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Abstract

Speculative Decoding (SD) enforces strict dis-001
tributional equivalence to the target model, lim-002
iting potential speed ups as distributions of near-003
equivalence achieve comparable outcomes in004
many cases. Furthermore, enforcing distribu-005
tional equivalence means that users are unable006
to trade deviations from the target model dis-007
tribution for further inference speed gains. To008
address these limitations, we introduce Fuzzy009
Speculative Decoding (FSD) - a decoding al-010
gorithm that generalizes SD by accepting can-011
didate tokens purely based on the divergences012
between the target and draft model distributions.013
By allowing for controlled divergence from014
the target model, FSD enables users to flexi-015
bly trade generation quality for inference speed.016
Across several benchmarks, our method is able017
to achieve significant runtime improvements018
of over 5 tokens per second faster than SD at019
only an approximate 2% absolute reduction in020
benchmark accuracy. In many cases, FSD is021
even able to match SD benchmark accuracy at022
over 2 tokens per second faster, demonstrating023
that distributional equivalence is not necessary024
to maintain target model performance.025

1 Introduction026

Speculative decoding (SD), introduced by027

Leviathan et al. (2023) and Chen et al. (2023), is028

a large language model (LLM) inference accel-029

eration algorithm that leverages a smaller, faster030

draft model to generate sequences of candidate031

tokens which are then verified and accepted in032

parallel by a larger target model. The speculative033

sampling rule that SD employs to determine which034

candidates to accept enforces a strict equivalence035

of the final sampling distribution and the original036

target model distribution. Thus, by cutting out037

the expensive sequential generation from the038

large target model, SD can lead to inference time039

reductions of around 2-3X while maintaining the040

same generation quality as the target model.041

Despite this impressive speedup, SD suffers 042

from two major flaws. Firstly, in order to main- 043

tain strict distributional equivalence to the target 044

model, the SD candidate acceptance rule is overly 045

strict, and in many cases may reject tokens that if 046

accepted would have no impact on final generation 047

quality (Lin et al., 2025), unnecessarily limiting the 048

potential speed ups of SD . Secondly, the enforced 049

distributional equivalence means that users cannot 050

tune the SD acceptance rule to be more or less le- 051

nient in its candidate acceptance, preventing users 052

trading deviations from the target model distribu- 053

tion for further inference speed gains. However, 054

the flexibility for users to tune their LLM genera- 055

tion along an inference speed - generation quality 056

tradeoff would be highly beneficial in real-world 057

applications, as the relative importance of infer- 058

ence speed compared to generation quality may 059

vary across scenarios within the same application. 060

To address these limitations of SD, we intro- 061

duce Fuzzy Speculative Decoding - a generalized 062

SD algorithm that determines token acceptance 063

based on the divergence between the target and 064

draft model distributions, allowing users to tune 065

the generation quality - inference time tradeoff of 066

their model. With FSD, users have the flexibility to 067

tune a threshold parameter T that determines how 068

lenient candidate acceptance should be, and thus 069

can control how much they are willing to deviate 070

from the target model’s distribution in exchange for 071

further runtime reductions. As it doesn’t enforce 072

strict distributional equivalence, FSD can achieve 073

significant runtime improvements over SD by ac- 074

cepting a higher percentage of candidate tokens. 075

We conduct extensive experiments across four 076

diverse benchmarks—spanning factoid QA, math, 077

and coding—using three different model pairs. Our 078

key findings are: 1. FSD matches SD’s accuracy 079

while achieving over 2 tokens per second speedup 080

by relaxing strict distributional equivalence. 2. 081

FSD enables greater speedups (up to 5 tokens per 082
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second) when a slight accuracy tradeoff is accept-083

