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Abstract

We present a new combinatorial bandit model, the cascading contextual assortment
bandit. This model serves as a generalization of both existing cascading bandits
and assortment bandits, broadening their applicability in practice. For this model,
we propose our first UCB bandit algorithm, UCB-CCA. We prove that this algorithm
achieves a T -step regret upper-bound of Õ( 1κd

√
T ), sharper than existing bounds

for cascading contextual bandits by eliminating dependence on cascade length K.
To improve the dependence on problem-dependent constant κ, we introduce our
second algorithm, UCB-CCA+, which leverages a new Bernstein-type concentra-
tion result. This algorithm achieves Õ(d

√
T ) without dependence on κ in the

leading term. We substantiate our theoretical claims with numerical experiments,
demonstrating the practical efficacy of our proposed methods.

1 Introduction

Sequential interactions between users and a recommender agent are often modeled as the multi-armed
bandit problem or one of its variants [15]. In practice, a user typically encounters multiple items per
round of interaction rather than a solitary item. Two popular models that capture this aspect are the
cascading bandit [13; 14; 18] and the assortment bandit [4; 5; 7; 22], also often known as multinomial
logistic bandits.

In the cascading bandit problem [13; 14; 18; 29; 25; 28], the agent selects a cascade of K items from
a total of N items each round. These selected items are sequentially presented one at a time to a user.
If the user clicks on a presented item, the cascading round ends. If not, the agent proceeds to reveal
the next item from the cascade. This process continues until either the user clicks on an item or
all K items in the cascade have been presented without a click. Once a round ends, a next round
commences with a newly selected list of K items.

In the assortment bandit problem [4; 5; 7; 8; 9; 7; 22; 23], the agent presents an assortment of M
items all at once, then receives user choice feedback on the assortment. A user may opt for one of
the M items presented or choose none at all, concluding the round in either case. Both cascading
and assortment bandit problems are significant combinatorial variations of the multi-armed bandit
problem and have been extensively examined both theoretically and in practice.

However, a more commonly encountered scheme in real-world applications is a generalization of
these two settings, where a cascade of assortments is sequentially revealed in each round. This
approach is evident in video streaming services, where assortments of recommended contents are
revealed as users scroll through webpages or mobile applications. Similar experiences can also
be found in various online retail services and search engines. To address this, we propose a new
interactive model, which we term cascading assortment bandits. In the cascading assortment bandits,
the agent chooses a cascade of assortments that consists of K assortments with each assortment
containing M items. The agent reveals one assortment at a time in the cascade. The cascade concludes
if the user clicks on one of the items contained in a given assortment. If not, the agent proceeds
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Figure 1: Comparisons between the cascading assortment bandit and the other combinatorial bandits.
The cascading assortment bandit subsumes the multi-armed bandit (K = 1,M = 1), the cascading
bandit (K > 1,M = 1), and the assortment bandit (K = 1,M > 1).

to unveil the subsequent assortment in the cascade. This cycle continues until either an assortment
receives a click from the user or the agent depletes the pre-selected assortments.

The cascading assortment bandit problem is the strict generalization of both the cascading bandits
model and the assortment bandits model. It is also a generalization of the simple multi-armed bandit
problem. That is, if K = 1 and M = 1, the problem is the simple multi-armed bandit. If K > 1
and M = 1, the problem corresponds to the cascading bandit. If K = 1 and M > 1, we recover
the assortment bandit problem. The illustrations on comparisons between the cascading assortment
bandit and the other combinatorial bandits are presented in Figure 1.

In order to accommodate the generalization of the interactive model across items and assortments,
we also incorporate the feature information of items and parametrization of a click model in the
cascading assortment bandit model. Hence, we name the model as cascading contextual assortment
bandit (see Section 2.2 for the formal definition of the problem setting).1 Under this newly proposed
combinatorial bandit model, we posit the following question:

Can we design a provably efficient algorithm for cascading contextual assortment bandits?

To address the question at hand, we first have to overcome the technical challenges inherent in each
special case of our problem setting: the cascading contextual bandit and the contextual assortment
bandit. Firstly, in the cascading contextual bandit [18; 25], a longstanding issue has been the
suboptimal dependence on the cascade length, K. Intuitively, one would expect that as K increases
in the cascading model, the regret should either diminish or at least remain constant; performance
deterioration should not occur. However, all existing regret bounds for cascading contextual bandits
scale proportionally to K [18; 29; 17; 28; 25]. This finding is not just counter-intuitive, but also
suboptimal (for further discussions, refer to Section2.4). As a result, (i) eradicating the suboptimal
dependence on cascade length K has been recognized as an open problem, even within the cascading
contextual bandit setting.2

Further, in the context of assortment bandits, there is a widely recognized suboptimal dependence on
the problem-specific constant κ, as demonstrated in the existing assortment bandit literature [9; 22; 23].
This problem-specific constant κ (in Assumption 4.2) represents the curvature of the multinomial
logit (MNL) function. Recent studies [24; 3] have demonstrated an improved dependence on κ,
albeit only multiplied by logarithmic factors. However, this improvement comes at the expense of
an increased dependence on the assortment size M , a conclusion that is both counter-intuitive and
suboptimal. Thus, (ii) decreasing the κ dependence without escalating the dependence on M
still poses an unresolved issue. While addressing either of the two challenges (i) and (ii) can be
daunting individually, tackling both issues simultaneously poses an even greater challenge in both
our algorithm design and regret analysis.

1Note that a non-contextual version of the cascading assortment bandit is a special case of the cascading
contextual assortment bandit with a one-hot encoded feature vector for each item. Hence, when we aim to
provide efficient algorithms for cascading contextual assortment bandit, we also address the non-contextual
cascading assortment bandit which has not been studied previously.

2A concurrent work [20] addresses this suboptimal dependence on K under the linear model assumption.
Our work tackles this challenge under the MNL model in a more general setting.
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Table 1: Comparisons of algorithms for contextual cascade and assortment bandits as well as for
cascading contextual assortment bandits. N is the number of ground items, K is a length of cascade,
d is a dimension of feature vectors and T is total rounds. κ is a problem-dependent parameter for the
MNL model. See Appendix A for more discussions.

Algorithm Context Cascade Assortment Click Model Regret Bound

CombCascade [14] × ⃝ × × Õ(
√
KNT )

C3-UCB [18] ⃝ ⃝ × Linear Õ(d
√
KT )

EE-MNL [5] × × ⃝ MNL Õ(
√
NT )

TS-MNL [22] ⃝ × ⃝ MNL Õ( 1
κ
d3/2

√
T )

UCB-MNL [23] ⃝ × ⃝ MNL Õ( 1
κ
d
√
T )

LinTS-Cascade [28] ⃝ ⃝ × Linear Õ(d3/2K
√
T )

CascadeWOFUL [25] ⃝ ⃝ × Linear Õ(
√
d2T + dTK)

VAC2-UCB [20] ⃝ ⃝ × Linear Õ(d
√
T )

UCB-CCA (Algorithm 1) ⃝ ⃝ ⃝ MNL Õ( 1
κ
d
√
T )

UCB-CCA+ (Algorithm 2) ⃝ ⃝ ⃝ MNL Õ(d
√
T )

To this end, we design novel upper confidence bound (UCB) algorithms for contextual cascading
assortment bandits, tackling both technical challenges. We show that our proposed algorithms achieve
provable guarantees on regret performances overcoming the longstanding technical challenges.
Our regret bounds show sharper results than those of the existing contextual cascading bandits or
assortment bandits. We corroborate our theoretical claims through numerical experiments, thus
ensuring that both our newly proposed bandit framework and the proposed algorithms establish
provable efficiency and practical applicability.

Our main contributions are summarized as follows.

• We formulate a general combinatorial bandit model, named cascading contextual assortment
bandit that encompasses the existing cascading bandits and assortment bandits. This novel
problem setting is observed in many practical applications.

• We first propose a UCB bandit algorithm UCB-CCA for the cascading contextual assortment
bandit and establish the T -step regret upper-bound of Õ( 1κd

√
T ) (in Theorem 4.3). This

regret bound is tighter than the existing bounds for cascading contextual bandits, where
we not only remove the longstanding, unnecessary dependence on K but also establish the
result without dependence on M .

• While UCB-CCA is an efficient algorithm achieving both the statistical efficiency and practical
performances (shown in Section 7), its regret bound includes dependence on the inverse of a
problem-dependent constant κ, which can be potentially large in the worst case. To improve
the dependence on κ, we propose our second algorithm UCB-CCA+, which exploits a new
Bernstein-type concentration result, taking into account the effects of the local curvature of
the MNL model. We prove that UCB-CCA+ achieves Õ(d

√
T ) without the dependence on κ

in the leading term (only scaling with logarithmic factors), hence significantly improving
the regret of UCB-CCA without increasing the other dependencies. Hence, we successfully
solve the two technical challenges (i) and (ii) mentioned above.

• As an independent contribution, we prove that a greedy algorithm for the cascading assort-
ment optimization problem gives a 0.5 approximation of the optimal solution (discussed in
Section 6). To our best knowledge, this is the first rigorous result showing the approximation
guarantee even for the contextual cascading bandit problem, instead of simply assuming
access to an approximation optimization oracle.

• We evaluate our proposed methods in numerical experiments and show that the practical
performances support our theoretical claims. Hence, our proposed algorithms along with
our newly proposed bandit model establish provable efficiency and practical applicability.
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2 Preliminaries

2.1 Notation

Define [n] as a set of positive integers from 1 to n. Let |·| be the length of a sequence or the cardinality
of a set. For a vector x ∈ Rd, we denote the ℓ2-norm of x as ||x||2 and the V -weighted norm of x
for a positive-definite matrix V as ||x||V =

√
x⊤V x. The determinant and trace of a matrix V are

det(V ) and trace(V ), respectively. λmin(V ) denotes the minimum eigenvalue of a matrix V .

2.2 Cascading Contextual Assortment Bandit Problem

Consider [N ], a set of N items. Let A be a set of candidate assortments of items with size M , i.e.,
A := {A ⊆ [N ] : |A| = M}. A cascade S is an ordered sequence of K assortments chosen from A
where all the items in these K assortments are distinct. Then, the set of all feasible cascades S can be
defined as follows.

S :=
{
S=

(
A1, ..., AK) | Ak ∈ A for all k ∈ [K], ∩Kk=1Ak = ∅

}
At round t, feature vectors {xti ∈ Rd, i ∈ [N ]} for every item are revealed to the decision-making
agent. Each feature vector xti may contain the contextual information of the user at round t and the
item i. After observing this contextual information, at round t, the agent recommends a cascade
St = (Atk)k∈[K] to the user, where Atk ∈ A represents the k-th assortment of the cascade at round t.
The user scans the assortments in St one by one. If the items in Atk do not attract the user, the user
moves on to the next assortment At,k+1. The user stops at the Ot-th assortment when the user is
attracted by an item in the Ot-th assortment and clicks on the item.

After the user clicks on the item, the agent observes a sequence of user choices yt = (ytk)k∈[Ot]

where a binary vector ytk = (ytk0, ytk1, ..., ytkM ) represents user choices on assortment Atk. Let
ytkm = 1 if the m-th item im in Atk is clicked by the user, and ytkm = 0 for items that are not
clicked on. For each assortment, there is an outside option. That is, there is a probability that the user
may not click any of the items in Atk. If the user does not choose any items, ytk0 = 1 and ytkm = 0
for all m ∈ [M ]. The user choice for each assortment is given by the multinomial logit (MNL) choice
model [21]. For this MNL model, there is an unknown time-invariant parameter θ∗ ∈ Rd. We define
the true weight of item i in round t as w∗

ti := x⊤
tiθ

∗. Also, we let the vector representation of the
weights be defined as w∗

t := (w∗
ti)i∈[N ] for convenience.

Under this model, the user’s click probability of the m-th item in Atk and the probability of the
outside option in Atk is given respectively by

pt(im|Atk, w
∗
t ) =

exp(w∗
tim

)

1 +
∑

j∈Atk
exp(w∗

tj)
and pt(i0|Atk, w

∗
t ) =

1

1 +
∑

j∈Atk
exp(w∗

tj)

where item i0 represents the outside option. The user choice ytk is sampled from the multinomial
distribution, ytk ∼ MNL

{
1,
(
pt(im|Atk, w

∗
t )
)M
m=0

}
, where the argument 1 indicates that ytk is

a single-trial sample. Hence,
∑M

m=1 ytkm is always 1. Also, we denote measurement noise as
ϵtkm := ytkm − pt(im|Atk, w

∗
t ). Since ϵtkm is bounded in [0, 1], ϵtkm is σ2-sub-Gaussian with

σ2 = 1/4. It is important to note that ϵtkm across items in the same assortment is not independent
due to the substitution effect in the MNL model.

The expected reward function of a combinatorial action St based on w∗
t is given by

f(St, w
∗
t ) =

K∑
k=1


k−1∏
k̇=1

pt(i0|Atk̇, w
∗
t )

 ∑
i∈Atk

pt(i|Atk, w
∗
t ) = 1−

|St|∏
k=1

pt(i0|Atk, w
∗
t ).

The formulation above is also known as the cascade model with disjunctive objective, where the user
stops at the first attractive item [13; 14; 18].

