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Abstract

We present a novel Bayesian-based optimization
framework that addresses the challenge of gener-
alization in overparameterized models when deal-
ing with imbalanced subgroups and limited sam-
ples per subgroup. Our proposed tri-level optimiza-
tion framework utilizes local predictors, which
are trained on a small amount of data, as well as
a fair and class-balanced predictor at the middle
and lower levels. To effectively overcome saddle
points for minority classes, our lower-level formu-
lation incorporates sharpness-aware minimization.
Meanwhile, at the upper level, the framework dy-
namically adjusts the loss function based on val-
idation loss, ensuring a close alignment between
the global predictor and local predictors. Theoret-
ical analysis demonstrates the framework’s abil-
ity to enhance classification and fairness general-
ization, potentially resulting in improvements in
the generalization bound. Empirical results val-
idate the superior performance of our tri-level
framework compared to existing state-of-the-art ap-
proaches. The source code can be found at https:
//github.com/PennShenLab/FACIMS.

1 INTRODUCTION

Machine learning has achieved exceptional performance
through overparameterization and advanced techniques.
This progress is supported by high-quality datasets with suf-
ficient samples for each data class and subgroup. However,
real-world datasets frequently exhibit imbalances of differ-
ent types and magnitudes, reflecting the significance and
diversity of the underlying domains [Barocas et al., 2023].
Two common imbalances are observed in label-imbalanced
and group-sensitive classification scenarios.

Label-imbalanced classification (LIC) suffers from a signifi-

cant discrepancy in the number of examples across classes,
requiring the use of balanced accuracy as a more suitable
metric than conventional misclassification error. To improve
model performance and balanced accuracy, various methods
have been developed, including [Buda et al., 2018] and loss
re-weighting [He and Garcia, 2009]. Weighted cross-entropy
(wCE) loss, a classical approach, amplifies the contribution
of minority examples in proportion to the imbalance level.
However, wCE may not effectively handle the imbalance
in overparameterized models [Cao et al., 2019], which can
result in poor generalization. Recent studies propose alterna-
tive loss functions, such as logit-adjusted loss [Menon et al.,
2020, Cao et al., 2019], class-dependent temperature loss
[Ye et al., 2020], and vector-scaling loss [Kini et al., 2021],
aiming to address the challenges associated with overparam-
eterization. Nonetheless, there is still a risk of overfitting on
minority class samples despite these advancements [Rang-
wani et al., 2022].

In group-sensitive classification (GSC), the goal is to en-
sure fairness concerning protected attributes like gender
or race, addressing the issue of stereotyping where certain
target labels are more frequently associated with specific
groups [Mehrabi et al., 2021]. For instance, the occupation
of "nurse" being commonly associated with females. While
there is no universal fairness metric [Kleinberg et al., 2016],
one suggestion is group sufficiency, which aims to maintain
identical conditional expectations of the ground-truth label
(E[Y |f(X), A]) across different subgroups A ∈ A given
the predictor’s output f(X). However, in overparameterized
models with limited samples per subgroup, this control of
group sufficiency may not always hold, despite its effective-
ness under certain assumptions in unconstrained learning
[Liu et al., 2019a, Shui et al., 2022c].

Given the aforementioned challenges regarding the perfor-
mance of LIC and GSC in overparameterized models, we
pose the following question:
Q: How can a classifier be designed to effectively

generalize on imbalanced subgroups with limited
samples?
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Figure 1: An illustration of the FACIMS model defined in (7). fa and f b maximize the margin for minority classes for
groups a and b in (7b). In the upper level problem (7a), FACIMS finds Z ∈ Z to achieve a small balanced accuracy while
minimizing the discrepancy between (Za,⋆,Zb,⋆). The approximation term KL(Za,⋆|Z) is based on the distribution family
Z (orange region). If the predefined Z has good expressive power, the approximation is treated as a small constant.

To address Q, we establish a link between LIC and GSC
and propose a novel Bayesian framework that maintains in-
formative predictions for imbalanced data while minimizing
generalization error. Our contributions can be summarized
as follows.
•We design a Bayesian-based tri-level optimization frame-
work called Fairness-Aware Class Imbalanced Learning on
Multiple Subgroups (FACIMS). In FACIMS, local predic-
tors are learned using a small amount of training data and
a fair, class-balanced predictor. The lower-level formula-
tion utilizes the sharpness-aware minimization [Foret et al.,
2020] to encourage convergence to a flat minimum and
effectively avoid saddle points for minority classes. The
upper-level problem dynamically adjusts the loss function
by monitoring the validation loss, following a similar ap-
proach to [Li et al., 2021], and updates the global predictor
to align with all subgroup-specific predictors.
•We establish the O(1/

√
T ) convergence rate of our pro-

posed three-level optimization framework, corresponding to
a O(ϵ−2) sample complexity with a fixed number of sam-
ples used per iteration.
•We quantify the generalization performance of the models
trained using our proposed tri-level FACIMS approach. The
generalization bound analysis demonstrates that our method
can achieve superior generalization performance compared
to bilevel variants, such as [Rangwani et al., 2022], for fair
learning on multiple subgroups.
• We conduct experiments on synthetic and real-world
datasets to evaluate the balanced accuracy, demographic
parity, equalized odds, and group sufficiency. The results
showcase the effectiveness of our proposed method.

2 PRELIMINARIES

We consider a joint random variable (X,Y,A) that follows
an underlying distribution P(X,Y,A), where X ∈ X rep-
resents the input, Y ∈ Y = {1, . . . ,K} represents the label,
A ∈ A is a scalar discrete random variable that denotes
the sensitive attribute or subgroup index. For instance, A
could represent gender or race. Throughout, E[Y |X] de-

notes the conditional expectation of Y , which can be seen
as a function of X . EA,X [·] represents the expectation over
the marginal distribution of P(A,X).

Suppose we have a dataset S = (xi, yi)
n
i=1 sampled

i.i.d. from a distributionP with input spaceX andK classes.
Let f : X → RK be a model that outputs a distribution over
classes and let hf (x) = argmaxi∈[K] f(x). The standard
classification error is denoted by ACC = PS [y ̸= ŷf (x)].
For a loss function ℓ(y, ŷ), we similarly denote

Population risk: L(f ;P) := EP [ℓ(y, ŷf (x))], (1a)
Empirical risk: L(f ;S) := 1

n

∑n
i=1 ℓ(yi, ŷf (xi)). (1b)

We denote the frequency of the k’th class via πk =
P(x,y)∼P(y = k). Label/class-imbalance occurs when the
class frequencies differ substantially, i.e., maxi∈[K] πi >>
mini∈[K] πi. We define

Class-conditional risk: fk := EPk
[ℓ(y, ŷf (x))], (2a)

Balanced risk: BACC(f) := 1
K

∑K
k=1 fk. (2b)

2.1 PARAMETRIC LOSSES

We review some of the SOTA re-weighting methods for
training on imbalanced data with distribution shifts.

