MAE).
ModelVariants.Thismodel possesses two hyperparameters, namely
the number of periodic features𝑘 and themodel dimension𝑑𝑚𝑜𝑑𝑒𝑙 .
To conduct comparative experiments, we set 𝑘 values to 2 and 3
across all datasets. Additionally, we varied the 𝑑𝑚𝑜𝑑𝑒𝑙 parameter
for different datasets, as outlined in the hyperparameter compara-
tive experiments.
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