2.3 α-Approximation Oracle and α-Regret

The exact combinatorial optimization to compute an optimal cascade of assortments can be com-
putationally expensive. Therefore, we allow for approximate optimization. We assume that the
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agent has access to an α-optimization oracle to compute a α-approximation solution of the cascade
optimization problem with α ≤ 1. For approximate optimization, we prove that a greedy selection
for the cascading assortment optimization problem gives a 0.5 approximation of the optimal solution,
which may be of independent interest (see Section 6).

Formally, for a given an α-optimization oracle and a weight parameter w, the oracle outputs an
approximately optimal cascade Ŝ∗ = Oα (w) ∈ S satisfying f(Ŝ∗, w) ≥ αf(S∗, w) where S∗ ∈
argmaxS∈S f(S,w) is an optimal assortment without approximation. The instantaneous α-regret
of cascade St in round t is defined as Rα(t, St) := E[αf(S∗

t , w
∗
t ) − f(St, w

∗
t )] where S∗

t ∈
argmaxS∈S f(S,w∗

t ) is an true optimal assortment. Then, the goal of the agent is to minimize the
cumulative α-regret defined as

Rα(T ) :=

T∑
t=1

Rα (t, St) =

T∑
t=1

E
[
αf(S∗

t , w
∗
t )− f(St, w

∗
t )
]
.

2.4 Suboptimal Dependence on Problem Dependent Parameters

In this subsection, we discuss the main technical challenges faced in the regret analysis of our problem
setting. In particular, the suboptimal dependence on cascade length K has been a long-standing open
problem even in contextual cascading bandits.

2.4.1 Dependence on Length of Cascade K

The previous literature on the contextual cascading bandits [18; 17; 26; 25] bounds the instantaneous
regret in each round, utilizing the monotonicity and Lipschitz continuity of the expected reward
function f . A simple adaptation of the previously known techniques to our problem would result in
the following upper bound for the instantaneous regretRα(t, St) for St = (At1, At2, ..., AtK).

Rα(t, St) ≤
K∑

k=1

∑
i∈Atk

βt||xti||V −1
t−1

(1)

where βt is a suitable confidence radius chosen by an algorithm, and Vt is a positive definite gram
matrix. Then, the dependence on the length of cascade K and the assortment size M would appear in
the regret bound after summing the right-hand side of Eq.(1) over the time horizon and applying the
Cauchy-Schwarz inequality. Because of this reason, even when M = 1, there still exists dependence
on K which appears in the regret bounds of all previous contextual cascading bandits (see Table 1).

To overcome this challenge, we present a new Lipschitz continuity of the expected reward function to
derive the regret bound independent of M and K by replacing the summation with the maximum
over assortments and a cascade (see Section 4.3 for more details).

2.4.2 Dependence on Worst-Case Scanning Probability

Analogous to the existing algorithms for the contextual cascading bandits [18; 26], the gram ma-
trix Vt contains the rank-1 matrices of observed items accumulated up to round t, i.e., Vt =∑t

τ=1

∑Oτ

k=1

∑
i∈Aτk

xτix
⊤
τi + λI . However, there exists an out-of-control issue, that is, the sum-

mation of the rank-1 matrices over Ot + 1 to |St| in Eq.(1) is not included in the gram matrix Vt.
Note that this issue also arises in cascading contextual assortment bandits. Adapting a technique
used in the existing literature [18] to mitigates this issue, let pt,St

be the probability of examining
all assortments in St and p∗ = mint∈[T ] minS∈S pt,St

be the worst-case probability of examining a
cascade over all rounds and all feasible cascades. A simple adaptation of the existing methods would
result in the following bound for the expected instantaneous regret.

E [Rα(t, St)] = E
[
Rα(t, St)E

[
1

pt,St

1 {Ot = |St|} | St

]]
≤ 1

p∗
E
[
Rα(t, St)1{Ot = |St|}

]
.

This concedes the dependence on p∗, which can be exponentially small in the worst case. We
overcome this challenge by designing an algorithm that offers the assortment containing the most
uncertain item as the first assortment in a cascade. We discuss this salient feature of the proposed
algorithm in more detail in Section 3.2.
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Algorithm 1 UCB-CCA
Input: confidence radius βt and ridge penalty parameter λ ≥ 1

1: for t = 1, . . . , T do
2: Observe xti for all i ∈ [N ]

3: Compute uti = x⊤
ti θ̂t−1 + βt−1||xti||V −1

t−1
for all i ∈ [N ]

4: Compute a candidate cascade S′
t ← (A′

tk)k∈[K] = Oα (ut)
5: Find optimistic exposure assortment index k∗ in (k∗, i∗) = argmax

k∈[K],i∈A′
tk

||xti||V −1
t−1

6: Optimistic exposure swap St ← (Atk)k∈[K] where Atk :=


A′

tk∗ if k = 1

A′
t1 if k = k∗

A′
tk otherwise

7: Offer St, and observe user feedback Ot and yt = (ytk)k∈[Ot]

8: Update Vt ← Vt−1 +
∑Ot

k=1

∑
i∈Atk

xtix
⊤
ti

9: Compute the regularized MLE θ̂t by solving∇θ

[
ℓt(θ) +

λ
2 ||θ||

2
2

]
= 0

10: end for

3 Algorithm: UCB-CCA

3.1 Upper Confidence Bounds and Confidence Set

UCB-CCA utilizes the upper confidence bounds (UCB) technique [6; 1; 16] to compute an optimistic
action based on optimistic estimates of each item’s weight, uti = x⊤

ti θ̂t−1 + βt−1(δ)||xti||V −1
t−1

for
all i ∈ [N ]. The confidence radius βt(δ) is specified to maintain a high-probability confidence set
Ct(δ) for the unknown parameter θ∗, although the algorithm does not explicitly compute Ct(δ).

Ct(δ) :=
{
θ ∈ Rd : ||θ̂t − θ||Vt ≤ βt(δ)

}
.

Setting a proper confidence radius βt(δ) can guarantee that θ∗ lies within the confidence set with
probability 1−δ. On the event that θ∗ ∈ Ct(δ), the UCB weight uti serves as an upper bound of a true
weight w∗

ti := x⊤
tiθ

∗ for every item i ∈ [N ]. We denote the UCB weight vector as ut = (uti)i∈[N ]

for convenience.

3.2 Optimistic Exposure Swapping

A distinctive element of UCB-CCA is what we call optimistic exposure swapping, a procedure crucial
for eliminating dependence on the worst-case scanning probability, as elaborated in Section 2.4.2.
This technique strategically positions the assortment containing the item with the highest uncertainty
among the top MK items in the first slot of the cascade of assortments.

In each round t, the α-approximate oracle Oα(ut) outputs a candidate cascade S′
t, determined by

the UCB weights ut. It is important to note that S′
t is not immediately presented to the user. Instead,

after S′
t is derived using the optimization oracle Oα(ut), the algorithm identifies the index k∗ of an

assortment that includes the item with the largest ||xti||V −1
t−1

in S′
t.

Subsequently, the algorithm swaps the positions: the assortment A′
tk∗ is moved to the top of St,

becoming At1, and the initially top assortment A′
t1 in S′

t is relocated to the k∗-th position of St,
now Atk∗ . The positions of the other assortments remain the same, that is, Atk = A′

tk for all
k ∈ [K] \ {1, k∗}.3 This procedure is viable as the expected reward is unaffected by the display order
of assortments in the cascade, as shown in Lemma 4.5.

3.3 Regularized Maximum Likelihood Estimation

UCB-CCA computes a regularized maximum likelihood estimate of the unknown parameter θ∗. The
negative log-likelihood is given by ℓt(θ) = −

∑t−1
τ=1

∑Oτ

k=1

∑M
m=0 yτkm log pτ (im|Aτk, wτ ), where

3While the swapping occurs between the first and the k∗-th positions for specificity, it is sufficient to place
A′

tk∗ at the top position of St. The sequence of the remaining assortments is not critical.
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wt = (wti)i∈[N ] is a weight vector, and its element is wti = x⊤
tiθ. For penalty parameter λ ≥ 1, the

ℓ2-regularized MLE is given by

θ̂t = argmin
θ

[
ℓt(θ) +

λ

2
||θ||22

]
= argmin

θ

[
−

t−1∑
τ=1

Oτ∑
k=1

M∑
m=0

yτkm log pτ (im|Aτk, wτ ) +
λ

2
||θ||22

]
.

(2)

4 Regret Analysis of UCB-CCA

4.1 Regularity Condition

Assumption 4.1. ||x||ti ≤ 1 for all round t and items i ∈ [N ], and also ||θ∗|| ≤ 1.
Assumption 4.2. There exists κ > 0 such that for all t ∈ [T ], any assortment A ∈ A, and any item
i ∈ A, infθ∈Rd pt(i|A,w)pt(i0|A,w) ≥ κ, where w = (wi)i∈[N ] and wi = x⊤

i θ.

Discussion of Assumptions. Assumption 4.1 makes the regret bound independent on the scale of the
feature vector and parameter. This is the standard assumption used in the contextual bandit litera-
ture [1; 18; 22]. Assumption 4.2 is the standard regularity assumption in the contextual assortment
bandit literature [8; 27; 22; 7; 23], adapted from the standard assumption for the link function in the
generalized linear contextual bandit literature [16] to ensure that the Fisher information matrix is
non-singular.

4.2 Regret Bound of UCB-CCA

Theorem 4.3 (α-regret upper bound of UCB-CCA). Suppose Assumptions 4.1 and 4.2 hold, and we

run UCB-CCA for total T rounds with βt =
1
2κ

√
d log

(
1 + tKM

dλ

)
+ 4 log t +

√
λ
κ and with λ ≥ 1,

Then, the α-regret of UCB-CCA is upper-bounded by

Rα(T ) ≤
(

K

K + 1

)K+1
[
1

2κ

√
d log

(
1 +

TKM

dλ

)
+ 4 log T +

√
λ

κ

]√
2dT ln

(
1 +

TKM

λd

)
.

Discussion of Theorem 4.3. Theorem 4.3 establishes that UCB-CCA achieves a regret bound of
Õ
(
d
κ

√
T
)
. Notably, this regret bound removes dependence on p∗ completely and removes polynomial

dependence on K, achieving the best-known bound in contextual cascading bandits [18; 25; 20],
a special case of our problem setting. Apart from the generalization we consider in this work, a
key distinction between our work and the previous contextual cascading bandit models lies in our
adoption of the MNL model, as opposed to the linear model assumed by the existing literature. This
model choice introduces a dependence on the parameter κ within the regret bound of UCB-CCA,
which is an aspect we address and refine in subsequent sections. It is essential to highlight that our
work tackles a more general problem yet achieves improved bounds concerning the key problem
parameters previously considered suboptimal. The factor comprised of the length of the cascade,
(K/(K+1))K+1, in Theorem 4.3 is also notable, which is bounded above by 1 regardless of the value
of K. Consequently, the regret bound does not increase polynomially with K, ensuring scalability.

4.3 Proof Outline

In this subsection, we present the proof sketch of Theorem 4.3. One of the key components of the
regret analysis that enables carving off the dependence on K is the following lemma.
Lemma 4.4 (Maximal Lipschitz continuity). Suppose uti ≥ w∗

ti for all i ∈ [N ]. Then

f(St, ut)− f(St, w
∗
t ) ≤

(
K

K + 1

)K+1

max
Atk∈St

max
i∈Atk

(uti − w∗
ti) . (3)

Lemma 4.4 demonstrates that the difference between the reward functions under the UCB parameter
and the true parameter is upper bounded by the maximal difference between the UCB and true
parameters. This implies that the regret bound remains unaffected by increases in the cascade length
K or the assortment size M .
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Eliminating the dependence on p∗ is another key element of our analysis. To this end, we first show
that the order of assortments in the cascade model with the disjunctive objective does not affect the
expected reward. We formalize this property in the following lemma.
Lemma 4.5. Let pk be the probability that the user clicks on any item in Ak. Given a collection of
assortments {A1, · · · , AK} with probabilities {p1, · · · , pK}, their order of display does not matter.
Further, for every permutation ρ : [K]→ [K], we have∑

k∈[K]

pk
∏
k̇<k

(1− pk̇) = 1−
∏

k∈[K]

(1− pk) =
∑

k∈[K]

pρ−1(k)

∏
k̇<k

(
1− pρ−1(k̇)

)
.

Consolidating these key results, we proceed to bound the cumulative regret. We begin by leveraging
the monotonicity of the expected reward function and the definition of the α-approximate optimization
oracle to bound the cumulative regret.