Label-Distribution-Aware Margin (LDAM) [Cao et al.,
2019] determines optimal margins for each class by mini-
mizing errors using a generalization bound. It utilizes ∆j as
the margin for each class, defined as follows:

ℓ∆(f ;x, y) = − log
ef(x)y−∆y

ef(x)y−∆y +
∑
j ̸=y e

f(x)j
,

where ∆j =
C

n
1/4
j

for j ∈ {1, . . . ,K}.
(LDAM)

LDAM prioritizes classes with low sample sizes (nj)
over those with high frequencies. Deferred Re-Weighting
(DRW) [Cao et al., 2019] involves training the model with
an average loss until a certain epoch, then applying weights



proportional to the inverse of the sample size to the loss term
for each class. The loss function for DRW is as follows:

ℓu(f ;x, y) = −uy log
ef(x)y∑K
j=1 e

f(x)y
,

where uj =
1

1 + (nj − 1)1epoch≥K
.

(DRW)

This way of re-weighting has been shown to be effective for
improving generalization performance when combined with
various losses.

Vector Scaling (VS) [Kini et al., 2021] loss is a recently
proposed loss function that unifies the idea of multiplicative
shift [Ye et al., 2020], additive shift [Menon et al., 2020],
and loss re-weighting. It has the following form:

ℓ(f,v;x, y) = −uy log
eγyf(x)y+∆y∑k
j=1 e

γjf(x)j+∆j

. (VS)

Here, v := [v1, . . . ,vK ], where vj := (uj ,∆j , γj) are
some hyperparameters.

Throughout, our main focus is on VS loss, but our frame-
work can also accommodate other loss functions.

2.2 FAIRNESS NOTIONS

Next, we discuss fairness notions and their gaps.

Definition 1. Let f be a score function that maps the ran-
dom variable X to a real number.

• Group Sufficiency (GS): We say that f is sufficient with
respect to attribute A if E[Y |f(X)] = E[Y |f(X), A].

• Demographic Parity (DP): f satisfies demographic par-
ity with respect to A if E[f(X)] = E[f(X)|A].
• Equalized Odds (EO): f satisfies equalized odds with
respect to A if E[f(X)|Y ] = E[f(X)|Y,A].

GS means that the score function f captures all the informa-
tion about the label Y that is relevant for prediction, regard-
less of the attribute A. DP ensures that the expected score
f(X) remains constant, regardless of the attribute A. This
principle guarantees that the distribution of scores remains
unaffected by the sensitive attribute, thereby promoting fair-
ness in the decision-making process. EO dictates that the
expected score f(X) remains consistent across all combina-
tions of labels Y and attributes A. It ensures that individuals
sharing the same label but differing attributes are treated
equally in terms of their predicted scores, irrespective of the
sensitive attribute.

The impossibility theorem of fairness asserts that, in general
cases, it is impossible to simultaneously achieve all common
and intuitive definitions of fairness. Notably, [Barocas et al.,
2019, Chouldechova, 2017] demonstrate that if A ̸⊥ Y , it

is not feasible to achieve both group sufficiency and demo-
graphic parity. Moreover, [Barocas et al., 2019, Pleiss et al.,
2017] reveal that when P(X,Y,A) > 0 and A ̸⊥ Y , it is
not possible for both group sufficiency and demographic
parity to hold simultaneously.

Definition 1 leads to a notion of the group sufficiency gap,
demographic parity gap, and equalized odds gap defined,
respectively, as:

SGapf (A) = E[|E[Y | f(X)]− E[Y | f(X), A]|], (3a)

PGapf (A) = E[E[f(X)]− E[f(X)|A]], (3b)

OGapf (A) = E[E[f(X)|Y ]− E[f(X)|Y,A]]. (3c)

SGapf measures the extent of group sufficiency violation,
induced by the predictor f , which is taken by the expectation
over (X,A). Hence, SGapf = 0 suggests that f satisfies
group sufficiency and vice versa. For completeness, we also
discuss computing these gaps in Appendix.

To conclude this section, we provide Group A-Bayes predic-
tor and an upper bound for SGapf from [Shui et al., 2022c].
These findings serve as the foundation for our Bayesian-
based tri-level optimization framework.

Definition 2 (A-group Bayes predictor). The A-group
Bayes predictor fA,Bayes associated with distribution
P(X,Y,A) is defined as: fA,Bayes(X) = E[Y |X,A].

The following Theorem provides the upper bound of group
sufficiency gap w.r.t. any predictor f :

Theorem 3. If A takes finite value, i.e.|A| < +∞ and
follows uniform distribution with p(A = a) = 1/|A|, then

SGapf (A) ≤
4

|A|
∑
a∈A

EX
[
|f − fA,Bayes|

∣∣A = a
]
. (4)

Hence, SGapf(A) depends on the discrepancy between the
predictor f and the A-group Bayes predictor fA,Bayes. In
other words, when considering different subgroups A = a,
the optimal predictor f should closely align with all the
group Bayes predictors fA=a,Bayes, for all a ∈ A.

3 PROPOSED FRAMEWORK

In this section, we present the formulation of FACIMS,
which is a framework designed to promote both classifica-
tion accuracy and fairness through a randomized algorithm.
FACIMS achieves this by learning a predictive distribution
Z, which assigns higher scores to predictors that are favor-
able based on the available data. In the context of the Bayes
framework, the predictor is sampled from the posterior dis-
tribution, represented as f̃ ∼ Z. During the inference stage,
the predictor’s output is computed as the expectation of the
learned predictive distribution Z: f(X) = Ef̃∼Zf̃(X).



In practical scenarios, it is infeasible to optimize over the en-
tire space of possible distributions. Therefore, we constrain
the predictive distribution Z to a specific distribution family
Z ∈ Z , such as the Gaussian distribution. Additionally, we
denote Za,⋆ ∈ Z as the optimal prediction distribution with
respect to the subgroup A = a within the family Z:

Za,∗ = arg min
Za∈Z

Ef̃a∼ZaL(f̃a,v;Sa).

In general, Za,⋆ ̸= f̃a,Bayes, since the distribution family Z
is only the subset of all possible distributions.

Corollary 4 (Shui et al. [2022c]). The group sufficiency
gap in a randomized algorithm w.r.t. the learned predictive
distribution Z is bounded as follows:

SGapf ≤ O (Optim+ Approx) , (5)

where

Optim :=
1

|A|
∑
a

√
KL(Za,⋆∥Z),

Approx :=
1

|A|
∑
a

√
KL(Za,⋆∥P(Y |X,A = a)).

Minimizing the Optim term ensures that the learned distri-
bution Z is both fair and informative for making predictions.
On the other hand, the Approx term represents the KL
divergence between the optimal distribution Za,⋆ and P . If
the distribution family Z has a rich expressive power, like
that of a deep neural network, the Approx term will be
small. See Figure 1 for a visual representation.