able (approximately 2% absolute drop). 3. FSD084

offers a superior tunability mechanism, enabling085

a flexible tradeoff between the target and draft086

models. Compared to an alternative tunable ap-087

proach that randomly assigns queries between the088

two models based on a predefined proportion, FSD089

consistently achieves higher accuracy across all090

speed settings.091

We also perform a broad range of ablation stud-092

ies, demonstrating that FSD’s performance shares093

many similarities with SD, including dependence094

on draft and target model alignment for a given text095

and the ability to use both sample-based and greedy096

decoding strategies. We also show that benchmark097

performance under FSD is sensitive to which type098

of divergence used to determine token acceptance,099

with JS divergence performing better than KL di-100

vergence, TV distance, and top-k variants of these101

three divergences.102

2 Previous works103

Several works have sought to improve speculative104

decoding, primarily by increasing the acceptance105

rate of draft-generated tokens. Including but not106

limited to (1) Verifying more tokens with tree-107

structured proposals: Some methods improve108

efficiency by allowing the draft model to propose109

tokens in a tree structure, enabling the target model110

to verify multiple candidates in parallel using tree111

attention mechanisms. This expands the search112

space and increases the likelihood of accepting a113

valid token (Li et al., 2024b,a; Cai et al., 2024;114

Ankner et al., 2024; Miao et al., 2023; Chen et al.,115

2024). (2) Aligning the draft model with the tar-116

get model: Methods include fine-tuning the draft117

model to mimic the target model’s outputs (Zhou118

et al., 2023), granting the draft model access to119

additional representation information from the tar-120

get model (AishwaryaP et al., 2024; Zhang et al.,121

2024b; Du et al., 2024), or even using a partial122

version of the target model as the draft model it-123

self—such as using partial layers (Liu et al., 2024a;124

Elhoushi et al., 2024; Zhang et al., 2024a) or aug-125

menting the target model with lightweight exten-126

sions to improve alignment (Monea et al., 2023; Fu127

et al., 2024; Santilli et al., 2023; Cai et al., 2024).128

(3) Adaptive candidate length selection: Instead129

of fixing the number of candidate tokens per step,130

some methods allow the draft model to determine131

when to stop generating (Kim et al., 2023; Huang132

et al., 2024), or enable the target model to verify 133

tokens before the draft model has finished drafting 134

(Liu et al., 2024b), leading to more flexible and ef- 135

ficient speculative decoding. While these methods 136

enhance SD efficiency, they enforce strict distri- 137

butional guarantees and offer limited flexibility in 138

balancing accuracy and efficiency. In contrast, our 139

framework demonstrates that such guarantees are 140

unnecessary and provides tunable trade-offs. More- 141

over, its flexibility allows seamless integration with 142

existing approaches, paving the way for further 143

research and optimization. 144

The most similar method to ours is concurrent 145

work Judge Decoding (JD) (Bachmann et al., 2025), 146

an SD variant where a compact module is trained 147

on token embeddings to ‘judge’ and accept candi- 148

date tokens based on correctness rather than strict 149

alignment with the target model. This allows JD 150

to accept more tokens than SD with minimal per- 151

formance loss. However, JD has two major limi- 152

tations. First, it generalizes poorly to unseen data, 153

as token acceptance relies on a trained judgment 154

module. Its performance drops significantly on 155

out-of-distribution text (Bachmann et al., 2025). 1 156

Second, JD requires per-model training, preventing 157

out-of-the-box use for new model pairs. In contrast, 158

FSD is training-free, generalizes across datasets, 159

and can be applied to any model pair out-of-the- 160

box, effectively addressing JD’s weaknesses. 161

3 Speculative Decoding 162

We start by reviewing how SD works in order to 163

properly introduce FSD as an extension of this 164

method. 165

Consider a larger target model MT and a smaller 166

draft model MD. The biggest bottleneck when 167

generating from MT individually is that tokens are 168

sequentially dependent, and therefore each token 169

will require a full MT forward pass to be gener- 170

ate conditional on the previously generated tokens. 171

SD mitigates this bottleneck by first generating 172

a sequence of candidate tokens sequentially from 173

the faster MD, and then uses a single MT forward 174

pass only to verify which which of these tokens 175

to accept. Provided that MD is a good enough 176

approximation of MT such that a significant por- 177

tion of these candidate are accepted, the runtime 178

saved by avoiding sequential generation from MT 179

outweighs the additional runtime of running MD, 180

1E.g., the accuracy on HumanEval drops from 86.6 to
80.4% when excluded from training (Bachmann et al., 2025),
which would be unacceptable for most applications.
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resulting in an overall speedup. In order to maintain181

MT ’s full generation quality, SD accepts candidate182

tokens based on an acceptance rule that guarantees183

the final sequence of sampled tokens will still be184

distributed the same as they would under MT .185

At each SD step, MD first generates a sequence186

of L candidate tokens, k = [x0, x1...xL], which are187

then passed through MT to calculate the likelihood188

of each candidate token xi under MT . Using this189

likelihood, each candidate xi is accepted with the190

probability:191

Paccept(xi) = min (1,
PMT

(xi|x<i)

PMD
(xi|x<i)

)

making the final candidate token SD acceptance
rule:

Faccept(xi) =

{
1 if Paccept(xi) > y ∼ U(0, 1)
0, else

Once SD reaches the first rejection of the candi-192

date sequence, it resamples a token at the rejected193

candidate position from the adjusted distribution:194

Mresample = PMT
(xi|x<i)− PMD

(xi|x<i)

(Note that PMT
and PMD

will already have been195

calculated to determine the acceptance probability.)196

By accepting tokens that are more likely un-197

der MD than under MT with a probability of198
PMT

(xi|x<i)