Rα(T ) ≤ E

[
T∑

t=1

f(St, ut)− f(St, w
∗
t )

]
≤ CKE

[
T∑

t=1

max
Atk∈St

max
i∈Atk

(uti − w∗
ti)

]

≤ 2CKE

[
βT

T∑
t=1

max
Atk∈St

max
i∈Atk

||xti||V −1
t−1

]
= 2CKE

[
βT

T∑
t=1

max
k∈[Ot]

max
i∈Atk

||xti||V −1
t−1

]
. (4)

The second inequality is from Lemma 4.4, letting CK := (K/(K + 1))K+1. The third inequality is
given by the concentration of the UCB weights (see Lemma B.5). Note that the assortment including
the item with the largest value of ||xti||V −1

t
is always examined by the user since it is included in

the first assortment of St by the optimistic exposure swapping technique as described in Section 3.2.
Note that a change in the order of assortments incurred by the optimistic exposure swapping does not
affect the expected reward which is shown in Lemma 4.5. Hence, for every round t ∈ [T ], we obtain

max
Atk∈St

max
i∈Atk

||xti||V −1
t−1

= max
k∈[Ot]

max
i∈Atk

||xti||V −1
t−1

. (5)

Therefore, the last equality in Eq.(4) is given by Eq.(5). Then, we can apply the maximal version of
elliptical potential lemma (see Lemma B.8) to bound the cumulative regret.

5 Improved Dependence on κ

While UCB-CCA achieves the regret bound of Õ
(
1
κd
√
T
)

improving dependence on K, the bound
includes the problem-dependent constant κ. This implies a potential risk of the regret bound becoming
large when κ becomes very small. In order to circumvent this challenge, we propose a new optimism in
the face of uncertainty (OFU) algorithm, UCB-CCA+, which exhibits a regret bound that is independent
of κ in the leading term. The pseudocode of UCB-CCA+ is detailed in Algorithm 2.

5.1 Algorithm: UCB-CCA+

5.1.1 Confidence Set

UCB-CCA+ computes a regularized MLE θ̂t, following the same procedure described in Section 3.3.
Then, the algorithm constructs a new confidence set centered around θ̂t utilizing a Bernstein-type tail
inequality for self-normalized martingales [11; 3]. Nevertheless, a simple adaptation of the previous
approaches may incur increased dependence on M . Hence, a more intricate analysis and refined
algorithmic strategy are imperative to effectively address this challenge.

First, we define gt(θ) :=
∑t

τ=1

∑
k∈[Oτ ]

∑
i∈Aτk

pτ (i|Aτk, wτ )xτi + λtθ where wt = (wti)i∈[N ]

and wti = x⊤
tiθ. We also denote the partial derivative of pt(i|Atk, wt) with respect to wti as

ṗt(i|Aτk, wτ ) := pt(i|Atk, wt)pt(i0|Atk, wt). Additionally, we define the new design matrix con-
taining local information, denoted as Ht(θ) :=

∑t
τ=1

∑
k∈[Oτ ]

∑
i∈Aτk

ṗτ (i|Aτk, wτ )xτix
⊤
τi+λtId,

and, for convenience, Ht :=
∑t

τ=1

∑
k∈[Oτ ]

∑
i∈Aτk

ṗτ (i|Aτk, w
∗
τ )xτix

⊤
τi + λtId. Then, the algo-

rithm constructs a confidence set as below:

Bt(δ) :=
{
θ ∈ Rd : ||gt(θ̂t)− gt(θ)||H−1

t (θ) ≤ γt(δ)
}

(6)
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Algorithm 2 UCB-CCA+
Input: confidence radius γt and ridge penalty parameter λ ≥ 1

1: for t = 1, . . . , T do
2: Observe xti for all i ∈ [N ]
3: Construct a confience set Bt−1(δ) as defined in Eq.(6)
4: Compute a candidate cascade (S′

t = (A′
tk)k∈[K], θt) = argmaxS∈S,θ∈Bt(δ) f(S,wt)

5: Find optimistic exposure assortments Lt,H and Lt,V (and their positions h and v) in S′
t

6: St ← (Atk)k∈[K] where Atk =



Lt,H if k = 1

Lt,V if k = 2

A′
t1 if k = h

A′
t2 if k = v

A′
tk otherwise

7: Offer St and observe Ot, yt = (ytk)k∈[Ot]

8: Update Ht ← Ht−1 +
∑Ot

k=1

∑
i∈Atk

ṗt(i|Atk, w
∗
t )xtix

⊤
ti

9: Update Vt ← Vt−1 +
∑Ot

k=1

∑
i∈Atk

xtix
⊤
ti

10: Compute the regularized MLE θ̂t by solving ∇θ

[
ℓt(θ) +

λ
2 ||θ||

2
2

]
= 0

11: end for

where the confidence radius γt(δ) is suitably specified to ensure that the true parameter θ∗ lies in
the confidence set Bt(δ) with high probability. On the event of θ∗ ∈ Bt(δ), The following lemma
bounds the weighted ℓ2-norm of the difference between θ and θ∗.
Lemma 5.1. Suppose θ∗ ∈ Bt(δ). Then, for any θ ∈ Bt(δ), we have ||θ − θ∗||Ht

≤ 6γt(δ).

5.1.2 Doubly Optimistic Exposure Swapping

UCB-CCA+ still faces the challenge outlined in Section 2.4.2. The complication is exacerbated for
UCB-CCA+ as the algorithm concurrently updates two gram matrices, Ht and Vt, which only contain
the information of the observed items. Building upon the technique of optimistic exposure swapping
detailed in Section 3.2, in each round t, UCB-CCA+ assigns the assortment Lt,H — containing the
item with the largest uncertainty with respect to Ht−1 among the top KM items — to the first slot of
cascade St. Similarly, the algorithm places Lt,V — with the item that has the largest uncertainty with
respect to Vt−1 — in the second slot of St.

5.2 Regret Analysis of UCB-CCA+

Theorem 5.2 (Regret upper bound of UCB-CCA+). Suppose Assumptions 4.1 and 4.2 hold, and we run

UCB-CCA+ for total T rounds with λ ≥ 1 and γt(δ) :=
3
√
λt

2 + 2√
λt

log

(
(λt+KMt/d)d/2λ

−d/2
t

δ

)
+

2d√
λt

log 2 with δ = 1
t2 . Then, the regret of UCB-CCA+ is upper-bounded by

Rα(T ) ≤ C1γT (δ)

√
2dT log

(
1 +

KMT

dλ

)
+

C2

κ
γT (δ)

2d log

(
1 +

KMT

dλ

)
where C1 = 36 and C2 = 216(1 +Me).

Discussion of Theorem 5.2. Theorem 5.2 establishes the regret bound of Õ
(
d
√
T
)
. The leading

term of the regret bound is independent of κ. Although the second term exhibits dependence on
κ, the term only scales logarithmically in T , whose comparative effect diminishes as t increases
compared to the leading term. Hence, the worst-case regret guarantee of UCB-CCA+ improves from
that of UCB-CCA. The comprehensive proof of Theorem 5.2 is provided in the appendix.

6 Approximation Algorithm for Optimal Combinatorial Action

In this section, we show that computing the optimal cascade is, in general, a weakly NP-hard problem
and give a (fast) polynomial time algorithm that the agent can use to compute a 0.5-approximation to
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the optimal cascade for any weight w. We assume that the MNL weights are given and consider the
problem of finding the cascade that maximizes the expected reward. This is an optimization problem
on selecting a sequence of K assortments with size M each from a ground set of N items. The
number of feasible cascades is O

((
N
M

)K)
. In fact, we establish the following hardness result.

Lemma 6.1. For general M , the optimization problem is weakly NP-hard even for K = 2.

The hardness of our problem follows from the hardness result of [19] for a related setting of
unconstrained cascade optimization where the size of each assortment can be arbitrary. In light of this
hardness, we turn our attention to finding fast approximation algorithms for the problem. While there
has been a lot of recent work on the unconstrained cascade optimization problem (see [19; 12; 10]
and the references therein), none of the previous algorithms apply to our constrained setting (where
the size of each assortment is M ).

We consider the following greedy approach for the problem. Consider arbitrary weights at round t,
i.e. wt = (wti)i∈[N ], is given. We order the items in [N ] in decreasing order of given weights and
consider the following cascade of assortments.

D1 = {1, 2, ...,M}, D2 = {M + 1,M + 2, ..., 2M}, · · · , DK = {(K − 1)M + 1, · · · ,KM}

We call these assortments “decreasing order assortments”. Let OPT denote the value of the optimal
solution to the problem. We establish that showing these assortments in any possible sequences gives
a good approximation to the problem.
Lemma 6.2. Let OPT denote the overall click probability in the optimal solution. The decreasing
order assortments D1, ..., DK , shown in any order, have overall click probability at least 0.5OPT.

We present the proof in Appendix E. We also show that our algorithm is optimal for M = 1, which
captures the classic cascade optimization problem.

7 Numerical Experiments
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Figure 2: N=10, K=2, M=2, and d=5.
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Figure 3: N=15, K=2, M=2, and d=10 .

In this section, we evaluate the performances of our proposed algorithms UCB-CCA and UCB-CCA+
in numerical experiments and compare their performances with the existing combinatorial bandit
algorithms CombCascade and C3-UCB. For simulations, we generate a random sample of the unknown
time-invariant parameter θ∗ from N (0, 1) at the beginning of the simulation. We sample N feature
vectors fromN (0, 1) in each round t. At each round t, the oracle computes a sequence of assortments
in decreasing order, forming a cascade St based on given wt. We assess the cumulative regret
of UCB-CCA, UCB-CCA+, CombCascade, and C3-UCB. Note that a user’s choice for UCB-CCA and
UCB-CCA+ is determined by the MNL logit choice model, whereas C3-UCB utilizes a linear model
and CombCascade is a non-contextual model. Figure 2 and Figure 3 indicate that both UCB-CCA
and UCB-CCA+ significantly outperform C3-UCB and CombCascade. We also observe that UCB-CCA+
shows a slight performance advantage over UCB-CCA, although the difference is not statistically
significant. While UCB-CCA+ has a sharper worst-case regret guarantee, UCB-CCA can provide
favorable practical performances, with simpler implementation and computational efficiency.
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A More Discussions on the Related Work

Table 1 summarizes comparisons between our work and the previous works that propose algorithms
in various combinatorial bandit settings: cascading bandits and assortment bandits.

For cascading bandits, there are two major objectives. One is called a disjunctive objective where
the agent receives a positive reward when at least one item in the recommended sequence of items
K is attractive. The other one is a conjunctive objective where the agent receives a positive reward
when all the items are attractive. Kveton et al. [13] first introduced the multi-armed cascading bandits
with disjunctive objective, and Kveton et al. [14] proposed the cascading bandits with conjunctive
objective. There is another difference between previous studies with these two objectives, which is
the definition of the feasible set. The feasible set is an arbitrary subset of ground items in Kveton et al.
[14], whereas it is a uniform matroid in Kveton et al. [13]. These previous studies propose UCB-type
algorithms and derive both gap-dependent and gap-independent regret upper bounds.

Li et al. [18] generalize the above two models with contextual information. In this model, each item
has its own weight that represents its attractiveness to the user. The weight of an item is assumed
to have a linear relation with the feature of the item. The agent learns the unknown parameter from
the feedback while maximizing the reward function for cascades. Li et al. [18] propose a UCB-type
algorithm, referred as C3-UCB, and prove that the T -step regret of C3-UCB is upper bounded by
Õ(d
√
TK) where d is the dimension of the contextual information vector, K is the length of cascade,

and p∗ is the minimum probability that the user examines all the items in the offered cascade for any
cascade and any round. The regret bound studied in the aforementioned cascading bandit literature
[13; 14; 18] is dependent on the length of the cascade (K) which is counter-intuitive results. The
latest work by Vial et al. [25] removes the dependence on K from their T -step regret upper bound, i.e.
Õ(
√
TN) where N is the number of ground items, in the tabular case where there is no assumption

on the structure of the weight. In the linear case, however, the T -step regret upper bound of their
algorithm, referred as CascadeWOFUL, is Õ(

√
Td(d+K)) which still scales with K.

There are many recent works on assortment bandits [4; 5; 8; 9; 22; 23; 7] using the multinomial
choice model While, in the cascade bandits, the agent offers a cascade and a user examines it one by
one, in assortment bandits, a user receives an assortment from the agent and examines all the items
in a given assortment at once. Due to this difference, the agent receives feedback of only examined
items in cascade bandits, but of all items in assortment bandits.

Agrawal et al. [4] and Agrawal et al. [5] propose Thompson sampling and UCB-type algorithms,
respectively, in a non-contextual setting. Both show that their regret upper-bound is Õ(

√
NT ).

Oh and Iyengar [22, 23] and Chen et al. [7] incorporate the contextual information into the MNL
assortment bandits. They introduce the unknown time-invariant learning parameter which represents
the utility of the item, i.e. x⊤

tiθ where xti is the contextual vector of item i at round t and θ is the
parameter that the agent is learning from the feedback. Oh and Iyengar [22] propose Thompson
Sampling algorithm and derive Õ(d

√
T ). Oh and Iyengar [23] propose UCB-type algorithm, referred

as UCB-MNL, and get a same regret bound Õ(d
√
T ).

B Proof of Theorem 4.3: α-Regret Analysis

Consider weights w,w′ ∈ [0, 1]
[N ]. We denote w ≥ w′ if wi ≥ w′

i holds for all i ∈ [N ].

Lemma B.1. Given weights w,w′ ∈ [0, 1]
[N ] such that w ≥ w′, we have that f(St, w) is increasing

with respect to w, that is, if w ≥ w′, then for any St ∈ S, it holds that f(St, w) ≥ f (St, w
′).