Now, we provide a framework for fairness-aware class
imbalanced learning on multiple sub-groups with poten-
tially improved generalization bound and SGapf . We begin
with formulating the loss function design as a bilevel op-
timization over hyperparameters v and a distribution Z .
Assume each group a ∈ A has a fine-tuning training set
T a = ∪ni=1{(xai , yai )} and a separate validation set Va =
∪ni=1{(xai , yai )}, where data are independently and identi-
cally distributed (i.i.d.) and drawn from the per-task data
distributionPa. Following [Li et al., 2021], define the empir-
ical risk and the balanced empirical risk over a finite-sample
dataset S as Lvs(f̃ ,v;S) := 1/n

∑n
i=1 ℓ(f̃ ,v;xi, yi) and

Lbal(f̃ ;S) := 1/n
∑n
i=1 ℓ(f̃ , v̄;xi, yi). Here, v̄ can be

manually adjusted using (DRW), (LDAM), and (VS).

Let Z stand for both fair and informative prediction. Build-
ing on [Kini et al., 2021, Li et al., 2021, Shui et al., 2022c],
we design the following objective:

min
Z∼Z,v

∑
a∈A

αupKL(Za,∗∥Z) + Ef̃∼ZLbal(f̃ ;Va), (6a)

s.t. Za,∗ = arg min
Za∈Z

αlowKL(Za∥Z) (6b)

+ Ef̃a∼ZaLvs(f̃
a,v; T a), ∀a ∈ A.

Here, the lower-level problem (6b) includes a regularization
term KL(Za|Z) as an informative prior for learning local
predictor Za,⋆ with a fixed predictive distribution Z. This
optimization reduces the upper bound of the group-specific
generalization error.

In the upper-level problem (6a), we update Z by minimizing
the average KL-divergence between different Za,⋆, control-
ling the upper bound of SGapf according to (5), as well as
the balanced empirical risk. However, directly minimizing
(6b) in a single-level approach does not work well in our
setting due to the limited number of samples in each sub-
group. This leads to overfitting and large generalization error
for each subgroup. To address this, we consider additional
assumptions, such as the similarity in the data generation
distribution P[Y |X,A] for each subgroup. With these as-
sumptions, we can learn shared and fair models that are
informative and sufficient for a large number of subgroups.

3.1 PARAMETRIC MODELS AND FACIMS

In this section, we propose a practical learning algorithm
applicable to various differentiable and parametric models,
including neural networks.

We utilize the Isotropic Gaussian distribution as Z to learn
global informative Z with parameters (θ,σ). For each sub-
group A = a, we also learn group-specific parameters
(θa,σa) for Za in Z . The Isotropic Gaussian distribution is
selected for computational efficiency in optimization, but
other differentiable distributions can also be used for param-
eter density functions.

Given a training set, we learn f̃w : X 7→ Y parameter-
ized by w ∈ Rd. Then f̃w ∼ Z is equivalent to sampling
the model parameter w from the predictive-distribution Z.
Hence, learning the distribution Z is equivalent to learn-
ing parameter (θ,σ). Note that for each subgroup A = a,
f̃aw ∼ Za can be modeled similarly. Both procedures can be
formulated as follows:

w ∼ N (θ,σ) =

d∏
i=1

N (θ[i],σ[i]),

wa ∼ N (θa,σa) =

d∏
i=1

N (θa[i],σa[i]), ∀a ∈ A.

To enhance the convergence to a flat minimum and effec-
tively avoid saddle points for minority classes, we integrate
the sharpness-aware minimization (SAM) algorithm [Foret
et al., 2020] into (6b). SAM is a recently introduced tech-
nique that improves generalization performance by jointly
minimizing the loss value and the loss sharpness, leverag-
ing the geometry of the loss landscape. Given a perturba-
tion parameter β > 0 and the empirical risk L(f̃w;S), the
goal of training is to choose w having low population loss



FACIMS

min
v,Z∼Z

∑
a∈A

αupKL (Za,∗∥Z) + Ew∼Z Lbal(f̃w;Va), (7a)

s.t. Za,∗ ∈ argmin
Za∈Z

max
∥ϵa∥≤βa

αlow KL(Za∥Z) + Ewa∼Za Lvs(f̃wa+ϵa ,v; T a), ∀a ∈ A. (7b)

Algorithm 1 An Alternating Stochastic Gradient Method for FACIMS

1: Input: VS loss hyperparameters v0; distribution parameters (θ0,σ0) and (θa0 ,σ
a
0) for all a ∈ A; regularization

parameters (αlow, αup); sharpness parameters {βa}a; and stepsizes (γup, γlow).
2: for t = 0 . . . T − 1 do
3: Sample dataset Sat = (T at ,Vat ), where a ∈ A′ ⊆ A.
4: for a ∈ A do
5: Update ϵa in the lower level:

ϵat+1 ←− argmax
∥ϵa∥≤βa

αlow KL(Zat ∥Zt) + Ewa∼Za
t
Lvs(f̃wa+ϵa ,vt; T at ). (8)

6: Update Za = N (θa,σa) using SGD (with step size γlow) in the middle level:

Zat+1 ←− argmin
Za∈Z

αlow KL(Za∥Zt) + Ewa∼ZaLvs(f̃wa+ϵat+1
,vt; T at ). (9)

7: end for
8: Update Z = N (θ,σ) and v using SGD (with step size γup) in the upper level:

(Zt+1,vt+1)←− argmin
Z∼Z,v

∑
a∈A

αupKL(Zat+1∥Z) + Ew∼ZLbal(f̃w;Vat ). (10)

9: end for
10: Return: (vT ,θT ,σT ).

L(f̃w;P). SAM achieves this via the problem

min
f̃w

max
∥ϵ∥≤β

L(f̃w+ϵ;S). (SAM)

Given w, the maximization in (SAM) seeks to find the
weight perturbation ϵ in the Euclidean ball that maximizes
the empirical loss. If we define the sharpness as

max
∥ϵ∥≤β

[
L(f̃w+ϵ;S)− L(f̃w;S)

]
then (SAM) essentially minimizes the sum of the sharpness
and the empirical loss L(f̃w;S).

We incorporate (SAM) into (6b) and propose (7) by intro-
ducing a set of positive constants {βa}a∈A. The FACIMS
framework, combined with SAM, promotes convergence to
a flat minimum and aids in escaping saddle points for minor-
ity classes [Rangwani et al., 2022]. We empirically demon-
strate the superiority of integrating SAM into FACIMS over
popular baselines and provide theoretical evidence suggest-
ing improved generalization bounds. Despite the tri-level
problem formulation in (7), our algorithm design efficiently
approximates the maximization step, making the computa-
tional cost comparable to that of (6).

Based on the analysis and (7), we provide an alternating
optimization algorithm for solving (7) in Algorithm 1. Line
3 provides a partial group setting, i.e., for many subgroups,
we can randomly sample a subsetA′

such that |A′ | << |A|
for memory saving.

4 THEORETICAL ANALYSIS OF FACIMS

Next, we analyze the performance of the FACIMS method.

To simplify, we assume βa = β for all a ∈ A and combine
Lbal and Lvs into a single notation L. We represent the
stochastic gradients of L as ∇̃L. Let Θ := (θ,σ,v) ∈ Rp
and F be the objective of (7a).

Assumption A (Lipschitz continuity). Assume that
L(·;Va),∇L(·; T a),∇L(·;Va),∇2L(·; T a), ∀a ∈ A are
Lipschitz continuous with constant ℓ0, ℓ1, ℓ1, ℓ2.