PMD
(xi|x<i)

and resampling rejected tokens from199

an adjusted distribution, SD corrects for the bias200

introduced by MD, ensuring that the final distribu-201

tion remains the same as that of MT .202

3.1 Determining SD speed-ups203

The inference speed up of SD heavily depends on204

the percentage of candidate tokens accepted. Given205

a fixed candidate length L, the more similar the dis-206

tributions of MD and MT tend to be over a given207

generation, the more frequently candidate tokens208

will be accepted, and thus the greater the inference209

acceleration. This makes the speed-ups achieved210

by SD highly dependent on the distribution of text211

the model is generating, which we can see in Table212

1. This variation in acceptance percentages based213

on text distributions means that each text will have214

an optimal candidate length L for which the SD215

inference speed is maximized. However, once the216

Dataset Candidate length

5 10 15

CSQA Tk. / sec 9.3 9.3 7.9
% MD Tk. 75.7 82.8 84.6

GSM8K Tk. / sec 11.3 13.2 13.0
% MD Tk. 81.5 89.2 91.4

MMLU Tk. / sec 7.2 7.2 6.3
% MD Tk. 78.7 85.6 87.5

HumanEval Tk. / sec 13.7 16.0 16.3
% MD Tk. 81.5 88.7 91.4

Table 1: Inference speeds and percent of tokens origi-
nating from MD under SD on Llama3.1 8B + 70B. Tk.
/ s denotes tokens per second; % MD Tk. denotes the
percentage of total generated tokens originating from
MD.

optimal L has been found for the given text distri- 217

bution, the percentage of tokens accepted is effec- 218

tively fixed, capping the inference speed of SD to a 219

level beyond which it cannot be increased further. 220

This is the limitation of SD that FSD attempts to 221

address. 222

4 Fuzzy Speculative Decoding 223

The defining difference of FSD is that it employs a 224

different token acceptance rule that can be tuned to 225

be more or less lenient in its acceptance decisions 226

based on a threshold parameter T , which can be 227

arbitrarily set by the user. This effectively allows 228

users to determine how much they are willing to di- 229

verge from the target distribution MT in exchange 230

for a higher percentage of candidates accepted, re- 231

sulting in speed-ups beyond SD. 232

While SD determines acceptance based on the 233

likelihood of candidate xi under PMT
and PMD

, 234

FSD calculates the distribution-level divergence 235

between these two distributions at each candidate 236

position. Then, based on the tunable divergence 237

threshold T , FSD will accept a candidate token if 238

the models’ divergence at the corresponding posi- 239

tion is less than T . This makes the FSD acceptance 240

rule: 241

Faccept(xi) =

{
1 if Div(PMT

[i], PMD
[i]) < T

0, else

where PMT
[i] and PMT

[i] are the MT and MD 242

next token distributions at candidate position i re- 243

spectively. 244
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Figure 1: Visualization comparison between FSD and SD. SD accepts candidate token with a probability that
depends on the relative likelihood of the candidate token under MD and MT . FSD determines candidate acceptance
deterministically based on whether the divergence between the MD and MT distributions at the candidate’s position
exceeds a given threshold T . This lets users determine how many candidate tokens to accept by setting the threshold
T accordingly.

In the case of candidate token rejection, FSD245

will sample from PMT
[i], that is the original target246

model distribution at the rejected position, with247

whatever sampling method the user sets for the248

generation. The full FSD algorithm is depicted if249

Figure 1 as a side-by-side comparison with SD.250

4.1 Intuitive motivation251

Just like SD, FSD aims to accept candidate tokens252

at positions for which MT and MD are similar.253

Instead of relying on strict equivalence in final dis-254

tribution, FSD relies on the fact that across an en-255

tire generation, MT and MD will produce similar256

tokens when the divergence between their distribu-257

tions is low. This in turn means that at positions258

with low divergence, we can likely use tokens sam-259

pled from MD in place of those sampled from MT260

with minimal impact on the final generation.261

By tuning T , users can directly dictate how le-262

nient candidate acceptance rule should be, thereby263

implicitly determining how much they are willing264

to allow the final sampling distribution to diverge265

from MT in exchange for further runtime reduc-266

tions. In addition, as the FSD acceptance rule be-267

comes more relaxed, users can also increase the268

candidate length L past the value that was opti-269

mal for SD to realize even further reductions in 270

inference time. 271

As a general framework, FSD can use any di- 272

vergence type that relies solely on PMT
and PMD

. 273

In this work, we focused on KL divergence, JS di- 274

vergence, and total variation distance. We defines 275

these divergences in Appendix A. We also perform 276

an empirical evaluation of FSD performance under 277

at these different divergence types in our Appendix 278

C, which indicates that JS divergence is the best 279

performing divergence type. 280

4.2 Final divergence from MT under FSD 281

Unlike SD, FSD does not enforce distributional
equivalence to MT . Tokens generated via FSD are
sampled from a distribution that has diverged from
MT by an amount dependent on the threshold T .
Specifically, when generating a sequence of N to-
kens, the divergence between FSD sequence-level
distribution and the MT sequence level distribution
is upper bounded by:

Div(PMT
(x1:N ), PFSD(x1:N )) ≤ N ·%MD

· T

where PFSD is the distribution of a sequence 282

sampled from MD and MT using FSD, N is the 283
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sequence length, %MD
is the percentage of final to-284

kens originating from MD, and T is the divergence285

threshold set by the user. We show the derivation286

of this bound in Appendix B.287

While this bound establishes a theoretical limit288

on divergence, it doesn’t directly indicate how289

FSD impacts downstream performance. The re-290

lationship between sequence-level divergence and291

generation quality is non-trivial, as performance292

degradation depends not only on the magnitude of293

sequence-level divergence, but also on which to-294

kens the models diverge on. Thus, an empirical295

evaluation is necessary to quantify how different296

choices of T impact model performance.297

5 Main experiments298

5.1 Experiment design299

We tested FSD at various thresholds in comparison300

to SD on a range of benchmarks, reporting bench-301

mark accuracy, inference speed (tokens/second),302

and average length of accepted candidates se-303

quences for three of these threshold levels (denoted304

FSD (Low), (Med.), and (High)). We evaluated305

on CommonsenseQA (Talmor et al., 2019) for fac-306

tual knowledge, GSM8K (Cobbe et al., 2021) for307

math, MMLU (Hendrycks et al., 2021) 2 for general308

knowledge and reasoning, and HumanEval (Chen309

et al., 2021) for code generation. We performed310

experiments on 3 MD - MT model pairs of vary-311

ing size: Llama3.1 8B + 70B (Grattafiori et al.,312

2024), Gemma2 2B + 27B (Team et al., 2024),313

and Qwen2.5 7B + 32B (Qwen et al., 2025). All314

Gemma2 and Qwen2.5 tests were performed on 2315

A6000s, while the Llama3.1 tests were performed316

on 2 A100s. We use a batch size of 1 for all ex-317

periments. JS divergence was chosen as the diver-318

gence type following a preliminary experiments319

that indicated it performed the best. An in depth320

explanation of the experiment design can be found321

in Appendix D, and the results of our preliminary322

divergence type comparison in Appendix C.323

5.2 Implementation324

To perform our experiments, we modified hugging-325

face’s transformers library (Wolf et al., 2020) to326

implemented FSD within the library’s assisted gen-327

eration functionality 3. This allows us to easily test328

2Due to runtime constraints, we used a subset of the full
MMLU dataset. This subset was sampled such that the relative
prevalence of each question subject was preserved

3We will release our codebase upon publication

FSD using the transformers library and allows for 329

a fair comparison to SD, which is implemented in 330

the library by default. 331

5.3 FSD performance 332

We present our experimental results in Table 2 and 333

in Figure 2. 334

335

FSD generally matches SD accuracy at 336

noticeably faster inference speeds. When setting 337

T to lower values, FSD’s accuracy converges to 338

the level of SD, often reaching this level while 339

accepting more candidate tokens and thereby 340

realizing greater runtime improvements. This 341

clearly demonstrates that in many cases, the 342

distributional equivalence enforced by SD is not 343

necessary maintain the full MT performance 344

level. Particularly notable are the Llama3.1 and 345

Qwen2.5 GSM8K results, in which FSD is able 346

to outperform SD at around 3 and 4 tokens per 347

second faster, respectively. 348

As mentioned in section 2, many other SD 349

extensions have been able to achieve SD perfor- 350

mance at faster generation speeds, so this finding 351

isn’t necessarily unique to FSD. However, these 352

prior methods all still enforce strict distributional 353

equivalence to MT , making our findings notable 354

as they demonstrate this equivalence is often not 355

necessary. Furthermore, given this fundamental 356

difference, our method could easily be applied 357

to these existing SD extensions in order to 358

further extend their respective speedups, as well 359

as introduce the accuracy - runtime tunability 360

we describe below to these otherwise inflexible 361

methods. We leave this exploration to future works. 362

363

FSD achieves even greater runtime im- 364

provements over SD when slight accuracy loss is 365

acceptable. As T increases, FSD is able to achieve 366

runtime speedups far greater than SD while only 367

sacrificing small reductions in benchmark accuracy. 368

The higher the divergence from MT we are willing 369

to tolerate when accepting tokens, the greater the 370

runtime improvement over SD. While benchmark 371

accuracy does eventually degrade as T increases, 372

we note how minimal this deterioration is. For 373

instance, FSD with Llama3.1 8B + 70B on CSQA 374

achieves a 6 token per second increase over the 375

inference speed of SD in exchange for only a 2% 376

absolute reudction in accuracy. We expect that 377

in many applications of LLMs, such a runtime 378

improvement would likely justify these small 379
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GSM8K CSQA MMLU HumanEval