Proof. It is easy to prove because of the structure of the expected reward fuction. we know that

f(St, w) = 1−
|St|∏
k=1

pt(i0|Atk, w).

If w increases, then pt(i0|Atk, w) decrease and f(St, w) increases.
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Lemma B.2. (Restatement of Lemma 4.4) Suppose uti ≥ w∗
ti for all i ∈ [N ]. Then,

f(St, ut)− f(St, w
∗
t ) ≤

(
K

K + 1

)K+1

max
Atk∈St

max
i∈Atk

(uti − w∗
ti) . (7)

Proof. By the mean value theorem,
f (St, ut)− f (St, w

∗
t ) = ∇θf (St, w̄) (θt − θ∗)

=

 ∏
Atk̇∈St

pt(i0|Atk̇, w̄)

 ∑
Atk∈St

∑
i∈Atk

pt(i|Atk, w̄)x
⊤
ti(θt − θ∗)

≤
(

K

K + 1

)K+1

max
Atk∈St

max
i∈Atk

(uti − w∗
ti)

We can simplify
{∏

Atk̇∈St
pt(i0|Atk̇, w̄)

}∑
Atk∈St

∑
i∈Atk

pt(i|Atk, w̄) on the second equality as
follows if we denote Ptk :=

∑
i∈Atk

pt(i|Atk, w̄) for convenience:∏
k̇∈[K]

(1− Ptk̇)
∑

k∈[K]

Ptk.

We can easily see that this expression is maximized as
(

K
K+1

)K+1

when Ptk = 1
K+1 for all k ∈ [K],

since 0 < Ptk < 1.

Lemma B.3 (Lemma 4 in Oh and Iyengar [22]). Let βt(δ) =
1
2κ

√
d log

(
1 + tKM

dλ

)
+ 2 log 1

δ +
√
λ
κ .

Then for any δ ≥ 0, we have
||θ̂t − θ∗||Vt

≤ βt(δ)

with a probability at least 1− δ for all round t.

Proof. We adapt the proof of Lemma 4 in Oh and Iyengar [22] to our setting. We first denote the
probability that a customer clicks the item i in Atk as below:

pt(i|Atk, θ) =
exp

(
x⊤
tiθ
)

1 +
∑

j∈Atk
exp

(
x⊤
tjθ
)

Then, we define the function Gt(θ) (where θ is a parameter),

Gt(θ) :=

t∑
τ=1

Oτ∑
k=1

∑
i∈Aτk

[(pτ (i|Aτk, θ)− pτ (i|Aτk, θ
∗))xτi] + λ (θ − θ∗) (8)

Gt(θ) represent the difference in the gradients of the ridge penalized maximum likelihood evaluated
at θ and at θ∗. Note that θ̂ can be obtained by minimizing Eq.(2). Therefore, the following equation
is satisfied.

t∑
τ=1

Oτ∑
k=1

∑
im∈Aτk

(
pτ (im|Aτk, θ̂)− yτkm

)
xτim + λθ̂ = 0 (9)

Now we have

Gt(θ̂) =

t∑
τ=1

Oτ∑
k=1

∑
i∈Aτk

[(
pτ (i|Aτk, θ̂)− pτ (i|Aτk, θ

∗)
)
xτi

]
+ λ

(
θ̂ − θ∗

)

=

t∑
τ=1

Oτ∑
k=1

∑
im∈Aτk

(
pτ (im|Aτk, θ̂)− yτkm

)
xτim + λθ̂

+

t∑
τ=1

Oτ∑
k=1

∑
im∈Aτk

(pτ (im|Aτk, θ
∗)− yτkm)xτim − λθ∗

= 0 +

t∑
τ=1

Oτ∑
k=1

∑
im∈Aτk

ϵτkmxτim − λθ∗

14



where the last equality is from Eq.(9) and the definition of ϵtkm = ytkm − pt(im|Atk, θ
∗). For

convenience, we define Zt :=
∑t

τ=1

∑Oτ

k=1

∑
im∈Aτk

ϵτkmxτim .

For any parameters θ1, θ2 ∈ Rd, by mean value theorem, there exists θ̄ = cθ1 + (1− c)θ2 with some
c ∈ (0, 1) such that

Gt(θ1)−Gt(θ2)

=

t∑
τ=1

Oτ∑
k=1

∑
i∈Aτk

[(pτ (i|Aτk, θ1)− pτ (i|Aτk, θ2))xτi] + λ(θ1 − θ2)

=

 t∑
τ=1

Oτ∑
k=1

∑
i∈Aτk

∑
j∈Aτk

∇jpτ (i|Aτk, θ̄)xτix
⊤
τj

+ λId

+ λ(θ1 − θ2)

=

 t∑
τ=1

Oτ∑
k=1

 ∑
i∈Aτk

pτ (i|Aτk, θ̄)xτix
⊤
τi −

∑
i,j∈Aτk

pτ (i|Aτk, θ̄)pτ (j|Aτk, θ̄)xτix
⊤
τj

 (θ1 − θ2)

+ λId(θ1 − θ2)

where Id is a d× d identity matrix. We define the matrix Hτk as

Hτk :=
∑

i∈Aτk

pτ (i|Aτk, θ̄)xτix
⊤
τi −

∑
i∈Aτk

∑
j∈Aτk

pτ (i|Aτk, θ̄)pτ (j|Aτk, θ̄)xτix
⊤
τj

We can see that Hτk is positive semi-definite, since Hτk is a Hessian of a negative log-likelihood
which is convex.

Also, notice that

(xi − xj) (xi − xj)
⊤
= xix

⊤
i + xjx

⊤
j − xix

⊤
j − xjx

⊤
i ⪰ 0

which implies xix
⊤
i + xjx

⊤
j ⪰ xix

⊤
j + xjx

⊤
i . Therefore, it follows that

Hτk =
∑

i∈Aτk

pτ (i|Aτk, θ̄)xτix
⊤
τi −

∑
i∈Aτk

∑
j∈Aτk

pτ (i|Aτk, θ̄)pτ (j|Aτk, θ̄)xτix
⊤
τj

=
∑

i∈Aτk

pτ (i|Aτk, θ̄)xτix
⊤
τi −

1

2

∑
i∈Aτk

∑
j∈Aτk

pτ (i|Aτk, θ̄)pτ (j|Aτk, θ̄)
(
xτix

⊤
τj + xτjx

⊤
τi

)
⪰
∑

i∈Aτk

pτ (i|Aτk, θ̄)xτix
⊤
τi −

1

2

∑
i∈Aτk

∑
j∈Aτk

pτ (i|Aτk, θ̄)pτ (j|Aτk, θ̄)
(
xτix

⊤
τi + xτjx

⊤
τj

)
=
∑

i∈Aτk

pτ (i|Aτk, θ̄)xτix
⊤
τi −

∑
i∈Aτk

∑
j∈Aτk

pτ (i|Aτk, θ̄)pτ (j|Aτk, θ̄)xτix
⊤
τi

=
∑

i∈Aτk

pτ (i|Aτk, θ̄)

1−
∑

j∈Aτk

pτ (j|Aτk, θ̄)

xτix
⊤
τi

=
∑

i∈Aτk

pτ (i|Aτk, θ̄)pτ (i0|Aτk, θ̄)xτix
⊤
τi

where pτ (i0|Aτk, θ) :=
1

1+
∑

j∈Aτk
x⊤
τiθ

is the click probability of the outside option with respect to θ

at round τ . Now,

Gt(θ1)−Gt(θ2) =

[
t∑

τ=1

Oτ∑
k=1

Hτk + λId

]
(θ1 − θ2)

≥

[
t∑

τ=1

Oτ∑
k=1

∑
i∈Aτk

pτ (i|Aτk, θ̄)pτ (i0|Aτk, θ̄)xτix
⊤
τi + λId

]
(θ1 − θ2)

:= H(θ̄)(θ1 − θ2).
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pτ (i|Aτk, θ̄)pτ (i0|Aτk, θ̄) is lower-bounded by κ from Assumption 4.2. Then we have

(θ1 − θ2)
⊤(Gt(θ1)−Gt(θ2)) ≥ (θ1 − θ2)

⊤(κVt)(θ1 − θ2) > 0

for any θ1 ̸= θ2. . From the definition on Eq.(8), Gt(θ
∗) = 0. Hence, for any θ ∈ Rd, we have

||Gt(θ)||2V −1
t

= ||Gt(θ)−Gt(θ
∗)||2

V −1
t

= (Gt(θ)−Gt(θ
∗))⊤V −1

t (Gt(θ)−Gt(θ
∗))

≥ (θ − θ∗)⊤H(θ̄)V −1
t H(θ̄)(θ − θ∗)

≥ κ2(θ − θ∗)⊤Vt(θ − θ∗)

= κ2||θ − θ∗||2Vt

where the last inequality is fromH(θ̄) ⪰ κVt. Using Gt(θ̂) = Zt − λθ∗, we have

κ||θ̂ − θ∗||Vt
≤ ||Gt(θ̂)||V −1

t
≤ ||Zt||V −1

t
+ λ||θ∗||V −1

t

Recall that Zt =
∑t

τ=1

∑
k∈Oτ

∑
im∈Aτk

ϵτkmxτim and ϵτkm is sub-Gaussian with parameter σ,
then we can apply Theorem 1 in Abbasi-Yadkori et al. [1]:

||Zt||2V −1
t
≤ 2σ2 log

(
det(Vt)

1/2det(V )−1/2

δ

)
with probability at least 1− δ. Then we combine with Lemma B.9:

||Zt||2V −1
t
≤ 2σ2

[
d

2
ln

(
traceV + tKM

d

)
− 1

2
ln detV + ln

1

δ

]
≤ 2σ2

[
d

2
ln (dλ+ tKM) d− 1

2
lnλd + ln

1

δ

]
= 2σ2

[
d

2
ln

(
λ+

tKM

d

)
− d

2
lnλ+ ln

1

δ

]
= 2σ2

[
d

2
ln

(
1 +

tKM

dλ

)
+ ln

1

δ

]

where the first inequality is from the fact that V = λI . Next we need to bound λ||θ∗||V −1
t

. We have

||θ∗||2
V −1
t
≤ ||θ∗||22

λmin(Vt)
≤ ||θ∗||22

λmin(V )
≤ ||θ

∗||22
λ

.

By Assumption 4.1 that ||θ∗||22 ≤ 1, λ||θ∗||V −1
t
≤
√
λ. Recall that σ = 1

2 in our problem. Combining
the bound of ||Zt||V −1

t
and λ||θ∗||V −1

t
, we have

||θ̂t − θ∗||Vt
≤ 1

2κ

√
d ln

(
1 +

tKM

dλ
+ 2 ln

1

δ

)
+

√
λ

κ

with probability at least 1− δ.

Thus θ̂t lies in the ellipsoid centered at θ∗ with confidence radius βt(δ) under Vt norm. Building on
this, we can define an upper confidence bound of the true weight for each base arm i by

uti = x⊤
ti θ̂t−1 + βt−1||xti||V −1

t−1

Recall that we define the high-probability concentration event Et(δ) := {||θ̂t − θ∗||Vt ≤ βt(δ)}. The
fact that uti is an upper confidence bound of true weight w∗

ti = x⊤
tiθ

∗ is proved in the following
Lemma B.4 and Lemma B.5.
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Lemma B.4 (Optimism). On event Et(δ), for every item i ∈ [N ], we have

uti ≥ w∗
ti . (10)

Proof. Recall that w∗
ti = x⊤

tiθ
∗. By Hölder’s inequality,∣∣∣x⊤

ti θ̂t−1 − x⊤
tiθ

∗
∣∣∣ = ∣∣∣∣[V 1/2

t−1

(
θ̂t−1 − θ∗

)]⊤ (
V

−1/2
t−1 xti

)∣∣∣∣
≤ ||V 1/2

t−1

(
θ̂t−1 − θ∗

)
||2||V −1/2

t−1 xti||2

= ||θ̂t−1 − θ∗||Vt−1
||xti||V −1

t−1

≤ βt−1(δ)||xti||V −1
t−1

. (11)

From the last inequality above, we have

−βt−1(δ)||xti||V −1
t−1
≤ x⊤

ti θ̂t−1 − x⊤
tiθ

∗.

Add βt−1(δ)||xti||V −1
t−1

, then we have

0 ≤
(
x⊤
ti θ̂t−1 + βt−1(δ)||xti||V −1

t−1

)
− x⊤

tiθ
∗ = uti − w∗

ti.

Lemma B.5 (Concentration of UCB weights). On event Et(δ), for every item i ∈ [N ], we have

uti − w∗
ti ≤ 2βt−1(δ)||xti||V −1

t−1
. (12)

Proof. From inequality (11), we have

βt−1(δ)||xti||V −1
t−1
≥ x⊤

ti θ̂t−1 − x⊤
tiθ

∗.

Adding βt−1(δ)||xti||V −1
t−1

to both sides gives,

2βt−1(δ)||xti||V −1
t−1
≥
(
x⊤
ti θ̂t−1 + βt−1(δ)||xti||V −1

t−1

)
− x⊤

tiθ
∗ = uti − w∗

ti

Lemma B.6. For any round t and action St, we have

Rα (t, St) ≤ 2

(
K

K + 1

)K+1

max
k∈[|St|]

max
i∈Atk

βt−1(δ)||xti||V −1
t−1

Proof. Let Sut = argmaxS∈S f (S, ut) and recall that S∗
t = argmaxS∈S f (S,w∗

t ). Then

f (St, ut) ≥ αf (Sut , ut) ≥ αf (S∗
t , ut) ≥ αf (S∗

t , w
∗
t ) .