Assumption B (Stochastic derivatives). Assume that
∇̃L(·; T a), ∇̃2L(·; T a), ∇̃L(·;Va) are unbiased estima-
tor of∇L(·; T a),∇2L(·; T a),∇L(·;Va) respectively and
their variances are bounded by σ2.



Table 1: Statistical summary of the datasets including class and sensitive feature information.

Dataset #Instance #Features Class Class Distr. Sensitive
Feature Sensitive Feature Distr.

Alzheimer’s
Disease

5137 17 AD / MCI 21% / 79% Race 93.75% / 3.20% / 1.88% / 1.17%

Credit
Card

30,000 22
Credible /

Not Credible
22% / 77%

Education
Level

46.77% / 35.28% / 16.39% /
0.93% / 0.41% / 0.17% / 0.05%

Drug
Consumption

1885 9

Never used /
Not used in the past year /

Used in the past year /
Used in the past day

1.81% /
5.41% /
65.98% /
26.80%

Education
Level

6.74% / 6.90% / 26.86% /
14.28% / 25.48% / 15.02% / 4.72%

Assumptions A–B also appear similarly in the convergence
analysis of and bilevel optimization [Chen et al., 2021,
Tarzanagh et al., 2022, Abbas et al., 2022]. With the above
assumptions, we get the following theorem. The proof is
deferred in Appendix.

Theorem 5. Under Assumptions A–B, and choosing step-
sizes γup = γlow = O(1/

√
T ) and sharpness parameter

β = O(1), with some proper constants, we can get that the
iterates {(θt,σt,vt)}t generated by Algorithm 1 satisfy

1

T

T∑
t=1

E
[
∥∇F (θt,σt,vt)∥2

]
= O

(
1√
T

)
. (11)

Theorem 5 implies that under some standard assumption, Al-
gorithm 1 can find ϵ stationary points for FACIMS objective
(7) with O(ϵ−2) iterations and O(ϵ−2) samples.

Next, we establish the generalization performance.

Theorem 6. Assume the function L(·) is bounded
for any S. Let F (·;P) = ES∼P [F (·;S)]. Assume

F (θ̂, σ̂, v̂;P) ≤ Eϵ∼N (0,β2I)

[
F (θ̂ + ϵ, σ̂ + ϵ, v̂;P)

]
at

the stationary point of (7) denoted by (θ̂, σ̂, v̂). Then, with
probability 1− δ over the choice of the training set S ∼ P ,
with |S| = n|A|, we have

F (Θ̂;P) ≤ max
∥ϵ∥≤β

Eϵ∼N (0,β2I)

[
F (θ̂ + ϵ, σ̂ + ϵ, v̂;S)

]
≤ O

(p lnAβ + ln 1
δ + ln(n|A|)

n|A|

) 1
2

 . (12)

Here, Aβ := 1 +
∥ ˆΘ∥2

2

β2

(
1 +

√
ln(n|A|)

p

)2
.

Theorem 6 shows that the difference between the popula-
tion loss and the empirical loss of FACIMS is bounded by
Õ(p/n|A|). Note that the bound in (12) is a function of β.
Hence, for a choice of β → 0, the bound (12) is not optimal.
This suggests that tri-level FACIMS can have better general-
ization performance than that from bilevel variants such as
[Li et al., 2021, Shui et al., 2022c].

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We applied our model to the Alzheimer’s dis-
ease (AD), credit card and drug consumption datasets, and
the data information is summarized in Table 1.

Alzheimer’s Disease dataset1 were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database [Weiner et al., 2017, Shen et al., 2014]. We in-
cluded 5137 instances, including 4080 mild cognitive im-
pairment (MCI, a prodromal stage of AD) and 1057 AD
instances, to conduct the binary classification. Moreover, we
chose race as the sensitive feature and divided the partici-
pants into four subgroups, where white subjects exceeding
90%. Our features included 17 AD-related biomarkers, in-
cluding cognitive scores, volumes of brain regions extracted
from the magnetic resonance imaging (MRI) scans, amyloid
and tau measurements from positron emission tomography
(PET) scans and cerebrospinal fluid (CSF), and risk factors
like APOE4 carriers and age.

Credit Card dataset2 contains 22 attributes like clients’
basic information, history of payments, and bill statement
amount to classify whether the clients are credible or not. We
included 30000 instances with 6636 credible and 23365 not
credible clients. We chose the education level as the sensitive
feature where we observed more clients who graduated from
university than other six levels.

Drug Consumption dataset3 contains demographic infor-
mation such as age, gender, and education level, as well as
measures of personality traits thought to influence drug use
for 1885 respondents. The task is to predict alcohol use with
K = 4 categories (never used, not used in the past year, used
in the past year, and used in the past day) for multi-class out-
comes. The sensitive feature is education level (Left school
before or at 16, Left school at 17-18, Some college, Certifi-

1http://adni.loni.usc.edu
2https://archive.ics.uci.edu/ml/datasets/

credit+approval
3https://archive.ics.uci.edu/dataset/373/

drug+consumption+quantified

http://adni.loni.usc.edu
https://archive.ics.uci.edu/ml/datasets/credit+approval
https://archive.ics.uci.edu/ml/datasets/credit+approval
https://archive.ics.uci.edu/dataset/373/drug+consumption+quantified
https://archive.ics.uci.edu/dataset/373/drug+consumption+quantified


Table 2: Numerical results (mean ± standard deviation ) for 5 repeats of different methods on Alzheimer’s disease (AD) and
Credit Card (CC) datasets regarding six measurements. Time is in the format of “hours:minutes:seconds”. FACIMS-I means
FACIMS (β = 0), and FACIMS-II means FACIMS (β = 0, v = v̄). “↑” indicates the larger the better while “↓” indicates
the smaller the better. The best one in each column is bold.

Data Method Balanced
Accuracy ↑

Demographic
Parity ↓

Equalized
Odds ↓

Sufficiency
Gap ↓ Recall 0 ↑ Recall 1 ↑ Time ↓

AD

EIIL .8639±.0199 .0764±.0176 .1015±.0529 .1193±.0206 .9288±.0119 .7991±.0409 0:03:32
FSCS .8498±.0485 .0711±.0287 .1650±.1008 .1254±.0528 .9504±.0426 .7493±.1018 0:08:05
FAMS .8369±.0136 .0431±.0210 .1444±.0435 .1328±.0273 .7624±.0077 .9114±.0096 0:09:51
ERM .8687±.0136 .0550±.0196 .1143±.0390 .1701±.0387 .9883±.0053 .7491±.0430 0:00:51

BERM .8886±.0042 .0869±.0204 .0813±.0129 .1456±.0330 .9854±.0043 .7918±.0520 0:02:24
FACIMS-II .8839±.0079 .0747±.0182 .0868±.0130 .1167±.0139 .8456±.0148 .9222±.0043 0:09:58
FACIMS-I .8887±.0066 .0893±.0080 .0450±.0049 .1059±.0060 .8780±.0104 .8994±.0148 0:13:38
FACIMS .8897±.0098 .0765±.0208 .0616±.0142 .1052±.0197 .8832±.0072 .8962±.0054 0:15:26