Llama3.1 8B + 70B

Acc Spd ALen Acc Spd ALen Acc Spd ALen Acc Spd ALen

M_D 84.6 31.8 - 73.8 32.5 - 72.2 32.8 - 63.2 33.0 -
M_T 94.9 8.5 - 83.6 8.9 - 86.2 9.3 - 79.1 9.3 -
SD 95.1 16.8 9.7 84.1 13.5 1.96 84.8 15.8 3.37 77.4 20.5 7.6
FSD (Low) 95.2 19.5 11.8 84.0 14.4 3.32 84.0 17.0 3.9 78.9 22.3 8.5
FSD (Med.) 94.3 21.2 12.4 83.7 17.5 4.3 83.0 18.1 4.1 77.6 23.2 8.6
FSD (High) 93.1 22.0 13.5 82.1 19.5 8.14 82.6 18.8 4.2 77.4 23.6 8.9

Gemma2 2B + 27B

Acc Spd ALen Acc Spd ALen Acc Spd ALen Acc Spd ALen

M_D 57.5 28.5 - 64.6 31.3 - 55.2 24.3 - 40.9 17.9 -
M_T 90.7 8.8 - 83.0 9.1 - 75.3 9.4 - 75.6 9.6 -
SD 90.8 16.2 5.7 83.1 11.5 2.07 76.8 12.2 2.7 76.2 12.4 3.7
FSD (Low) 89.6 18.4 6.8 82.3 13.9 2.5 75.6 13.3 2.9 78.7 13.6 4.02
FSD (Med.) 88.5 19.4 7.1 81.6 15.7 3.2 75.4 15.5 3.5 77.8 14.1 4.2
FSD (High) 86.1 21.5 11.1 79.5 17.5 3.9 74.2 16.1 3.7 75.8 14.3 4.3

Qwen2.5 7B + 32B

Acc Spd ALen Acc Spd ALen Acc Spd ALen Acc Spd ALen

M_D 89.9 34.8 - 80.2 36.6 - 71.9 35.6 - 68.1 26.9 -
M_T 94.9 8.8 - 86.9 9.1 - 82.7 9.6 - 80.9 9.6 -
SD 95.1 17.4 6.6 86.8 14.0 2.7 82.2 16.0 3.2 82.1 15.2 3.7
FSD (Low) 94.7 21.4 8.2 86.6 16.1 3.3 82.0 18.0 3.7 81.9 17.1 4.3
FSD (Med.) 94.2 22.4 9.2 86.1 19.5 6.6 81.6 19.5 4.0 79.0 17.2 4.4
FSD (High) 94.0 22.0 9.3 85.9 20.9 6.9 81.7 20.7 4.46 78.3 17.7 4.6

Table 2: Benchmark performance of FSD at varying threshold levels compared to MD, MT , and SD. “Acc” refers
to the QA accuracy. “Spd” refers to Inference Speed (tokens/sec.). “ALen” refers to the average accepted sequence
length.

reductions in generation quality.380

381

FSD allows for a previously unattainable382

accuracy - runtime tunability. The accuracy383

- runtime tunability of FSD is demonstrated in384

Figure 2. A model with good tunability should385

satisfy two key requirements: (1) it should allow386

flexibility in adjusting the speed-accuracy trade-off387

across the speed axis, and (2) it should achieve388

the highest possible accuracy compared to other389

methods at the same speed. Unlike SD, which has a390

fixed efficiency, FSD enables flexible adjustments391

along the speed axis while maintaining minimal392

accuracy degradation, thereby meeting the first393

requirement. To evaluate the second requirement,394

we introduce a random allocation baseline, where395

queries are randomly assigned between the396

target and draft models, allowing tunability by397

adjusting the proportion of queries sent to the398

target model. We represent this baseline with a399

greyline interpolating between the target and draft400

models. As shown in Figure 2, FSD consistently401

outperforms the random allocation method across402

all speeds, demonstrating not only its flexibility403

but also its superior tunability. 404

6 Ablation studies 405

6.1 FSD and SD variation across datasets 406

As expected, the acceptance percentages and 407

thereby the runtime improvements of both FSD 408

and SD are highly dependent on the benchmark. 409

We observe that FSD follows the same trends in ac- 410

ceptance percentages across datasets that SD does. 411

That is, the benchmarks on which SD accept more 412

candidate tokens (of course at the MT accuracy 413

level) are also the benchmarks on which FSD can 414

accepts more candidates when set to match this 415

MT accuracy level. 416

This trend points to an underlying difference in 417

draft and target model alignment across datasets 418

which is affecting both methods ability to accept 419

tokens. We illustrate this difference in MD and MT 420

model alignment across datasets in Figure 5, which 421

shows the distribution of JS divergences between 422

the Llama models on a subset of question from each 423

dataset. As we can see, the divergences are much 424

more heavily skewed to be much lower on datasets 425

for which both SD and FSD accept more tokens, 426
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such as GSM8K and HumanEval. Intuitively, this427