The first inequality is by the definition of α-approximate oracle. The second inequality comes from
the fact that Sut has the maximum expected reward when ut is given. Combining Lemma B.4 which
states ut ≥ w∗

t and Lemma B.1 which is about the monotonicity of the expected reward function, we
can obtain the last inequality. Then we can bound theRα (t, St) with the expected reward difference
of St between given ut and w∗

t as follows:

Rα (t, St) = αf (S∗
t , w

∗
t )− f(St, w

∗
t ) ≤ f (St, ut)− f(St, w

∗
t ).

By Lemma B.2 and Lemma B.5,

Rα (t, St) ≤ f (St, ut)− f(St, w
∗
t )

≤
(

K

K + 1

)K+1

max
k∈[|St|]

max
i∈Atk

(uti − w∗
ti)

≤ 2

(
K

K + 1

)K+1

max
k∈[|St|]

max
i∈Atk

βt−1(δ)||xti||V −1
t−1
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Lemma B.7. Let xi ∈ Rd and I ∈ Rd×d be an identity matrix. Then we have

det

(
I +

n∑
i=1

xix
⊤
i

)
≥ 1 +

n∑
i=1

||xi||22.

Proof. Let the eigenvalues of
∑n

i=1 xix
⊤
i be λ1, . . . , λd where λj ≥ 0 for all 1 ≤ j ≤ d. Then we

have

det

(
I +

n∑
i=1

xix
⊤
i

)
=

d∏
j=1

(1 + λj) ≥ 1 +

d∑
j=1

λj = 1− d+

d∑
j=1

(1 + λj)

= 1− d+ trace

(
I +

n∑
i=1

xix
⊤
i

)
= 1− d+ d+

n∑
i=1

||xi||22

= 1 +

n∑
i=1

||xi||22

Lemma B.8 (Maximal elliptical potential).
t∑

τ=1

max
k∈[Oτ ]

max
i∈Aτk

||xτi||2V −1
τ
≤ 2 ln

(
det (Vt)

λd

)

Proof. Let λmin(Vτ ) be the minimum eigenvalue of Vτ . Since λ ≥ 1 and ||xτi||2Vτ−1
≤ ||xτi||22

λmin(Vτ−1)
≤

1
λ , we have

max
k∈[Oτ ]

max
i∈Aτk

||xτi||2V −1
τ−1

≤ 1.

Using the fact that z ≤ 2 ln(1 + z) for any z ∈ [0, 1], we have
t∑

τ=1

max
k∈[Oτ ]

max
i∈Aτk

||xτi||2V −1
τ
≤ 2

t∑
τ=1

ln

(
1 + max

k∈[Oτ ]
max
i∈Aτk

||xτi||2V −1
τ

)

= 2 ln

t∏
τ=1

(
1 + max

k∈[Oτ ]
max
i∈Aτk

||xτi||2V −1
τ

)
. (13)

Now we upper bound
∏t

τ=1

(
1 + maxk∈[Oτ ] maxi∈Aτk

||xτi||2V −1
τ

)
from det(Vt).

det(Vt) = det

(
Vt−1 +

Ot∑
k=1

∑
i∈Atk

xtix
⊤
ti

)

= det(Vt−1)det

(
I + V

−1/2
t−1

Ot∑
k=1

∑
i∈Atk

xtix
⊤
tiV

−1/2
t−1

)

= det(Vt−1)det

(
I +

Ot∑
k=1

∑
i∈Atk

(
V

−1/2
t−1 xti

)(
V

−1/2
t−1 xti

)⊤)

≥ det(Vt−1)

(
1 +

Ot∑
k=1

∑
i∈Atk

||xti||2V −1
t−1

)

≥ det(λI)
t∏

τ=1

(
1 +

Oτ∑
k=1

∑
i∈Aτk

||xτi||2V −1
τ−1

)

≥ det(λI)
t∏

τ=1

(
1 + max

k∈[Oτ ]
max
i∈Aτk

||xτi||2V −1
τ−1

)
.
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The second equality above is from the fact that V + U = V 1/2(I + V −1/2UV −1/2)V 1/2 for
a symmetric positive definite matrix V . The first inequality above can be obtained by applying
Lemma B.7. Applying the first inequality repeatedly, we can get the second inequality above. Thus,
we have

t∏
τ=1

(
1 + max

k∈[Oτ ]
max
i∈Aτk

||xτi||2V −1
τ−1

)
≤ det(Vt)

det(λI)
. (14)

Then applying Eq.(14) to Eq.(13), we complete the proof as follows:

t∑
τ=1

max
k∈[Oτ ]

max
i∈Aτk

||xτi||2V −1
τ
≤ 2 ln

det(Vt)

det(λI)
≤ 2 ln

det(Vt)

λd

where the last inequality is from Lemma B.9.

Lemma B.9 (Lemma 10 in Abbasi-Yadkori et al. [1]). det (Vt) is increasing with respect to t and

det (Vt) ≤
(
λ+

tKM

d

)d

Proof. We first prove that det (Vt) is increasing with respect to t. For any symmetric positive definite
matrix Ṽ ∈ Rd×d and column vector x ∈ Rd×1, we can see det(Ṽ + xx⊤) ≥ det(Ṽ ) as follows:

det(Ṽ + xx⊤) = det(Ṽ )det(I + Ṽ −1/2xx⊤Ṽ −1/2)

= det(Ṽ )det(1 + ||Ṽ −1/2x||2)
≥ det(Ṽ ).

The second equality above is due to Sylvester’s determinant theorem, which states that det(I+AB) =
det(I +BA).

Next, we prove the inequality in Lemma B.9. Let λ1, . . . , λd be the eigenvalues of Vt ∈ Rd×d. Then

det(Vt) = λ1λ2 · · ·λd

≤
(
λ1 + · · ·+ λd

d

)d

=

(
trace(Vt)

d

)d

.

The second inequality above is from the AM-GM inequality. Now we need to bound trace(Vt) as
follows:

trace(Vt) = trace(V ) +

t∑
τ=1

Oτ∑
k=1

∑
i∈Aτk

trace(xτix
⊤
τi)

= dλ+

t∑
τ=1

Oτ∑
k=1

∑
i∈Aτk

||xτi||22

≤ dλ+ tKM

The second inequality is due to Assumption 4.1 that ||xti|| ≤ 1. Thus, det(Vt) ≤
(
λ+ tKM

d

)d
.

Now, we can prove Theorem 4.3.

19



Proof of Theorem 4.3. Suppose B.3 holds for all round t. Then, with probability 1− δ, we have

Rα (T ) = E

[
T∑

t=1

Rα (t, St)

]

≤ E

[
T∑

t=1

2

(
K

K + 1

)K+1

max
k∈[|St|]

max
i∈Atk

βt−1(δ)||xti||V −1
t−1

]
(15)

≤ E

[
2

(
K

K + 1

)K+1

βT (δ)

T∑
t=1

max
k∈[|St|]

max
i∈Atk

||xti||V −1
t−1

]
(16)

= E

[
2

(
K

K + 1

)K+1

βT (δ)

T∑
t=1

max
k∈[Ot]

max
i∈Atk

||xti||V −1
t−1

]
(17)

Eq.(15) comes from Lemma B.6. Using the fact that βt(δ) is increasing with respect to t,
Eq.(16) is satisfied. Note that the upper bound of Rα (t, St) is in terms of all assortments of
St in Eq.(16). The previous work [18] mentioned that it is hard to estimate an upper bound for
2maxk∈[K] maxi∈Atk

βt−1(δ)||xti||V −1
t−1

because Vt only contains information of observed assort-
ments. We cope with this by max operations and the property of UCB-CCA that the largest item in St

in terms of ||xti||V −1
t−1

is always in the first assortment. Then, we have

max
k∈[|St|]

max
i∈Atk

||xti||V −1
t−1

= max
k∈[Ot]

max
i∈Atk

||xti||V −1
t−1

which is stated in Eq.(5), and thus Eq.(17) is given by the equation above.

We complete the remain part as follows:

Rα (T ) ≤ E

[
2CκβT (δ)

T∑
t=1

max
k∈[Ot]

max
i∈Atk

||xti||V −1
t−1

]

≤ E

2CκβT (δ)

√√√√ T∑
t=1

12
T∑

t=1

max
k∈[Ot]

max
i∈Atk

||xti||2V −1
t−1


≤ E

[
2Cκ

(
1

2κ

√
d log

(
1 +

TKM

dλ

)
+ 2 log

1

δ
+

√
λ

κ

)√
T · 2 ln

(
det (Vt)

λd

)]

≤ 2
√
2Cκ

(
1

2κ

√
d log

(
1 +

TKM

dλ

)
+ 2 log

1

δ
+

√
λ

κ

)√
Td ln

(
1 +

TKM

dλ

)
.

The first inequality above is by applying Cauchy-Schwartz inequality. The second inequality comes
from the definition of βt(δ) in Lemma B.3 and Lemma B.7. The last inequality is from the upper
bound of det(Vt) in Lemma B.9

Since we set δ = 1
t2 , we have

Rα (T ) = ≤ 2
√
2Cκ

(
1

2κ

√
d log

(
1 +

TKM

dλ

)
+ 4 log T +

√
λ

κ

)√
Td ln

(
1 +

TKM

dλ

)
.

C Proof of Theorem 5.2

Since UCB-CCA+ is a parametric-based algorithm, we redefine our notation for convenience. We
denote the user click probability of m-th item in Atk and probability of the outside option in Atk as:

pt(im|Atk, θ) =
exp

(
x⊤
tim

θ
)

1 +
∑

j∈Atk
exp

(
x⊤
tjθ
) .
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We also denote the expected reward function as:

f (St, θ
∗) =

K∑
k=1


k−1∏
k̇=1

pt(i0|Atk̇, θ
∗)

 ∑
i∈Atk

pt(i|Atk, θ
∗).

We define the first and second derivative of pt(i|Atk, θ) with respect to the arm i:

ṗt(i|Atk, θ) := pt(i|Atk, θ)pt(i0|Atk, θ)

p̈t(i|Atk, θ) := pt(i|Atk, θ)pt(i0|Atk, θ)(1− 2pt(i0|Atk, θ)).

Additionally, we define the new design matrix containing local information:

Ht(θ) :=

t∑
τ=1

∑
k∈[Oτ ]

∑
i∈Aτk

ṗτ (i|Aτk, θ)xτix
⊤
τi + λtId (18)

Ht :=

t∑
τ=1

∑
k∈[Oτ ]

∑
i∈Aτk

ṗτ (i|Aτk, θ
∗)xτix

⊤
τi + λtId. (19)

The negative log-likelihood function under any parameter θ is given by:

ℓt(θ) := −
t∑

τ=1

Oτ∑
k=1

∑
im∈Aτk

yτkm log pτ (im|Aτk, θ)

where yτkm is a user choice random variable on the m-th item im in the k-th assortment Aτk at round
τ . And the regularized maximum likelihood estimates θ̂t is given by minimizing the regularized
log-likelihood function:

θ̂t = argmin
θ

[
ℓt(θ) +

λt

2
||θ||22

]
where the penalty parameter λt ≥ 1. To obtain θ̂t, we take the gradient of the above regularized
log-likelihood function with respect to θ:

∇θ

[
ℓt(θ) +

λt

2
||θ||22

]
=

t∑
τ=1

Oτ∑
k=1

∑
i∈Aτk

{pτ (i|Aτk, θ)− yτkm}xτi + λtθ. (20)

And we denote the function gt(θ) as follows:

gt(θ) :=

t∑
τ=1

Oτ∑
k=1

∑
i∈Aτk

pτ (i|Aτk, θ)xτi + λtθ. (21)

Since θ̂t is the minimizer of the regularized negative log-likelihood function, we can get θ̂t by setting
Eq.(20) to 0. Then we can see that gt(θ̂t) can be represented as a function of feature vector xti and
user choice variable ytkm:

t∑
τ=1

Oτ∑
k=1

∑
i∈Aτk

yτkmxτi =

t∑
τ=1

Oτ∑
k=1

∑
i∈Aτk

pτ (i|Aτk, θ̂t) + λtθ̂txτi = gt(θ̂t) (22)

Now, the following lemma illustrates the relationship between the function gt(θ) and its input
parameter θ.
Lemma C.1. For any parameter θ1, θ2 ∈ Rd, the following equality hold:

gt(θ1)− gt(θ2) = Gt(θ1, θ2)

||gt(θ1)− gt(θ2)||G−1
t (θ1,θ2)

= ||θ1 − θ2||Gt(θ1,θ2)

where Gt(θ1, θ2) =
∑t

τ=1

∑Oτ

k=1

∑
i∈Aτk

[∫ 1

v=0
ṗτ (i|Aτk, vθ2 + (1− v)θ1)dv

]
xτix

⊤
τi+λtId and

Id is d-dimensional identitiy matrix.

