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ABSTRACT

In existing multimodal large language models (MLLMs), image resolution plays
a significant role for granular visual recognition. However, directly increasing
image resolution leads to expensive computational cost for MLLMs. In this
paper, we reveal that a combination of low- and high-resolution visual features
can efficiently mitigate this shortcoming. Based on this principle, we propose a
novel and efficient method for MLLMs, termed Mixture-of-Resolution Adaptation
(MRA). In particular, MRA adopts two visual pathways for images of different
resolutions, where high-resolution visual information is embedded into the low-
resolution pathway via the novel mixture-of-resolution adapters (MR-Adapters).
This design also greatly reduces the input sequence length of MLLMs. To validate
MRA, we apply it to a recent MLLM called LLaVA, and term the new model
LLaVA-HR. We conduct extensive experiments on 17 vision-language (VL) tasks,
which show that LLaVA-HR outperforms existing MLLMs on 15 VL tasks, e.g.,
+5.2% on TextVQA. More importantly, both training and inference of LLaVA-HR
remain efficient with MRA, e.g., 20 training hours and faster inference speed than
LLaVA-NeXT. Source codes are released at: LLaVA-HR.

1 INTRODUCTION

Driven by the remarkable success of large language models (LLMs) (Touvron et al., 2023; Chen
et al., 2020), research on multi-modal large language models (MLLMs) also receives an influx of
interest in both academia and industry (Liu et al., 2023b; Luo et al., 2023; Alayrac et al., 2022;
Chen et al., 2022; 2023c). Numerous efforts have been recently devoted to extending LLMs to more
modalities, achieving breakthroughs on various vision-language tasks (Goyal et al., 2017; Singh et al.,
2019; Hudson & Manning, 2019). Despite their success, existing MLLMs still fall short of granular
visual recognition. For instance, the powerful GPT4-V also suffers from visual hallucinations when
identifying small and occluded objects (Tong et al., 2024). This shortcoming inevitably limits the
practical use of MLLMs.

To compensate for this shortcoming, early practitioners often resort to scaling up model size and
increasing per-training data size (Alayrac et al., 2022; Li et al., 2023b; Bai et al., 2023). For
instance, InstructBLIP (Dai et al., 2023) adopts over 129M image-text pairs for vision-language (VL)
alignments, showing that a larger visual encoder is beneficial for MLLMs. Similarly, Qwen-VL (Bai
et al., 2023) also increases the parameters of visual encoder to 1.9 billion and uses 1.5 billion image-
text pairs for pre-training. Despite effective, this paradigm is prohibitively expensive, which often
consumes about thousands of GPU hours.

Orthogonal to these works, we study the visual shortcoming of MLLMs from the perspective of image
resolutions. As revealed in previous VL research (Jiang et al., 2020; Tong et al., 2024), increasing
the resolution of input images is a straightforward solution for visual recognition, which becomes
more important for MLLMs that involve fine-grained visual reasoning (Rose et al., 2023). As shown
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Figure 1: Comparison between existing MLLMs and LLaVA-HR on TextVQA (left) and various
benchmarks (right). Increasing image resolution is effective yet expensive for fine-grained visual
understanding. In contrast, LLaVA-HR can efficiently adapt high resolution to boost performance.

in Fig. 1, increasing the resolution of LLaVA-1.5 (Liu et al., 2023a) from 384 × 384 to 672 × 672
can bring obvious performance gains (+4.6%) on TextVQA (Singh et al., 2019). However, the use
of high-resolution images will greatly exacerbate the already high computational cost of MLLMs.
For instance, 448× 448 resolution will increase the computation complexity of LLaVA by about 1.4
times compared with the default 336 × 336. In addition, the training will become unstable as the
resolution is greatly increased1, e.g., a sharp drop at 1, 022× 1, 022 resolution in Fig. 1. Although
such an issue can be overcome by dividing high-resolution images into small patches via the dynamic
slicing strategy Liu et al. (2024a), its computational cost still remains expensive for MLLMs.