CC

EIIL .6357±.0267 .0834±.0200 .1723±.0515 .1266±.023 .7897±.0176 .4817±.0448 0:03:30
FSCS .5976±.0277 .0850±.0137 .2000±.0456 .2007±.0039 .8953±.0130 .3000±.0685 0:42:10
FAMS .6542±.0098 .0746±.0066 .1859±.0368 .1352±.0106 .8194±.0374 .4890±.0270 0:10:21
ERM .6104±.0111 .0599±.0173 .1577±.0175 .2760±.0710 .9919±.0233 .2289±.0820 0:02:07

BERM .6570±.0106 .1060±.0125 .1631±.0304 .2315±.0623 .8717±.0191 .4423±.0146 0:02:09
FACIMS-II .6446±.0163 .0707±.0073 .1973±.0358 .1340±.0147 .8002±.0374 .4890±.0270 0:10:03
FACIMS-I .6768±.0040 .0750±.0105 .1951±.0524 .1396±.0081 .8081±.0114 .5455±.0098 0:14:07
FACIMS .6799±.0374 .0593±.0070 .1567±.0230 .1264±.0145 .8136±.0054 .5462±.0017 0:14:18

cate diploma, University degree, Masters, Doctorate ). The
data information is summarized in Table 1 below. As can
be seen, the class distribution shows that the dataset suffers
from heavy label imbalance.

Baselines To validate the effectiveness of our method,
FACIMS, we compare it with seven baseline methods.

• EIIL [Creager et al., 2021]: An Invariant Risk Mini-
mization (IRM) based approach that promotes group
sufficiency.

• FSCS [Lee et al., 2021]: An approach that adopts the
conditional mutual information constraint to improve
group sufficiency.

• FAMS [Shui et al., 2022c]: A bilevel framework that
considers maintaining both the accuracy and group
sufficiency gap for multiple subgroups.

• ERM: Empirical Risk Minimization using a four-layer
fully connected neural network trained with cross-
entropy loss.

• BERM: ERM with a balanced cross-entropy loss, incor-
porating class proportions as weights similar to [Cao
et al., 2019].

• FACIMS (β = 0, v = v̄): Our method without the
lower level. Besides, in the upper level, we manually
adjust the logits using the proportion of class [Menon
et al., 2020, Kini et al., 2021] instead of learning the
hyperparameter for logits adjustment.

• FACIMS (β = 0): Our method without the lower level
which aims to flatten the sharp landscape of the objec-
tive in the middle level.

We set αup and αlow to be 0.7. We use the grid of [0.1, 0.01,

0.001] to search the learning rate for global model and local
models and report the results over five independent repeats.

5.2 EXPERIMENTAL RESULTS

In this section, we analyze Alzheimer’s disease and credit
card datasets. The numerical results of the multi-class
dataset drug consumption are included in the appendix due
to page limits.

Balanced Accuracy and Sufficiency Gap We primar-
ily focus on balanced accuracy and group sufficiency gap
as our main goals. Table 2 shows that on the Alzheimer’s
disease dataset, our method FACIMS outperforms EIIL,
FSCS, FAMS, and ERM in terms of balanced accuracy,
with improvements of 2.6%, 4.0%, 5.3%, and 2.1% respec-
tively. While BERM addresses the class imbalance issue
and demonstrates a significant improvement over ERM by
nearly 2%, our method still achieves a higher balanced ac-
curacy than BERM. Our method significantly improves the
group sufficiency gap by 6.5% and 4.0% respectively, com-
pared to ERM and BERM which do not address this issue.
Although EIIL, FSCS, and FAMS specifically target the
group sufficiency problem and achieve lower sufficiency
gaps than ERM and BERM, our method still outperforms
these three baseline methods by improving the sufficiency
gap by 1.4%, 2.0%, and 2.8% respectively.

Removing the lower level (β = 0) leads to a slight de-
crease in balanced accuracy and group sufficiency gap as
the objective landscape is not flattened in the middle level.
Additionally, manually adjusting the logits instead of learn-
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Figure 2: Boxplot comparing balanced accuracy and group sufficiency gap for three real datasets with 5 repeats. The mean
is represented by the middle of each box, while the box width represents twice the standard deviation. Better performance is
indicated by boxes located towards the bottom right (higher balanced accuracy and lower group sufficiency). Two FACIMS
variants are excluded for clarity, with complete results available in the appendix.

ing the hyperparameters (as in [Menon et al., 2020]) further
decreases the balanced accuracy and group sufficiency gap.
However, our bilevel structure for addressing fairness en-
sures that the group sufficiency gap remains good despite
these drops.

On credit card dataset, we have similar results. As for bal-
anced accuracy, our method FACIMS improves the perfor-
mance by 4.4%, 8.2%, 2.6%, 7.0%, and 2.3% comapred to
EIIL, FSCS, FAMS, ERM and BERM. When it comes to
the group sufficiency gap, the performance of our method is
improved by 0.2%, 7.4%, 0.8%, 15%, and 11% comapred to
the same baseline methods as metioned above. The perfor-
mances of FACIMS (β = 0) and FACIMS (β = 0, v = v̄)
drop slightly regarding both measurements.

To provide a more intuitive visualization of the results, we
present boxplots in Figure 2. Each axis represents a measure-
ment, where the mean value is represented by the middle of
the box and the box width corresponds to twice the length of
the standard deviation. The model’s performance is reflected
by the position of the box, with improved performance ob-
served towards the bottom right corner, indicating higher
balanced accuracy and lower group sufficiency gap. For
clarity, we have excluded two variants of our method from
Figure 2. The complete figures can be found in the appendix.
Figure 2 highlights that our method is positioned towards
the bottom right corner, indicating improved performance
compared to other methods.

Results on Other Metrics In addition to the result anal-
ysis on balanced accuracy and group sufficiency, we also
report demographic parity, equalized odds, recall, and time
in Table 2. The results show that our method achieves com-
petitive results despite not outperforming all baselines in
terms of demographic parity and equalized odds gaps. We

emphasize that our method primarily addresses the group
sufficiency gap for fairness, and it is challenging to optimize
all three fairness measurements simultaneously, as discussed
in Section 2. When assessing a classifier’s performance, it is
important to achieve a high recall for each class. However,
the average recall across all classes determines the balanced
accuracy, highlighting the need for a balanced recall quantity
across all classes. Our approach and its variations demon-
strate a more balanced recall for each class, as illustrated in
Table 2.

Comparing the time aspect, despite employing a complex
tri-level optimization framework for training our model, the
total runtime is not significantly longer than other fairness
baselines. Indeed, utilizing differentiable bilevel methods in
the large hyperparameter search provides substantial cost
reduction and speedup compared to traditional approaches
like grid search or random search. For instance, the first
variant of our method, FACIMS (β = 0, v = v̄), runs
in approximately 13 minutes. However, employing grid
search or random search to tune the parametric loss would
require significantly more time. For example, if we perform
a search with five different settings to enhance the accu-
racy of FACIMS (β = 0, v = v̄), the total time would be
13min×5 = 65min, which is around four times longer
than our differentiable three-level FACIMS approach.