21



Proof. We first derive the first equality in Lemma C.1.

gt(θ1)− gt(θ2) =

t∑
τ=1

Oτ∑
k=1

∑
i∈Aτk

{pτ (i|Aτk, θ1)− pτ (i|Aτk, θ2)}xτi + λt(θ1 − θ2)

=

t∑
τ=1

Oτ∑
k=1

∑
i∈Aτk

[∫ 1

v=0

ṗτ (i|Aτk, vθ2 + (1− v)θ1)dv

]
xτix

⊤
τi(θ1 − θ2) + λt(θ1 − θ2)

=

(
t∑

τ=1

Oτ∑
k=1

∑
i∈Aτk

[∫ 1

v=0

ṗτ (i|Aτk, vθ2 + (1− v)θ1)dv

]
xτix

⊤
τi + λtId

)
(θ1 − θ2)

= Gt(θ1, θ2)(θ1 − θ2)

Since
∫ 1

v=0
ṗt(i|Atk, vθ2+(1−v)θ1)dv ≥ κ from Assumption 4.2 and the definition of ṗt(i|Atk, θ),

Gt(θ1, θ2)(θ1 − θ2) is positive definite. Thus, we can derive the second equality in Lemma C.1 from
the first eqaulity in the same lemma.

Theorem C.2 (Theorem 4 in Abeille et al. [2]). Let {Ft}∞t=1 be a filtration. Let {xt}∞t=1 be a
stochastic process in such that xt is Ft measurable. Let {ϵt}∞t=2 be a martingale difference sequence
such that ϵt+1 is Ft+1 measurable. Furthermore, assume that conditionally on Ft we have |ϵt+1| ≤ 1
almost surely, and note σ2

t := E
[
ϵ2t+1 | Ft

]
. Let {λt}∞t=1 be a predictable sequence of non-negative

scalars. Define: Ht :=
∑t

τ=1 σ
2
τxτx

2
t + λtId, Mt :=

∑t
τ=1 ϵτ+1xτ Then for any δ ∈ (0, 1] :

P

(
∃t ≥ 1, ||Mt||H−1

t
≥
√
λt

2
+

2√
λt

log

(
det(Ht)

1
2λ

− d
2

t

δ

)
+

2√
λt

d log 2

)
≤ δ

Using Theorem C.2, we show that the following holds with high probability.

Lemma C.3. With θ̂t as the regularized maximum log-likelihood estimate as defined in Eq.(2), the
following inequality holds with probability at least 1− δ:

∀t ≥ 1, ||gt(θ̂t)− gt(θ
∗)||H−1

t
≤ γt(δ), (23)

where the confidence radius γt(δ) := 3
√
λt

2 + 2√
λt

log

(
(λt+tKM/d)d/2λ

−d/2
t

δ

)
+ 2d√

λt
log 2.

Proof. In Eq.(22), the following holds:

gt(θ̂t) =

t∑
τ=1

Oτ∑
k=1

∑
i∈Aτk

yτkmxτi.

Subtract gt(θ∗) =
∑t−1

τ=1

∑Oτ

k=1

∑
im∈Aτk

pτ (im|Aτk, θ
∗) + λtθ

∗ from both sides of the above
equation, then we get:

gt(θ̂t)− gt(θ
∗) =

t∑
τ=1

Oτ∑
k=1

∑
im∈Aτk

{yτkm − pτ (im|Aτk, θ
∗)}xτim − λtθ

∗

=

t∑
τ=1

Oτ∑
k=1

∑
im∈Aτk

ϵτkmxτim − λtθ
∗

=: Mt − λtθ
∗.

Thus, we have:
||gt(θ̂t)− gt(θ

∗)||H−1
t
≤ ||Mt||H−1

t
+ λt||θ∗||H−1

t
. (24)

Now, we need to bound λt||θ∗||H−1
t

. We have

||θ∗||2
H−1

t
≤ ||θ∗||22

λmin(Ht)
≤ ||θ∗||22

λmin(λtId)
≤ ||θ

∗||22
λt

.
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By Assumption 4.1 that ||θ∗||22 ≤ 1, λt||θ∗||H−1
t
≤
√
λt. We can rewritten Equation (24) as follows:

||gt(θ̂t)− gt(θ
∗)||H−1

t
≤ ||Mt||H−1

t
+
√

λt. (25)

Since the reward at any round and for any cascade is constrained to be no more than 1, given the
filtration Ft, ϵτkm which is upper bounded by 1 behaves as a martingale difference. To apply
Theorem C.2, we calculate ∀τ ≥ 1:

E
[
ϵ2τkm | Ft

]
= E

[
{yτkm − pτ (im|Aτk, θ

∗)}2 | Ft

]
= V [yτkm | Ft] = pτ (im|Aτk, θ

∗)(1− pτ (im|Aτk, θ
∗))

=: ṗτ (im|Aτk, θ
∗).

Then, setting Ht as Ht and Mt as Mt, we obtain:

1− δ ≤ P

(
∀t ≥ 1, ||Mt||H−1

t
≤
√
λt

2
+

2√
λt

log

(
det(Ht)

1
2λ

− d
2

t

δ

)
+

2√
λt

d log 2

)
. (26)

Now, we need to bound det(Ht).

det(Ht) = det

 t∑
τ=1

∑
k∈[Oτ ]

∑
i∈Aτk

ṗτ (i|Aτk, θ
∗)xτix

⊤
τi + λtId


≤ det

t−1∑
τ=1

∑
k∈[Oτ ]

∑
i∈Aτk

xτix
⊤
τi + λtId


= det(Vt) ≤

(
λt +

tKM

d

)d

.

The first inequality is from the fact that ṗτ (i|Aτk, θ
∗) ≤ 1 and the last inequality is obtained by using

Lemma B.9. We substitute the above results into Eq.(26). This simplify Eq.(26) as:

1− δ ≤ P

(
∀t ≥ 1, ||Mt||H−1

t
≤
√
λt

2
+

2√
λt

log

(
(λt + tKM/d)

d
2 λ

− d
2

t

δ

)
+

2√
λt

d log 2

)
.

Thus, the following holds with probability at least 1− δ by combining the above result and Equa-
tion (25):

||gt(θ̂t)− gt(θ
∗)||H−1

t
≤ 3
√
λt

2
+

2√
λt

log

(
(λt + tKM/d)

d
2 λ

− d
2

t

δ

)
+

2√
λt

d log 2.

Lemma C.4 (Lemma 12 in [3]). For an assortment Atk and θ1, θ2 ∈ Rd, the following holds:∑
i∈Atk

∫ 1

v=0

ṗt(i|Atk, vθ2 + (1− v)θ1) · dv ≥
∑
i∈Atk

ṗt(i|Atk, θ1)(1 + |x⊤
tiθ1 − x⊤

tiθ2|)−1.

Lemma C.5. For any θ1, θ2 ∈ Rd, the followings hold:

Gt(θ1, θ2) ⪰
1

3
Ht(θ1)

Gt(θ1, θ2) ⪰
1

3
Ht(θ2)

where Gt(θ1, θ2) =
∑t

τ=1

∑Oτ

k=1

∑
i∈Aτk

[∫ 1

v=0
ṗτ (i|Aτk, vθ2 + (1− v)θ1)dv

]
xτix

⊤
τi+λtId and

Id is d-dimensional identitiy matrix.
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Proof.∑
i∈Atk

∫ 1

v=0

ṗt(i|Atk, vθ2 + (1− v)θ1) · dv ≥
∑
i∈Atk

ṗt(i|Atk, θ1)(1 + |x⊤
tiθ1 − x⊤

tiθ2|)−1

≥
∑
i∈Atk

ṗt(i|Atk, θ1)(1 + ||xti||2||θ1 − θ2||2)−1

≥
∑
i∈Atk

ṗt(i|Atk, θ1)

3
.

The first inequality is from Lemma C.4, the second inequality is obtained by applying Cachy-Schwarz
inequality and the last inequality is from our Assumption 4.1. The definition of Gt(θ1, θ2) is as
follows:

Gt(θ1, θ2) =

t∑
τ=1

Oτ∑
k=1

∑
i∈Aτk

[∫ 1

v=0

ṗτ (i|Aτk, vθ2 + (1− v)θ1)dv

]
xτix

⊤
τi + λtId

⪰ 1

3

t∑
τ=1

∑
k∈[Oτ ]

∑
i∈Aτk

ṗt(i|Atk, θ1)xτix
⊤
τi + λtId

=
1

3


t∑

τ=1

∑
k∈[Oτ ]

∑
i∈Aτk

ṗt(i|Atk, θ1)xτix
⊤
τi + (1 + 2)λtId


⪰ 1

3


t∑

τ=1

∑
k∈[Oτ ]

∑
i∈Aτk

ṗt(i|Atk, θ1)xτix
⊤
τi + λtId


=

1

3
Ht(θ1).

For deriving the second relationship in Lemma C.5, given that θ1 and θ2 possess symmetrical roles in∫ 1

v=0
ṗτ (i|Aτk, vθ2 + (1− v)θ1)dv, we substitute two parameters and can get the result.

Lemma C.6 (Restatement of Lemma 5.1). Suppose θ∗ ∈ Bt(δ). Then, for any θ ∈ Bt(δ), we have

||θ − θ∗||Ht
≤ 6γt(δ). (27)

where the confidence radius γt(δ) := 3
√
λt

2 + 2√
λt

log

(
(λt+tKM/d)d/2λ

−d/2
t

δ

)
+ 2d√

λt
log 2.

Proof.

||θ − θ∗||Ht
≤
√
3||θ − θ∗||Gt(θ,θ∗)

=
√
3||gt(θ∗)− gt(θ)||G−1

t (θ,θ∗)

≤
√
3
{
||gt(θ∗)− gt(θ̂t)||G−1

t (θ,θ∗) + ||gt(θ̂t)− gt(θ)||G−1
t (θ,θ∗)

}
≤
√
3
{√

3||gt(θ∗)− gt(θ̂t)||H−1
t

+
√
3||gt(θ̂t)− gt(θ)||H−1

t

}
= 3

{
||gt(θ∗)− gt(θ̂t)||H−1

t
+ ||gt(θ̂t)− gt(θ)||H−1

t

}
= 6γt(δ).

The first and third inequality is from Lemma C.5. The first equality is from Lemma C.1. From
triangle inequality, we obtain the second inequality. Since θ ∈ Bt(δ), the last equality holds.

The above lemma shows the upper bound on the difference between an arbitrary θ and θ∗, and is
pivotal for determining the overall regret bound.
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Lemma C.7. For the cascade St chosen by UCB-CCA+ and any θt ∈ Bt(δ), the following holds with
probability at least 1− δ:

f (St, θt)− f (St, θ
∗) ≤ 36 γt(δ) max

Atk∈St
i∈Atk

√
ṗt(i|Atk, θ∗)||xti||H−1

t−1
+

216

κ
γ2
t (δ) max

Atk∈St
i∈Atk

||xti||2V −1
t−1

Proof. We begin by performing a second Taylor expansion of the expected reward function:

f (St, θt)− f (St, θ
∗)

= ∇θf (St, θ
∗) (θt − θ∗) + (θt − θ∗)⊤

[∫ 1

v=0

(1− v)∇2
θf
(
St, θ̄)

)
dv

]
(θt − θ∗)

≤
∑

Atk∈St

∑
i∈Atk


∏
Atk̇∈

St\{Atk}

pt(i0|Atk̇, θ
∗)

 ṗt(i|Atk, θ
∗)x⊤

ti(θt − θ∗)

+

∫ 1

v=0

(1− v)
∑

Atk∈St

∑
i∈Atk


∏
Atk̇∈

St\{Atk}

pt(i0|Atk̇, θ̄)

 p̈t(i|Atk, θ̄)dv(x
⊤
ti(θt − θ∗))2 (28)

where θ̄ := θ∗ + v(θt − θ∗).

Then, we bound
∑

Atk∈St

∑
i∈Atk

{∏
Atk̇∈

St\{Atk}
pt(i0|Atk̇, θ

∗)

}
as follows:

∑
Atk∈St

∑
i∈Atk


∏
Atk̇∈

St\{Atk}

pt(i0|Atk̇, θ
∗)

 ≤
∑

Atk∈St

∑
i∈Atk

{
1

1 +M exp(−1)

}K−1

= KM

{
1

1 +M exp(−1)

}K−1

= K

{
1

1 +M exp(−1)

}K−2

·M
{

1

1 +M exp(−1)

}
≤ K

{
1

1 + exp(−1)

}K−2

· exp(1)

≤ (1 + exp(1))2

exp(1)3(log(1 + exp(1))− 1)
· exp(1)

<
(1 + exp(1))2

exp(1)2(log(1 + exp(1))− 1)
< 6. (29)

The first inequality is due to Assumption 4.1 and the definition of pt(i0|Atk̇, θ
∗). Since

K
{

1
1+exp(−1)

}K−2

is maximized as (1+exp(1))2

exp(1)3(log(1+exp(1))−1) at K = 1
log(1+exp)−1 ≈ 3.19, we
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can derive the third inequality. We apply Equation (29) to Equation (28) as follows:

f (St, θt)− f (St, θ
∗) ≤ 6 max

Atk∈St
i∈Atk

ṗt(i|Atk, θ
∗)x⊤

ti(θt − θ∗)

+ 6 max
Atk∈St
i∈Atk

[∫ 1

v=0

(1− v)p̈t(i|Atk, θ̄)dv

]
(x⊤

ti(θt − θ∗))2

≤ 6 max
Atk∈St
i∈Atk

ṗt(i|Atk, θ
∗)||xti||H−1

t−1
||θt − θ∗||Ht−1

+ 6 max
Atk∈St
i∈Atk

[∫ 1

v=0

(1− v)p̈t(i|Atk, θ̄)dv

]
||xti||2H−1

t−1

||θt − θ∗||2Ht−1

≤ 36 γt(δ) max
Atk∈St
i∈Atk

ṗt(i|Atk, θ
∗)||xti||H−1

t−1
+ 216 γ2

t (δ) max
Atk∈St
i∈Atk

||xti||2H−1
t−1

≤ 36 γt(δ) max
Atk∈St
i∈Atk

√
ṗt(i|Atk, θ∗)||xti||H−1

t−1
+

216

κ
γ2
t (δ) max

Atk∈St
i∈Atk

||xti||2V −1
t−1

Lemma C.8 (Elliptical potential with local information).