In this paper, we focus on the efficient high-resolution image adaptation of MLLMs and propose
a novel method called mixture-of-resolution adaptation (MRA). As shown in Fig. 2, MRA adopts
an innovative dual visual pathway design to process the input images of high- and low-resolutions
simultaneously. Specifically, one pathway aims to encode global information of low-resolution images,
while the other one serves to capture fine-grained semantics from high-resolution images. Meanwhile,
these two pathways are closely interacted via the novel mixture-of-resolution adapters (MR-Adapters),
which embeds the high-resolution visual information into the low-resolution modeling. In this way,
we can use a much fewer number of visual tokens to represent the input images from macro- to
micro-views. With the careful design of dual-pathway structure, MRA can easily scale the image
resolution up to 1,024 × 1,024 pixels while maintaining high efficiency.

To validate MRA, we apply it to a recent MLLM called LLaVA (Liu et al., 2023b;a), and term the new
model as LLaVA-HR. We conduct extensive experiments on 17 vision-language (VL) tasks, including
common VL tasks like VQAv2 (Goyal et al., 2017) and MLLM benchmarks such as POPE (Li et al.,
2023c). Experimental results show that LLaVA-HR outperforms existing MLLMs on 15 of 17 VL
tasks, e.g., +9.6% over LLaVA-1.5 on TextVQA. More importantly, the training and inference of
LLaVA-HR are cost-effective. In particular, the pre-training and instruction tuning of LLaVA-HR
(7B, 1,024 × 1,024) only take a total of 20.7 hours on 8 A800 GPUs, which is hundreds of times
cheaper than InstructBLIP (Dai et al., 2023) and Qwen-VL (Bai et al., 2023). Under the same
high-resolution setting, its inference speed is consistently faster than LLaVA-1.5 (Liu et al., 2023a)
and LLaVA-Next Liu et al. (2024a).

In summary, our contributions are three folds:

• We propose a novel and efficient adaptation scheme, termed mixture-of-resolution adaption
(MRA), which adopts a novel dual visual pathway design to obtain the benefits of high-
resolution visual information while keeping training and inference efficient.

• We propose a novel mixture-of-resolution adapter (MR-Adapter) for MRA, which can
embed the high-resolution information into the low-resolution visual pathway to improve
visual descriptive power.

• Based on MRA, we propose a powerful MLLM, coined LLaVA-HR, which outperforms
existing MLLMs on 15 of 17 VL tasks and are much more efficient than most MLLMs.

1Visual encoders like CLIP-ViT are pre-trained with low resolution, and the significant increase of resolution
may hurt feature representations.
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2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

Driven by the great successes of large language models (LLMs) (Gilardi et al., 2023; Touvron et al.,
2023; Chen et al., 2020), growing interest has been aroused in building end-to-end multimodal large
language models (MLLMs) (Liu et al., 2023b; Zhu et al., 2023; Luo et al., 2023; Bai et al., 2023; Fuyu-
8B, 2023; Peng et al., 2023; Luo et al., 2024a;b). In particular, most existing MLLMs adopt a modular
structure (Luo et al., 2023; Liu et al., 2023b), which utilizes an intermediate network to project the
visual features into the word embedding space of the LLM. Then, the LLM is used to accomplish
various VL tasks in an autoregressive manner. Based on the modular structure, existing MLLMs
can be distinguished by the designs of the intermediate network. Popular MLLMs represented by
LLaVA (Liu et al., 2023b) often adopt a linear projection layer or an MLP layer to connect the visual
encoder and the LLM (Liu et al., 2023b; Chen et al., 2023a;c; Peng et al., 2023). The other works
employ sampler-based modules to bridge the gap between the visual encoder and the LLM (Bai et al.,
2023; Alayrac et al., 2022; Li et al., 2023b). These sampler-based modules can effectively reduce
the number of visual tokens, but often requires a large-scale pre-training to achieve a promising
performance (Bai et al., 2023; Li et al., 2023b). Despite the effectiveness, the low-resolution visual
perception still limits the performance of existing MLLMs in fine-grained tasks.