makes sense: the more similar distributions tend to428

be across a given text generation, the lower their429

divergences, and thus the more candidates FSD430

will accept at a given threshold. Likewise, the431

more similar the distributions, the more likely it is432

that SD accepts a candidate, since the acceptance433

probabilities will tend to be higher. Thus, it makes434

sense that both FSD and SD’s runtimes follow the435

same trend across benchmarks.436

6.2 Threshold-accuracy relationship437

As previously discussed, the relationship between438

FSD threshold, the percentage of MD tokens ac-439

cepted, and downstream benchmark performance is440

highly dependent on the dataset and the candidate441

length L. Thus, before conducting any calibration442

tests, users will not know what acceptance percent-443

age and downstream performance correspond to444

each threshold T and candidate length L.445

However, we find that the performance level cor-446

responding to a given threshold loosely generalizes447

across datasets, giving users a good starting point448
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Figure 4: FSD performance on GSM8K and CSQA
with greedy decoding from MT distribution in case
of rejection. SD baselines also used greedy decoding.
Model pair used was Gemma2 2B + 7B.

when setting T on an unknown distribution. As an 449

example of this, Table 3 shows the performance of 450

FSD for all three model pairs at a single selected 451

threshold specific to each pair. We can see that for 452

all three pairs, FSD with this constant threshold 453

consistently achieves approximately SD accuracy 454

at around 1-3 tokens per second faster than SD 455

across all datasets. Thus, similar to how certain 456

candidate lengths are known to be good starting 457

points for SD and can later be tuned based on the 458

specific text distribution, we show that the similar 459

out-of-the-box values thresholds values exist for 460

FSD. 461

6.3 Greedy decoding vs. sample-based 462

decoding 463

As described in the experiment setup, we used 464

greedy decoding to generate candidate sequences 465

from MD, and used sample-based decoding to sam- 466

ple from the MT in the case of candidate rejection. 467

While greedy decoding from MD is standard prac- 468
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Dataset Qwen2.5 7B + 32B Llama3.1 8B + 70B Gemma2 2B + 27B

SD Acc. FSD Acc.
@ T = 0.4

Speedup over SD
(tokens / second) SD Acc. FSD Acc.

@ T = 0.3
Speedup over SD
(tokens / second) SD Acc. FSD Acc.

@ T = 0.7
Speedup over SD
(tokens / second)