Influence of αlow In the middle level, the parameter αlow

determines the attention given to KL(Za|Z). A higher value
of αlow brings the local model closer to the global model,
leading to improved group sufficiency gap but potentially
worse balanced accuracy. We experimented with four dif-
ferent values of αlow: 0.01, 0.1, 0.2, and 1. Figure 3 illus-
trates the Accuracy-SGapf curve under varying αlow on the
Alzheimer’s disease dataset. The figure demonstrates a clear



Figure 3: Accuracy-SGapf curve under different αlow in
Alzheimer’s disease dataset.

trend: as αlow increases, both the balanced accuracy and
group sufficiency gap decrease, aligning with our expecta-
tions. This analysis provides insight into how the KL diver-
gence in the middle level influences the group sufficiency
gap and balanced accuracy, enhancing our understanding of
the framework’s mechanism.

6 RELATED WORK

6.1 LONG-TAILED LEARNING

Re-sampling [Buda et al., 2018] and Re-weighting [He and
Garcia, 2009] are commonly used methods for training on
imbalanced datasets. Recent studies focus on optimizing
loss landscapes for class-imbalanced datasets [Khan et al.,
2017, Cao et al., 2019, Menon et al., 2020, Ye et al., 2020,
Li et al., 2021, Kini et al., 2021, Behnia et al., 2023, Thram-
poulidis et al., 2022]. Our work is related to the long-tail
learning literature [Cao et al., 2019, Menon et al., 2020, Ye
et al., 2020, Kini et al., 2021], where authors propose refined
class-balanced loss functions that better adapt to training
data. These include the logit-adjusted loss [Menon et al.,
2020, Cao et al., 2019], the class-dependent temperature
loss [Ye et al., 2020], and the VS loss [Kini et al., 2021],
which unifies the concepts of multiplicative shift, additive
shift, and loss re-weighting.

6.2 NESTED OPTIMZIATION

Nested optimization involves solving hierarchical problems
with multiple levels of optimization [Colson et al., 2007,
Tarzanagh et al., 2022, Chen et al., 2021, Ji et al., 2021,
Tarzanagh and Balzano, 2022]. Min-max nested optimiza-
tion is commonly used to learn fair representations in the
context of demographic parity or equalized odds [Zemel
et al., 2013, Song et al., 2019, Zhao et al., 2019]. Bi-level
optimization and meta-learning algorithms have also been
explored in the context of fair learning and classification
[Shui et al., 2022b, Abbas et al., 2022]. Recent advance-

ments in differentiable algorithms have led to faster bilevel
algorithms for learning hyperparameters and classification
[Li et al., 2021, Lorraine et al., 2020, Tarzanagh et al., 2022,
Chen et al., 2021, Ji et al., 2021]. Building on [Li et al.,
2021, Abbas et al., 2022], we propose a theoretically justi-
fied tri-level optimization perspective to control the group
sufficiency gap and improve generalization performance
across multiple subgroups with limited samples.

6.3 FAIRNESS

Group-sensitive learning aims to ensure fairness in the pres-
ence of under-represented groups [Lin et al., 2023, Zafar
et al., 2017, Tarzanagh et al., 2021, Chierichetti et al., 2017].
Our work mainly focuses on the fair notion of group suffi-
ciency. This notion has recently been studied in the health of
populations [Obermeyer et al., 2019] and crime prediction
[Chouldechova, 2017, Pleiss et al., 2017]. Liu et al. [2019b]
show that under some assumptions, the group sufficiency
can be controlled in unconstraint learning. On the other
hand, Obermeyer et al. [2019], Shui et al. [2022a], Koh
et al. [2021] claim that this conclusion may not always hold
in the overparameterized models with limited samples per
group. Subramanian et al. [2021] provided a method for fair
and class-imbalanced learning.Lee et al. [2021] proposed a
bilevel objective approach to achieve fairness in predictive
models across all groups. In contrast, our tri-level algorithm
incorporates a Bayesian framework for imbalanced learning,
considering both class imbalance and subgroup distribution
within each class, while also employing a nested optimiza-
tion akin to SAM to overcome saddle points for minority
classes.

7 CONCLUSIONS

We studied fairness-aware class imbalanced learning on
multiple subgroups (FACIMS) using a Bayesian-based opti-
mization framework. Through extensive empirical and theo-
retical analysis, we demonstrated that FACIMS enhances the
generalization performance of overparameterized models
when dealing with limited samples per subgroup.
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Supplementary Material for “Fairness-Aware Class Imbalanced Learning
on Multiple Subgroups"

Roadmap. The appendix is structured as follows: In Section A, we present the proof of Theorem 5. Section B contains the
proof of Theorem 6. Section C describes the computation of fairness gaps. Lastly, Section D presents additional experimental
results.

A PROOF OF THEOREM 5

We establish the relationship between FACIMS and bilevel optimization [Chen et al., 2021]. For notational simplicity, we
consider three independent samples for stochastic gradient and Hessian computation as ξa := (x, y) ∼ T a, ψa := (x, y) ∼
T a, ξ′ := (x, y) ∼ V , so the corresponding κ-batch gradient and Hessian estimators for bilvel-type methods can be written
as

∇̃L(Θ; T a, ξa) = 1

κ

∑
ξa∼T a

∇l(Θ, x, y),

∇̃2L(Θ; T a, ψa) = 1

κ

∑
ψa∼T a

∇2l(Θ, x, y),

∇̃L(Θ;V, ξ′) = 1

κ

∑
ξ′∼V

∇l(Θ, x, y).

Let

∇L(Θ; T a) = Eξa∇̃L(Θ; T a, ξa),
∇2L(Θ; T a) = Eψa∇̃2L(Θ; T a, ψa).

Since ∇L(Θ; T a),∇2L(Θ; T a) are Lipschitz continuous with ℓ1, ℓ2 according to Assumption A, from the properties of
implicit functions [Chen et al., 2021] we have that

∥∇L(Θt + ϵa(Θt); T a)−∇L(Θt; T a)∥ ≤ O(ℓ1β),
∥∇2L(Θt + ϵa(Θt); T a)−∇2L(Θt; T a)∥ ≤ O(ℓ2β).

Now, if we set γup = γlow = O( 1√
T
), β = O(1), then the reminder of the proof follows from [Chen et al., 2021, Abbas

et al., 2022].

B PROOF OF THEOREM 6

Proof. Let

ρ := (Z1 ⊗ Z2 ⊗ · · · ⊗ Z|A|) and π := (Z⊗ Z⊗ · · · ⊗ Z)|A| times.

We adopt the binary cross-entropy loss with parameters ak = 0 and bk = L
|A|n , where L denotes the upper bound for L.

With high probability 1− δ, we can obtain:

1

|A|
∑
a

Ef̃∼ZaL(f̃a) ≤
1

|A|
∑
a

Ef̃∼ZaL̂(f̃a)

+
1

αlow
(KL(ρ∥π) + log(

1

δ
)) +

αlowL

8|A|n
.

Here, L̂ denotes the empirical loss.