T∑
t=1

max
k∈[Ot]
i∈Atk

||
√
ṗt(i|Atk, θ∗)xti||2H−1

t−1

≤ 2d log

(
1 +

KMT

dλ

)

Proof. We begin by demonstrating that the weighted ℓ2 norm of the feature vector combined with
the local information inside the above max operator is upper bounded by 1. For convenience,√
ṗt(i|Atk, θ∗)xti is denoted by x̃ti. So, we rewrite Ht :=

∑t
τ=1

∑
k∈[Oτ ]

∑
i∈Aτk

x̃τix̃
⊤
τi + λtId.

Let λmin(Ht) be the minimum eigenvalue of Ht. Since λt ≥ 1 and ||x̃ti||2H−1
t−1

≤ ||x̃ti||22
λmin(Ht−1)

≤ 1
λt

,

we have:

max
k∈[Ot]

max
i∈Atk

||x̃ti||2H−1
t−1

≤ 1.

Using the fact that z ≤ 2 ln(1 + z) for any z ∈ [0, 1], we have

t∑
τ=1

max
k∈[Oτ ]

max
i∈Aτk

||x̃τi||2H−1
τ−1

≤ 2

t∑
τ=1

ln

(
1 + max

k∈[Oτ ]
max
i∈Aτk

||x̃τi||2H−1
τ−1

)

= 2 ln

t∏
τ=1

(
1 + max

k∈[Oτ ]
max
i∈Aτk

||x̃τi||2H−1
τ−1

)
. (30)
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Now we upper bound
∏t

τ=1

(
1 + maxk∈[Oτ ] maxi∈Aτk

||x̃τi||2H−1
τ−1

)
from det(Ht).

det(Ht) = det

(
Ht−1 +

Ot∑
k=1

∑
i∈Atk

x̃tix̃
⊤
ti

)

= det(Ht−1)det

(
I +H

−1/2
t−1

Ot∑
k=1

∑
i∈Atk

x̃tix̃
⊤
tiH

−1/2
t−1

)

= det(Ht−1)det

(
I +

Ot∑
k=1

∑
i∈Atk

(
H

−1/2
t−1 x̃ti

)(
H

−1/2
t−1 x̃ti

)⊤)

≥ det(Ht−1)

(
1 +

Ot∑
k=1

∑
i∈Atk

||x̃ti||2H−1
t−1

)

≥ det(λI)
t∏

τ=1

(
1 +

Oτ∑
k=1

∑
i∈Aτk

||x̃τi||2H−1
τ−1

)

≥ det(λI)
t∏

τ=1

(
1 + max

k∈[Oτ ]
max
i∈Aτk

||x̃τi||2H−1
τ−1

)
.

The second equality above is from the fact that V + U = V 1/2(I + V −1/2UV −1/2)V 1/2 for
a symmetric positive definite matrix V . The first inequality above can be obtained by applying
Lemma B.7. Applying the first inequality repeatedly, we can get the second inequality above. Thus,
we have

t∏
τ=1

(
1 + max

k∈[Oτ ]
max
i∈Aτk

||x̃τi||2H−1
τ−1

)
≤ det(Ht)

det(λI)
. (31)

Then applying Eq.(31) to Eq.(30), we complete the proof as follows:

t∑
τ=1

max
k∈[Oτ ]

max
i∈Aτk

||x̃τi||2H−1
τ−1

≤ 2 ln
det(Ht)

det(λI)
≤ 2 ln

det(Ht)

λd
≤ 2 ln

det(Vt)

λd
≤ 2d log

(
1 +

KMT

dλ

)

where the last inequality is from Lemma B.9.
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Proof of Theorem 5.2.

Rα (T ) = E

[
T∑

t=1

Rα (t, St)

]
≤ E

[
T∑

t=1

f (St, θt)− f (St, θ
∗)

]

≤ E

 T∑
t=1

36 γt(δ) max
Atk∈St
i∈Atk

√
ṗt(i|Atk, θ∗)||xti||H−1

t−1
+

T∑
t=1

216

κ
γ2
t (δ) max

Atk∈St
i∈Atk

||xti||2V −1
t−1

 (32)

≤ E

36 γT (δ)

T∑
t=1

max
Atk∈St
i∈Atk

||
√
ṗt(i|Atk, θ∗)xti||H−1

t−1
+

216

κ
γ2
T (δ)

T∑
t=1

max
Atk∈St
i∈Atk

||xti||2V −1
t


≤ E

36 γT (δ)

T∑
t=1

max
k∈[Ot]
i∈Atk

||
√

ṗt(i|Atk, θ∗)xti||H−1
t−1

 (33)

+ E

 216

κpt(i0|At1, θ∗)
γ2
T (δ)

T∑
t=1

max
k∈[Ot]
i∈Atk

||xti||2V −1
t−1

 (34)

≤ E

36 γT (δ)

√√√√√T ·
T∑

t=1

max
k∈[Ot]
i∈Atk

||
√
ṗt(i|Atk, θ∗)xti||2H−1

t−1

 (35)

+ E

216(1 +Me)

κ
γ2
T (δ)

T∑
t=1

max
k∈[Ot]
i∈Atk

||xti||2V −1
t

 (36)

≤ 36γT (δ)

√
T · 2d log

(
1 +

KMT

dλt

)
+

216(1 +Me)

κ
γ2
T (δ)

(
d log

(
1 +

KMT

dλt

))
(37)

The inequality (32) is from Lemma C.7. The inequality (34) can be obtained by doubly optimistic
exposure swapping (see Section 5.1.2 and max operation). The Inequality (36) is from Cauchy-
Schwarz inequality. The last inequality is from Lemma C.8, Lemma B.8 and Lemma B.9.

D Convex Relaxation

In UCB-CCA+’s optimization step (see line 4 in Algorithm 2), it is particularly challenging to solve due
to the confidence set Bt(δ) in Eq.(6) being a non-convex set. [2; 3] address this problem by designing
a convex relaxation for the set Bt(δ) in simple logistic bandits and MNL bandits, respectively, and
we extend this idea to our model. The following confidence set is a convex relation set for Bt(δ):

Et(δ) :=
{
θ ∈ Rd : Lt(θ)− Lt(θ̂t) ≤ ζ2t (δ)

}

where ζt(δ) := γt(δ) +
γ2
t (δ)√
λt

and γt(δ) := 3
√
λt

2 + 2√
λt

log

(
(λt+KMt/d)d/2λ

−d/2
t

δ

)
+ 2d√

λt
log 2.

We exploit Et(δ) instead of the original confidence set Bt(δ) for numerical experiments in Section 7.
In this section, we justify our strategy of relaxing the confidence set based on the following lemmas.

Lemma D.1. ∀t ≥ 1, Et(δ) ⊇ Bt(δ), therefore P(∀t ≥ 1, θ∗ ∈ Et(δ)) ≥ 1− δ.
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Proof. We start by performing the second-order Taylor expansion of the log-likelihood function with
respect to θ̂t as follows:

Lt(θ)− Lt(θ̂t)

= ∇Lt(θ̂t)
⊤(θ − θ̂t) + (θ − θ̂t)

⊤
(∫ 1

v=0

(1− v)∇2Lt(θ̂t + v(θ − θ̂t))dv

)
(θ − θ̂t) (38)

= (θ − θ̂t)
⊤
(∫ 1

v=0

(1− v)∇2Lt(θ̂t + v(θ − θ̂t))dv

)
(θ − θ̂t)

= (θ − θ̂t)
⊤
(∫ 1

v=0

(1− v)Ht(θ̂t + v(θ − θ̂t))dv

)
(θ − θ̂t) (39)

≤ (θ − θ̂t)
⊤Gt(θ̂t − θ)(θ − θ̂t) (40)

= ||θ − θ̂t||2Gt(θ̂t,θ)

= ||gt(θ)− gt(θ̂t)||2G−1
t (θ̂t,θ)

(41)

= ||gt(θ)− gt(θ̂t)||2G−1
t (θ,θ̂t)

. (42)

Equation (38) from the fact that ∇Lt(θ̂t) = 0. Equation (39) is due to ∇2Lt(θ) = Ht(θ). Equa-
tion (40) is derived through the following process:

∫ 1

v=0

(1− v)Ht(θ̂t + v(θ − θ̂t))dv

=

t∑
τ=1

Oτ∑
k=1

∑
i∈Aτk

(∫ 1

v=0

(1− v)ṗτ (i|Aτk, θ̂t + v(θ − θ̂t)dv

)
xτix

⊤
τi + λτId

⪯
t∑

τ=1

Oτ∑
k=1

∑
i∈Aτk

(∫ 1

v=0

ṗτ (i|Aτk, θ̂t + v(θ − θ̂t)dv

)
xτix

⊤
τi + λτId (43)

= Gt(θ̂t − θ) (44)

Equation (43) holds because pt(i|A, θ,) is a strictly increasing function with respect to θ ( ṗt(i|A, θ,)).
And Equation (44) is from the definition of Gt(θ1 − θ2) as defined in Lemma C.5. Equation (41) is
obtained by applying Lemma C.1 Equation (42) is from the fact that G−1

t (θ̂t, θ) = G−1
t (θ, θ̂t). Now,

we apply Lemma D.2 to Equation (42), then we have:

Lt(θ)− Lt(θ̂t) ≤
{
γt(δ) +

γ2
t (δ)√
λt

}2

= ζ2t (δ)

for any θ ∈ Bt(δ). This shows that if θ ∈ Bt(δ), then θ ∈ Et(δ) and thus Bt(δ) ⊂ Et(δ).

Lemma D.2. Let δ ∈ (0, 1]. For all θ ∈ Bt(δ):

||gt(θ)− gt(θ̂t)||G−1
t (θ,θ̂t)

≤ γt(δ) +
γ2
t (δ)√
λt

= ζt(δ)
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Proof.

Gt(θ, θ̂t) =

t1∑
τ=1

∑
k∈[Oτ ]

∑
i∈Aτk

αi(Atk, θ̂t, θ)xτix
⊤
τi + λtId

≥
t1∑

τ=1

∑
k∈[Oτ ]

∑
i∈Aτk

ṗτ (i|Aτk, θ)(1 + |x⊤
τiθ − x⊤

τiθ̂t|)−1xτix
⊤
τi + λtId

≥
t1∑

τ=1

∑
k∈[Oτ ]

∑
i∈Aτk

ṗτ (i|Aτk, θ)(1 + ||xτi||G−1
t (θ,θ̂t)

||θ − θ̂t||Gt(θ,θ̂t)
)−1xτix

⊤
τi + λtId

≥ (1 + λ
−1/2
t ||θ − θ̂t||Gt(θ,θ̂t)

)−1

 t∑
τ=1

∑
k∈[Oτ ]

∑
i∈Aτk

ṗτ (i|Aτk, θ)xτix
⊤
τi + λtId


= (1 + λ

−1/2
t ||θ − θ̂t||Gt(θ,θ̂t)

)−1Ht(θ)

= (1 + λ
−1/2
t ||gt(θ)− gt(θ̂t)||G−1

t (θ,θ̂t)
)−1Ht(θ).

The first inequality is from Lemma C.4 and the second inequality is obtained by applying Cauchy-
Schwarz inequality.

This inequality gives:

||gt(θ)− gt(θ̂t)||2G−1
t (θ,θ̂t)

≤
{
1 + λ

−1/2
t ||gt(θ)− gt(θ̂t)||G−1

t (θ,θ̂t)

}
||gt(θ)− gt(θ̂t)||2Ht(θ)−1

≤ λ
−1/2
t γ2

t (δ)||gt(θ)− gt(θ̂t)||G−1
t (θ,θ̂t)

+ γ2
t (δ).

Resolving this polynomial inequality with respect to ||gt(θ)− gt(θ̂t)||G−1
t (θ,θ̂t)

by using the fact that
x2 ≤ bx+ c ⇒ x ≤ b+

√
c where x ∈ R and b, c ∈ R+ (See Proposition 7 in Abeille et al. [2]).,

then we get the result.