GSM8K 95.1 94.7 3.4 95.1 94.7 3.7 90.8 89.6 2.1

CSQA 86.8 86.4 3.6 84.2 83.8 2.8 83.1 82.3 2.4

MMLU 82.3 82.1 2.8 84.8 84.1 1.2 76.8 74.8 1.9

HumanEval 82.1 81.9 2.9 77.4 77.6 2.7 76.2 77.8 1.7

Table 3: FSD performance comparison across datasets at set thresholds

tice when using SD, both greedy and sample-based469

decoding are regularly used in SD to sample from470

the adjusted distribution in case of rejection. Thus,471

the question arises whether FSD is also able to472

accommodate for greedy decoding, in addition to473

sample-based, in the case of candidate rejection.474

To test this, we evaluated FSD performance on475

GSM8K and CSQA with greedy decoding and com-476

pared this performance to that of SD under greedy477

decoding, to see whether the performance trend is478

similar to what we observe in Table 2. As we can479

see in Figure 4, FSD seems to follow the same per-480

formance trend observed in the main results under481

greedy decoding. We can again see FSD converge482

to SD performance at lower thresholds, and achieve483

significant runtime improvements at the cost of ac-484

curacy at higher thresholds. Again we can also485

see that the higher model alignment on GSM8K486

we discussed above allows FSD to achieve more487

impressive results over SD on this dataset, while488

the performance on CSQA is slightly weaker. This489

all is consistent with our main results in Table 2.490

7 Discussion491

7.1 Potential further developments492

Unlike the probabilistic acceptance rule of SD, the493

FSD acceptance criteria is deterministic given the494

MD and MT logits. This means that FSD allows495

for the generation of a token-level dataset of accep-496

tance / rejected labels, since the FSD acceptance497

decision relies solely on the MD and MT distri-498

butions at each tokens position. This unlocks the499

possibility of training a classifier to predict which500

tokens will be accepted and which will be rejected,501

based purely on the tokens up to the position being502

generated. Such a classifier can be used to dynami-503

cally set the candidate length generated by the draft504

model, reducing the number of rejected tokens at505

each SD step and thereby further increasing the506

inference time speed ups.507

The second area that we feel has potential for508

future development is the testing and development509

of a novel divergence types to identify which candi- 510

date tokens should be accepted with limited impact 511

on generation quality. Given that FSD was already 512

able to achieve very impressive results with sim- 513

ple divergence types like KL divergence and JS 514

divergence, we expect that the divergences tailored 515

specifically to this methods are likely to further mit- 516

igate the deterioration of generation quality as the 517

acceptance threshold T increases and allow FSD to 518

maintain quality at even higher generation speeds. 519

Judge Decoding (Bachmann et al., 2025) attempts 520

a similar approach to this by using learned token 521

correctness to determine acceptance, however as 522

discussed this method doesn’t generalize, leaving 523

this direction open for further research. 524

8 Conclusion 525

We have introduced FSD - a modified SD algo- 526

rithm that can accept divergence allows users to 527

tune how much divergence from MT they are will- 528

ing to accept in exchange for runtime improvement 529

beyond SD. This flexibility to achieve significantly 530

higher runtimes, in addition an ability to match SD 531

generation quality at faster inference in certain sce- 532

narios, makes FSD novel alternative to SD that we 533

expect can be valuable in many LLM applications. 534

We have shown that FSD is able to achieve very 535

strong empirical results on-par with SD, and is able 536

to achieve considerably higher generation speeds 537

the cost of only minor deteriorations in generation 538

quality. 539

9 Limitations 540

The biggest limitation of our method is that it is not 541

preemptively known what threshold T will result 542

in what downstream generation performance, as 543

this relationship is highly dependent on the distri- 544

bution of the text being generated and the candidate 545

length L. Thus, a practical application of FSD will 546

have to either perform calibration tests on a text 547

distribution similar to the eventual generation distri- 548

bution, or will have to use a potentially suboptimal 549

8



out-of-the-box value similar to those discussed in550

section 6.2. However, we note that SD suffers from551

a similar reliance on hyperparameter tuning, as its552

inference speed is highly dependent on using the553

correct L. An incorrect selection of L can result554

in SD having no impact on or even decreasing the555

generation speed compared to MT . Thus, FSD’s556

sensitivity to T is simply an additional reliance557

on hyperparameters. Another major limitation of558

our method is that FSD, is unable to theoretically559

guarantee that the generation quality of MT will560

be maintained, making SD a safer choice for appli-561

cations in which generation quality is significantly562

more important than inference speed. However,563

our results indicate that FSD is empirically able to564

maintain MT performance, often even at noticeably565

higher inference speeds, so in practice we feel this566

lack of theoretical guarantee is not a major issue.567
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A Divergence definitions 989

Kullback–Leibler (KL) Divergence: 990

DKL(PMT
∥PMD

) =
∑
t∈V

PMT
(t | x) log

(
PMT

(t | x)
PMD

(t | x)

)
991

where V is the vocabulary, PMT
(t | x) is the 992

probability assigned by model MT to token t given 993

context x, PMD
(t | x) is the probability assigned 994

by model MD to token t given context x. 995

Jensen–Shannon (JS) Divergence: 996

DJS(PMT
∥PMD

) =
1

2
DKL(PMT

∥M)+
1

2
DKL(PMD

∥M) 997

where M(t | x) is the mixture distribution (aver- 998

age of PMT
and PMD

): 999

M(t | x) = PMT
(t | x) + PMD

(t | x)
2

1000

and DKL is the Kullback–Leibler divergence as 1001

defined above. 1002

Total Variation (TV) Distance: 1003

DTV(PMT
, PMD

) =
1

2

∑
t∈V

|PMT
(t | x)− PMD

(t | x)| 1004

where: PMT
(t | x) and PMD

(t | x) are the prob- 1005

abilities from models MT and MD respectively, as 1006

defined above. 1007
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B Derivation of FSD sequence-level1008

divergence bound1009

B.1 KL divergence bound1010

Starting with the sequence-level KL divergence1011

decomposed autoregressively:1012

DKL(PMT
∥PMFSD

)1013

=

T∑
t=1

EPMT
(x1:t−1) [DKL(PMT

(t | x)∥PMFSD
(t | x))]1014

By assumption, at each step when the MD - MT1015

divergence exceeds τ , PMT
is used instead of PMD

,1016

making the divergence 0. Let puse be the probability1017

that PMD
is used:1018

DKL(PMT
(t | x)∥PMFSD

(t | x)) ≤ puseτ1019

1020

1021

Summing over T steps:1022

DKL(PMT
∥PMD

) ≤
T∑
t=1

puseτ = Tpuseτ1023

B.2 JS divergence bound1024

The JS divergence is defined as:1025

DJS(PMT
∥PMD

) =
1

2
DKL(PMT

∥M)1026

+
1

2
DKL(PMD

∥M)1027

Using the KL decomposition for both terms and1028

applying the same per-step bound τ for when PMD
1029

is used:1030

DJS(PMT
∥PMD

) ≤ 1

2

T∑
t=1

puseτ +
1

2

T∑
t=1

puseτ1031

= Tpuseτ1032

B.3 TV distance bound1033

The sequence-level TV distance decomposes simi-1034

larly via subadditivity:1035

DTV(PMT
, PMD

) ≤1036

T∑
t=1

EPMT
(x1:t−1)[DTV(PMT

(t | x), PMD
(t | x))]1037

By assumption, if PMD
is used, the per-step TV1038

distance is bounded by τ :1039

DTV(PMT
(t | x), PMD

(t | x)) ≤ puseτ1040
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Figure 5: Comparison of FSD performance on GSM8K
and CSQA with different divergence types.