By utilizing the decomposition property of KL divergence, we ultimately obtain:

1

|A|
∑
a

Ef̃∼ZaL(f̃) ≤
1

|A|
∑
a

Ef̃∼ZaL̂(f̃) +O

(√
1

|A|n
(
∑
a

KL(Za∥Z) + log(
1

δ
))

)

≤ 1

|A|
∑
a

Ef̃∼ZaL̂(f̃) +O

(
1√
|A|n

∑
a

√
KL(Za∥Z) +

√
log(1/δ)

|A|n

)
. (13)

Now, let Z = N (0, σ2
ZI), and Za = N (θ, α2I), then

KL(Za∥Z) ≤ O

(
kα2 + ∥Θ∥22

σ2
Z

− p+ p ln

(
σ2
Z

α2

))
.

Following [Abbas et al., 2022], consider the setH = {c exp((1− j)/p) | j ∈ N}, which represents the values for σ2
Z .

Assuming that the PAC-Bayesian bound in equation (13) holds for σ2
Z = c exp((1− j)/p) with a probability of 1− δj for

any j ∈ N, where δj = 6δ
π2j2 .

By applying the union bound, we can conclude that all bounds for σ2
Z ∈ H hold simultaneously with a probability of at least

1−
∑∞
j=1 δj = 1− δ.

Let’s now examine the following inequality: ∥Θ∥2 ≤ β2(exp(4n/p)− 1).

If we substitute pβ2 + ∥Θ∥2 with pβ2(exp(4n/p) + 1), the inequality becomes: pβ2 + ∥Θ∥2 ≤ pβ2(exp(4n/p) + 1).

Now, let’s set j =
⌊
1− p ln

((
β2 + ∥Θ∥2 /p

)
/c
)⌋

. By selecting c = β2(1 + exp(4n/p)), we can ensure that

ln
((
β2 + ∥Θ∥2 /p

)
/c
)
< 0, which guarantees that j ∈ N.

Furthermore, for σ2
Z = c exp((1− j)/p), we can establish the following inequalities:

β2 + ∥Θ∥2 /p ≤ σ2
Z ≤ exp(1/p)(β2 + ∥Θ∥2 /p). (14)

The first inequality is derived from 1−j = ⌈p ln((β2+∥Θ∥2 /p)/c)⌉ ≥ p ln((β2+∥Θ∥2 /p)/c), and the second inequality
is derived from 1− j = ⌈p ln((β2 + ∥Θ∥2 /p)/c)⌉ ≤ p ln((β2 + ∥Θ∥2 /p)/c) + 1.

The KL-divergence term can be further bounded as

KL(Za∥Z) ≤ O

(
pβ2 + ∥Θ∥22

σ2
Z

− p+ p ln

(
σ2
Z

β2

))

≤ O

p ln
exp(1/p)

(
β2 + ∥Θ∥22 /p

)
β2


= O

(
1 + p ln

(
1 +
∥Θ∥22
pβ2

))
.

Here, we use the property of KL-divergence to derive a bound by rearranging terms. By replacing σ2
Z with (14) and

simplifying, we obtain the inequality.

Given the bound that corresponds to j holds with probability 1− δj for δj = 6δ
π2j2 , the ln term above can be written as:

ln
1

δj
= ln

1

δ
+ ln

π2j2

6

≤ ln
1

δ
+ ln

π2p2 ln2
(
c/
(
β2 + ∥Θ∥22 /p

))
6

≤ O
(
ln

1

δ
+ ln(n)

)
.



According to [Laurent and Massart, 2000, Lemma 1], for a random variable ϵ following a normal distribution N (0, σ2I)
and any positive value of t, the following inequality holds:

P
(
∥ϵ∥2 − pσ2 ≥ 2σ2

√
pt+ 2tσ2

)
≤ exp(−t).

This inequality quantifies the probability that the squared Euclidean norm of ϵ exceeds a certain threshold. The left-hand
side of the inequality represents the event of the norm exceeding the threshold, while the right-hand side provides an upper
bound on the probability of that event occurring, which decreases exponentially with t.

Hence, it can be concluded that with a probability of 1− 1/
√
n, the following inequality holds:

∥ϵ∥2 ≤ σ2(2 ln(
√
n) + p+ 2

√
p ln(
√
n)) ≤ σ2p

(
1 +

√
lnn

p

)2

= β2.

In other words, the squared Euclidean norm of ϵ is upper bounded by a certain threshold, denoted as β2, with a high
probability. ■

C COMPUTING GAPS FROM THE DATA

Recall from (3),

SGapf (A) = E[|E[Y | f(X)]− E[Y | f(X), A]|], (15a)

PGapf (A) = E[E[f(X)]− E[f(X)|A]], (15b)

OGapf (A) = E[E[f(X)|Y ]− E[f(X)|Y,A]]. (15c)

C.1 COMPUTING SUFFICENCY GAP

Note that {Sa}, a ∈ A denotes the observed data, and f(x) is a continuous value, ranging from [0, 1]. We split [0, 1] into
separate intervals:

[0, δ1], [δ1, δ2], . . . , [δN , 1]

Now, we compute the conditional expectation from the data, i.e, E[Y |f(X)] and E[Y |f(X), A = a] within each interval:

(pi, qi) := (E[f(X)1{f(X)∈[δi,δi+1]}],E[Y |f(X) ∈ [δi, δi+1]]), (16a)

(pai , q
a
i ) := (E[f(X)1{f(X)∈[δi,δi+1],A=a}],E[Y |f(X) ∈ [δi, δi+1], A = a]). (16b)

Now, from (16a) and (16b), for each group A = a, the group sufficiency gap is computed as:

SGapf (A = a) =
∑
i

∣∣∣∣∣∣∣∣∣qi −
(
qai +

pi − pai
pai+1 − pai

(qa+1
i − qai )

)
︸ ︷︷ ︸

Linear Interpolation

∣∣∣∣∣∣∣∣∣ .
Note that in the case when the average values in each interval are not equal, we apply linear interpolation.

Finally, we set

SGapf =
1

|A|
∑
a

SGapf (A = a) (17)

We set P(A = a) = 1
|A| as uniform distribution for ensuring fairness for each subgroup.



Remark 7. It can be easily seen that, in general:

E[Y |f(X)] ̸= 1

|A|
∑
a

E[Y |f(X), A = a].

By using the Bayes rule, we get

E[Y |f(X)] =
∑
a

P (A = a|f(X))E[Y |f(X), A = a].

Hence, iff P(A = a|f(X)) = 1
|A| , we have the equivalent form. Specifically, P(A = a|f(X)) refers the conditional

probability of A = a, given the predicted score f(X), which is related to the group membership inference [Hu et al., 2021].
If P(A = a|f(X)) is large, the subgroup index can be easily revealed via the algorithm output. If the algorithm can fully
preserve the privacy, then P(A = a|f(X)) = 1

|A| .

C.2 COMPUTING DEMOGRAPHIC PARITY GAP

It is straightforward to compute demographic parity gap according to the definition. Specifically, we first calculate the
expectation of the prediction over each group E[f(X)|A]]. Then we calculate the expectation of the prediction over all
instances. Finally, we get the PGapf by calculating E[E[f(X)]− E[f(X)|A]].