Lemma D.3. Suppose θ∗ ∈ Bt(δ), the following holds for all θ ∈ Et(δ):

||θ − θ∗||Ht ≤ 4γt(δ) + 2
√
2ζt(δ).

Proof. We start by performing the second-order Taylor expansion of the log-likelihood function with
respect to θ∗ as follows:
Lt(θ)− Lt(θ

∗)

= ∇Lt(θ
∗)⊤(θ − θ∗) + (θ − θ∗)⊤

(∫ 1

v=0

(1− v)∇2Lt(θ
∗ + v(θ − θ∗))dv

)
(θ − θ∗)

= ∇Lt(θ
∗)⊤(θ − θ∗) + ||θ − θ∗||2G̃t(θ∗,θ)

≥ ∇Lt(θ
∗)⊤(θ − θ∗) +

1

4
||θ − θ∗||2Ht

where G̃t(θ
∗, θ) = (θ − θ∗)⊤

(∫ 1

v=0
(1− v)Ht(θ

∗ + v(θ − θ∗))dv
)
(θ − θ∗). The last inequality is

from applying Lemma 8 in Abeille et al. [2]. Thus, we have:
||θ − θ∗||2Ht

≤ 4|Lt(θ)− Lt(θ
∗)|+ 4|∇Lt(θ

∗)⊤(θ − θ∗)|
≤ 8ζt(δ)

2 + 4|∇Lt(θ
∗)⊤(θ − θ∗)|

≤ 8ζt(δ)
2 + 4||∇Lt(θ

∗)||H−1
t
||θ − θ∗||Ht

≤ 8ζt(δ)
2 + 4γt(δ)||θ − θ∗||Ht

. (45)
The above second inequality is due to θ, θ∗ ∈ Et(δ). The third inequality is by applying Cachy-
Schwarz inequality. And Equation (45) holds from the following inequality:

||∇Lt(θ
∗)||H−1

t
= ||gt(θ∗)−

t∑
τ=1

Oτ∑
k=1

∑
im∈Aτk

yτkmxτim ||H−1
t

(46)

= ||gt(θ∗)− gt(θ̂t)||H−1
t
≤ γt(δ). (47)
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Equation (46) is from the definition of∇Lt(θ
∗) and gt(θ

∗). Equation (47) is from Equation (22). In
conclusion, Equation (45) is a polynomial inequality in terms of ||θ − θ∗||Ht . Solving it yields the
following result:

||θ − θ∗||Ht
≤ 4γt(δ) + 2

√
2ζt(δ).

since x2 ≤ bx+ c⇒ x ≤ b+
√
c where x ∈ R and b, c ∈ R+ (See Proposition 7 in Abeille et al.

[2]).

Lastly, we set the penalty parameter λt = O(d log(tKM)), then we get the followings:
γt(δ) = O(d log(tKM)),

ζt(δ) = γt(δ) +
γ2
t (δ)√
λt

= O(d log(tKM)).

This implies that the following holds with probability at least 1− δ:
||θ − θ∗||Ht

= O(d log(tKM))

for any θ ∈ Et(δ).

E 0.5 Approximation for Cascading Assortment Optimization

E.1 Proof of 0.5 Approximation Ratio

Let ϕ(i, A) = wi

1+w(A) , where w(A) =
∑

i∈A wi, which we use throughout this section. Recall
that N is the number of items in the ground set, and K and M denote the length of a cascade and
assortment, respectively. Without loss of generality, KM ≤ N (if not, add dummy items with MNL
weight 0).

For M = 1, we show that the problem is easy to solve optimally – simply pick the K highest
probability items and show them in arbitrary order.
Lemma E.1. For general M , the optimization problem is weakly NP-hard even for K = 2.

Proof. We use the hardness of unconstrained cascade optimization shown in [19] (Theorem 1). Given
an instance of the unconstrained problem with K = 2 and ground set [N ], consider an instance of
our cardinality constrained problem with M = N over expanded ground set [N ] ∪ [N ]0 where [N ]0
consists of |N | dummy elements that each have MNL weight parameter 0.

Lemma E.2. For any M , given a collection of assortments {A1, · · · , AK} with success probabilities
{p1, · · · , pK}, their order of display does not matter. Further, for every permutation ρ : [K]→ [K],
we have, ∑

k∈[K]

pk
∏
k̇<k

(1− pk̇) = 1−
∏

k∈[K]

(1− pk) =
∑

k∈[K]

pρ−1(k)

∏
k̇<k

(1− pρ−1(k̇)).

Proof. If the customer views an assortment Ak, a success occurs in this assortment independently
with probability pk. We can (independently) pre-sample these Bernoulli random variables for each
assortment. Then, the sequence in which assortments are shown does not matter since each ordering
leads to the same end result (success of failure) once the Bernoulli variables are fixed. Algebraically,
the probability that at least one of these random variables succeeds is given by 1−

∏
k∈[K](1− pk).

An alternative way to compute these probabilities is to examine the random variables one by one
until a success is found. If we examine the random variables in the order given by ρ, we get an
alternative expression for the probability that at least one of the random variables succeeds, given by,∑

i∈[K] pρ−1(k)

∏
k̇<k(1− pρ−1(k̇)). This completes the proof.

Lemma E.3. Let {A∗
k}k∈[K] denote the optimal solution. Then, ∪i∈[K]A

∗
k is the set of KM items

with highest value of MNL weights.

Proof. Suppose not. Then, there is an item i in some assortment A∗
k and an item j that is not in any

assortment such that wj > wi. Consider the assortment A′
k = A∗

k ∪{j}\{i}. The probability of click
is strictly higher in assortment A′

k than in assortment A∗
k. Therefore, is we keep all other assortment

as is but replace assortment A∗
k with A′

k, we have a strictly better solution, contradiction.
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For M = 1, combining Lemma E.2 with Lemma E.3 shows that showing the M highest probability
items is optimal.

Now, order the items in [N ] in decreasing order of MNL weights and consider the following
assortment for general M .

D1 = {1, 2, · · · ,M}, D2 = {M + 1,M + 2, · · · , 2M} · · · , DK = {(K − 1)M + 1, · · · ,KM}.

Let OPT denote the overall click probability in the optimal solution.
Lemma E.4. When w(D1) < 1, we have,

OPT ≤ w(D1) + w(D2) (1− w(D1)) + · · ·+ w(DK)
∏

k∈[K−1]

(1− w(Dk)).

Proof. Given w1 + · · ·+ wM < 1, we have. w(Dk) < 1 ∀k ∈ [K]. In fact,

ϕ(A) :=
∑
i∈A

ϕ(i, A) =
∑
i∈A

wi

1 + w(A)
≤ w(A) ∀A ⊆ [N ] , |A| ≤M.

Given optimal solution {A∗
k}k∈[K], consider a hypothetical solution where for every k ∈ [K], given

that assortment k is shown, the (independent) probability of click in assortment k is hk := w(A∗
k)

(≥ ϕ(A∗
k)). We claim that this hypothetical solution, say H , has expected click probability at least as

much as OPT. To see this, we couple the Bernoulli random variable for each assortment in H with
the corresponding assortment in OPT so that whenever there is a success in assortment k in OPT,
there is also a success in slab k in H (this is possible since hk ≥ ϕ(A∗

k)). Thus,

H ≥ OPT.

Now, it suffices to show that,

H ≤ w(D1) + w(D2)(1− w(D1)) + · · ·+ w(DK)
∏

k∈[K−1]

(1− w(Dk)).

Observe that the RHS corresponds to a hypothetical solution with assortments {Dk}k∈[K] and success
probabilities {w(Dk)}k∈[K] (instead of {ϕ(Dk)}k∈[K]). We now focus on the hypothetical scenario
where the success probability of an assortment A equals w(A) (instead of ϕ(A)). We show that in
this scenario, the assortments {Dk}k∈[K] are optimal and this proves the main claim. We proceed by
setting up a contradiction. Suppose that assortments {Dk}k∈[K] are sub-optimal and consider the
optimal partition of ∪k∈[K]Dk into assortments {Ek}k∈[K]. We have,

1−
∏

k∈[K]

(1− w(Ek)) > 1−
∏

k∈[K]

(1− w(Dk)).

Since assortments {Ek}k∈[K] are distinct from {Dk}k∈[K], there exists assortments El and En such
that w(El) > w(En) but wi < wj for items i ∈ El, j ∈ En. Consider a new set of assortments
{Fk}k∈[K] defined as follows,

Fk =


Ek ∀k ∈ [K]\{l, n},
El ∪ {j}\{i} k = l,

En ∪ {i}\{j} k = n.

Observe that assortment Fl has success probability w(Fl) = w(El)+wj −wi. Similarly, assortment
Fn has success probability w(Fn) = w(En)− wj + wi. Using Lemma E.2, let assortments El, En

and assortments Fl, Fn be the last two assortments shown in their respective sequences. Then, the
following inequalities show that the overall probability of success in {Fk}k∈[K] is strictly higher than
the optimal partition {Ek}k∈[K], contradicting the optimality of {Ek}k∈[K].

1− (1− w(Fl))(1− w(Fn)) = w(Fl) + w(Fn)− w(Fl)w(Fn),

= w(El) + w(En)− (w(El) + wj − wi)(w(En)− wj + wi),

> 1− (1− w(El))(1− w(En)),

here the last inequality follows from the fact that wj > wi and w(El) > w(En).
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Lemma E.5. The assortments D1, · · · , DK , shown in any order, have overall click probability at
least 0.5OPT.

Proof. Case 1: Let w1 + w2 + · · · + wM ≥ 1. Using Lemma E.2, we can show assortment D1

first without loss of generality. Then, the probability of click in assortment D1 is at least 0.5. Since
probability of click overall is at least as much as the probability of click in D1, we are done.

Case 2: Let w1+ · · ·+wM < 1. In this case, 1−
∑

i∈Dk
ϕ(i,Dk) ≤ 1− 0.5w(Dk) for all k ∈ [K],

and the overall click probability is at least,

1−
∏

k∈[K]

(1− 0.5w(Dk)).

Now, observe that,

1−
∏

k∈[K]

(1− 0.5w(Dk)) = 0.5w(D1) + · · ·+ 0.5w(DK)
∏

k∈[K−1]

(1− 0.5w(Dk)).

Comparing this term by term with the upper bound on OPT in Lemma E.4 completes the proof.

Remark: While the order of assortments does not matter here, if the customer was impatient and left
early with some probability then the order would matter. In fact, in that setting it can be shown that
displaying the slabs in the natural order A1, A2, · · · is 0.5 approximate.

F Limitations

While we study a more general version of combinatorial bandits, for the choice model, we adapt
the MNL model. The MNL model is certainly one of the most popular options for modeling the
outcomes of multi-class classification problems and certainly a practical and suitable extension of a
simple linear model. However, it does have some drawbacks. For example, the MNL model relies on
the Independence of Irrelevant Alternatives (IIA) assumption, and the utility functions in an MNL
model are linear in parameters. In future work, we plan to address these challenges and extend to a
more flexible choice model. However, for this work, we strongly believe that the current new model,
proposed algorithms, and the regret analysis based on this newly proposed model provide more than
sufficient contributions.
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Consider MNL assortment bandits. Suppose a weight w = w1, . . . , wK ∈ Rd. For any given weight
w, the expected reward function is as follows:

R(w) =

∑
k∈[K] exp(wk)

1 +
∑

k′∈[K] exp(w
′
k)

.

At round t, the agent chooses the assortment At = i1, . . . , iK . Let wt = x⊤
ti1

θt, . . . , x
⊤
tiK

θt and the
optimal weight at round w∗

t = x⊤
ti1

θ∗, . . . , x⊤
tiK

θ∗.

A second-order Taylor expansion gives that:

R(w∗
t ) = R(wt) +∇R(wt)

⊤(w∗
t − wt) +

1

2
(w∗

t − wt)
⊤∇2R(w̄t)(w

∗
t − wt)

R(w∗
t )−R(wt) = +∇R(wt)

⊤(w∗
t − wt) +

1

2
(w∗

t − wt)
⊤∇2R(w̄t)(w

∗
t − wt)

R(wt)−R(w∗
t ) = −∇R(wt)

⊤(w∗
t − wt)−

1

2
(w∗

t − wt)
⊤∇2R(w̄t)(w

∗
t − wt)

R(wt)−R(w∗
t ) = ∇R(wt)

⊤(wt − w∗
t )−

1

2
(w∗

t − wt)
⊤∇2R(w̄t)(w

∗
t − wt) (48)

Thus, if we apply Equation (28), the cumulative regret can be represented as follows:

T∑
t=1

{R(wt)−R(w∗
t )} =

T∑
t=1

∇R(wt)
⊤(wt − w∗

t )−
1

2

T∑
t=1

(w∗
t − wt)

⊤∇2R(w̄t)(w
∗
t − wt)

We first consider the upper bound of
∑T

t=1∇R(wt)
⊤(wt − w∗

t ) in the right side.

∇R(w) =

R1(w)R0(w)
...

RK(w)R0(w)


where Rk(w) =

exp(wk)
1+

∑
k′∈[K] exp(w

′
k)

and R0(w) =
1

1+
∑

k′∈[K] exp(w
′
k)
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