Summing over T steps: 1041

DTV(PMT
, PMD

) ≤
T∑
t=1

puseτ = Tpuseτ 1042

Final Result: For all three divergences, the up- 1043

per bound is: 1044

D(PMT
∥PMD

) ≤ Tpuseτ. 1045

C Divergence comparison under FSD 1046

We referenced in the section 5.1, we performed 1047

preliminary tests on the difference divergence types 1048

to see which divergence was best able to maintain 1049

SD accuracy as T increases. The results of this 1050

preliminary experiments can be seen below. 1051

D In-depth experiment design 1052

Below is the experiment design we followed to 1053

collect our main results. 1054

For each benchmark, we start by empirically de- 1055

termining the approximately optimal SD candidate 1056

length L by testing SD with L = [5, 10, 15, 20] 1057

on a small subset of questions, and select the L 1058
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with the fastest inference speed as the candidate1059

length to be used in our SD baseline. We denote1060

this SD optimal candidate length as L′. We then1061

test FSD with threshold T = [0.1, 0.2, ...0.9, 1.0]1062

at L′ on the same small subset of question to deter-1063

mine the threshold TSD that accepts approximately1064

the same percentage of candidate tokens as SD.1065

Starting from this ’equivalent’ TSD, we then eval-1066

uate FSD’s benchmark performance at threshold1067

increasing in increments of 0.1, until benchmark1068

performance has degraded by approximately 20%1069

of the performance difference between MD and1070

MT . (e.g. if MT scores 90%, MD scores 80%,1071

we test FSD at increasing T until accuracy reaches1072

90− ((90− 80) ∗ 0.2) = 88%) For each threshold,1073

we complete complete 3 trials, using greedy decod-1074

ing to generate the candidate sequences from MD1075

and sample-based decoding to sample from MT in1076

the case of candidate rejection. We use the same1077

sampling strategy for our SD baseline, as this is1078

the default for the huggingface assisted generation1079

implementation we used.1080

Importantly, as the acceptance percentage in-1081

creases beyond that of SD, L′ may no longer be1082

the optimal candidate length. Thus, we increased1083

L′ to the next highest length in [5, 10, 15, 20] if we1084

observed that FSD is accepting close to all candi-1085

dates.1086

To quantify the performance-runtime tunability1087

of our method, we report the FSD benchmark accu-1088

racy, inference speed (tokens/second), and average1089

length of accepted candidates sequences at three1090

increasing threshold levels (denoted FSD (Low),1091

(Med.), and (High)). These three levels are meant1092

to simulate scenarios in which users are willing1093

to accept increasing drops in generation quality in1094

exchange for increasing generation speeds.1095

Random baseline In Table 2, we can clearly see1096

that benchmark accuracy is highly sensitive to the1097

percentage of candidate tokens accepted. For every1098

benchmark, FSD accuracy is almost identical to1099

SD accuracy when the threshold T is set such FSD1100

accepts a similar percentage of candidate tokens.1101

This begs the question: is benchmark performance1102

simply a function of the candidate acceptance per-1103

centage, irrespective of which tokens are being ac-1104

cepted?1105

To test this, we performed a random FSD base-1106

line, in which FSD was set to randomly accept a1107

certain percentage of candidate tokens. By doing1108

this, we are able to determine whether the diver-1109

gences between distributions is an effective method1110
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Figure 6: CSQA performance of regular FSD vs FSD
with random token acceptance at varying percentages of
MD tokens. % MD Tok. denotes the percentage of final
generated tokens originating from MD. Experiment was
performed on Gemma2 2B + 27B model pair

of determining which tokens can be accepted with 1111

minimal impact on downstream performance, or 1112

whether this performance is mostly determined by 1113

how many MD tokens are accepted. We report 1114

these results in Figure 6. As expected, we can 1115

see that FSD with random candidate acceptance 1116

does significantly worse than regular divergence- 1117

based FSD, even when significantly fewer candi- 1118

dates from MD are being accepted. Thus, it does 1119

seem that MD-MT divergence is an effective crite- 1120

ria for deciding which candidates to accept, imply- 1121

ing that the development of better divergences will 1122

likely improve FSD performance even further. 1123
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