In practical, we can count the number of positive predictions pa for each group. This can be done by counting the number
of true positives and false positives for each group in the dataset. Then we calculate the proportion of positive predictions
pa
Na

for each group a where Na is the total number of predictions for each group. Similarly, for the whole dataset, we have
p
N where p is the number of positive predictions for the whole dataset and N is the number of all the instances. Then we
calculate the absolute difference between the proportion of positive predictions for each group and the whole dataset:

PGapf (A = a) =

∣∣∣∣ pN − pa
Na

∣∣∣∣ .
Finally, we can obtain the demographic parity gap by taking the average over all the absolute differences:

PGapf =
1

A
∑
a

PGapf (A = a) (18)

C.3 COMPUTING EQUALIZED ODDS GAP

Equalized odds is not only conditioned on A but also conditioned on Y . We focus on the positive class. Thus for each group
a, we first count the number of true positive (TPa) and false negative (FNa) predictions. Then we calculate the true positive
rate (TPRa) for group a by

TPRa =
TPa

TPa + FNa
.

Similarly, we have the TPR for the whole dataset:

TPR =
TP

TP + FN
.

Then the equalized odds for each group is:

OGapf (A = a) = |TPR− TPRa| .

The equalized odds is finally calculated by

OGapf =
1

A
∑
a

OGapf (A = a). (19)



Table 3: Classification results (mean ± standard deviation ) for 5 repeats of different methods on Drug Consumption dataset.
“↑” indicates the larger the better while “↓” indicates the smaller the better. The best one in each column is bold.

Method Balanced Accuracy ↑ Demographic Parity ↓ Equalized Odds ↓ Sufficiency Gap ↓

EIIL 0.2549±0.0029 0.0199±0.0079 0.0673±0.0279 0.1602±0.0411

FSCS 0.2471±0.0101 0.0141±0.006 0.0399±0.0402 0.2555±0.0456

FAMS 0.2624±0.0308 0.0087±0.0021 0.2972±0.0323 0.1485±0.0546

ERM 0.2492±0.0013 0.0158±0.0052 0.0061±0.0105 0.1062±0.0283

BERM 0.2434±0.0259 0.0197±0.0016 0.1626±0.0259 0.1406±0.0875

FACIMS (β = 0, v = v̄) 0.2644±0.0366 0.0044±0.0016 0.2547±0.0610 0.1380±0.0454

FACIMS (β = 0) 0.2716±0.0277 0.0192±0.0027 0.2158±0.0410 0.1231±0.0301

FACIMS 0.2767±0.0545 0.0257±0.0136 0.1469±0.1115 0.0948±0.0224

D ADDITIONAL EXPERIMENTS

In Table 3 and Table 4, we report the numerical results of the multi-class dataset drug consumption regarding the six
measurements including balanced accuracy, demographic parity, equalized odds, sufficiency gap, recall and time. Similar to
the results of Alzheimer’s disease and credit card, our method FACIMS can outperform the baselines methods in terms of
balanced accuracy and group sufficiency gap. The performance of the two variants of our method FACIMS (β = 0, v = v̄)
and FACIMS (β) drops slightly. Our method has more balanced recall over all four classes. In Figure 4, we include all the
methods including the two variants of our FACIMS. It is a bit messy but still we can see the superiority of our method.

Next, we investigate the performance of our method when A ̸⊥ Y and the classes are imbalanced. Our synthetic dataset is
generated as follows: We consider two classes (Y = 0 or Y = 1) and two groups (A = a or A = b). We set n1 = 5× n0,
where ni is the number of instances in i-th class so that the data is class imbalanced. The ratio of group a to group b in class
1 is set to π : 1 for some π > 0. On the contrary, the ratio of group a to group b in class 0 is set to 1 : π.

Let n0 = 80 and n1 = 400.

• If π = 1, the ratio of group a to group b in class 0 is 40 : 40 = 1 : 1 and in class 1 is 200 : 200 = 1 : 1. ALso, the ratio
of group a to group b in the whole population is 240 : 240 = 1 : 1. Hence, Y and A are independent.

• If π = 7, the ratio of group a to group b in class 0 is 10 : 70 = 1 : 7 and in class 1 is 350 : 50 = 7 : 1. But, the ratio of
group a to group b in the whole population is 360 : 120 = 3 : 1. Hence, Y and A are dependent, i.e., A ̸⊥ Y .

Table 5 provides the performance of FACIMS on the above synthetic imbalanced dataset. From this table, we can see that
when there is a correlation between groups and labels (π = 7), there is a slight improvement in both accuracy and balanced
accuracy. Further, the degeneration in demographic parity is significant in comparison with group sufficiency and equalized
odds. This is consistent with [Barocas et al., 2019] and our discussion in Section 2; that is, if A ̸⊥ Y , then equalized odds,
demographic parity, and group sufficiency could not be simultaneously achieved.



Table 4: Recall (mean ± standard deviation) and timing (hours:minutes:seconds) results for 5 repeats of different methods on
the Drug Consumption dataset. “↑” indicates the larger the better while “↓” indicates the smaller the better. The best one in
each column is bold.

Method Recall 0 ↑ Recall 1 ↑ Recall 2 ↑ Recall 3 ↑ Time ↓

EIIL 0.0000±0.0000 0.0000±0.0000 0.9256±0.0345 0.0938±0.0417 0:04:27

FSCS 0.0000±0.0000 0.0000±0.0000 0.9690±0.0043 0.0192±0.0385 0:02:39

FAMS 0.2000±0.0632 0.4968±0.0724 0.2198±0.1071 0.1329±0.0509 0:12:37

ERM 0.0000±0.0000 0.0000±0.0000 0.9968±0.0000 0.0000±0.0000 0:00:31

BERM 0.0000±0.0000 0.2839±0.0899 0.6054±0.0978 0.0842±0.0455 0:00:25

FACIMS (β = 0, v = v̄) 0.2200±0.1720 0.3226±0.1274 0.2783±0.0584 0.2368±0.0968 0:12:55

FACIMS (β = 0) 0.1000±0.0632 0.2710±0.0483 0.4327±0.0399 0.2829±0.0186 0:14:21

FACIMS 0.6200±0.3709 0.3355±0.4154 0.0960±0.1275 0.0553±0.1105 0:15:15

(a) Alzheimer’s Disease (b) Credit Card (c) Drug Consumption

Figure 4: Boxplot of balanced accuracy and group sufficiency gap with 5 repeats for both Alzheimer’s disease, credit card,
and drug consumption datasets. Along each axis, the middle of each box is the mean and the box width is twice the length of
the standard deviation. The more the box is on the right bottom (bigger balanced accuracy and smaller group sufficiency),
the better the performance is. Here we include all the methods including the two variants of our method.

Table 5: The performance of FACIMS on the synthetic imbalanced dataset with different π.

π 1 7

Accuracy 0.9000±0.0083 0.9240±0.0026

Balanced Accuracy 0.8767±0.0196 0.8885±0.0121

Demographic Parity 0.0381±0.0131 0.2544±0.0117

Equalized Odds 0.0560±0.0131 0.0904±0.0080

Sufficiency Gap 0.1256±0.0444 0.1866±0.0107
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