2.2 HIGH-RESOLUTION MULTIMODAL LARGE LANGUAGE MODELS

To improve the perception ability of MLLMs, increasing attentions have been focused on high-
resolution MLLMs (Liu et al., 2024a; Li et al., 2024c; Liu et al., 2024b; Li et al., 2024b; Chen
et al., 2024b). Among them, most methods (Li et al., 2024c; Liu et al., 2024a) adopt the dynamic
slicing strategy to divide a high-resolution image into multiple low-resolution patches. By doing
so, pre-trained visual encoders can maintain their default resolutions for adapting high-resolution
processing, and support images with flexible aspect ratio. For example, Monkey (Li et al., 2024c)
and LLaVA-Next (Liu et al., 2024a) divide input images into a set of 448 × 448 patches for high-
resolution visual understanding. Based on this framework, Chen et al. (2024b) and Dong et al. (2024)
further explore the strategy to realize the optimal image division. Despite the effectiveness, their
computational cost is still expensive as the image resolution increases. Orthogonal to these works,
we aim to improve image resolution in an efficient way, which still lacks extensive explorations.

2.3 VISUAL REPRESENTATIONS FOR MULTIMODAL LARGE LANGUAGE MODELS

The pursuit of better visual representations has been a popular research trend in the VL community (Lu
et al., 2019; Jiang et al., 2020; Radford et al., 2021). Early endeavors mainly explore the object-level
features for VL models (Lu et al., 2019; Zhang et al., 2021). Driven by the large-scale image-text
pre-training, grid features from CLIP (Radford et al., 2021) have demonstrated the great efficiency
and generalization in MLLMs (Liu et al., 2023b; Chen et al., 2022; Alayrac et al., 2022). Based on
grid features, existing researchers mainly improve visual representations by scaling up the visual
encoder. For example, PaLI (Chen et al., 2022) increases the parameters of visual encoder to 3 billions
and shows the significant performance boost of MLLMs. In contrast to these works, we improve the
visual representations for MLLMs from the perspective of dual-branch network interactions, and
propose a novel and efficient solution, namely mixture-of-resolution adaptation.

3 PRELIMINARY

We first recap the structure of multimodal large language models (MLLMs), which consists of an
image encoder FI(·), an intermediate network FP(·) and an LLM FL(·).
In particular, given an input image I ∈ RH×W×3 and a textual instruction T ∈ RL, the visual tokens
Fv ∈ R(h×w)×d are obtained via the image encoder, and the text tokens ft ∈ Rl×d are represented
by the corresponding word embeddings. Based on the visual and textual tokens, the LLM will decode
the target word step by step, formulated as

pt =

S+1∏
s=1

FL(Rs|FP(Fv), ft, R0:s−1). (1)

3



Published as a conference paper at ICLR 2025

Conv

Stage

High-resolution Image

Conv

stage
Conv

stage

ViT

stage

ViT

stage

ViT

stage

ViT

stage

Low-resolution Image

𝟏𝟎𝟐𝟒 × 𝟏𝟎𝟐𝟒

𝟒𝟒𝟖 × 𝟒𝟒𝟖
MR-

Adapter

MR-

Adapter

Conv

stage

MR-

Adapter

Low-resolution Pathway (Macro View)

Multi-head Attention

Feed-forward Network

LLaMA2-7B

Text Instruction: 

“describe this image in short.”

Tokenizer

Output: A herd of 

elephants and deer are 

gathered around a 

watering hole. The 

elephants are of various 

sizes, including a baby 

elephant. The deer are 

also of different sizes, 

with some appearing to 

be young.

MLP

High-resolution Pathway (Micro View)

𝟑𝟐 × 𝟑𝟐

𝟑𝟐 × 𝟑𝟐

Figure 2: Illustration of Mixture-of-Resolution Adaptation (MRA) and its deployment on
LLaVA-HR. MRA employs dual visual pathways to process high-resolution and low-resolution
images, respectively. High-resolution information is embeded into the fast pathway via a novel
mixture-of-resolution adapter (MR-Adapter).

Here, pt ∈ Rm denotes the probabilities of the predicted word and m is the size of word vocabulary.

In some MLLMs (Liu et al., 2023b;a), FP(·) is often a stack of simple linear layers, which are
used to directly project the visual tokens onto the semantic space of LLMs. Although simple and
effective, this strategy inevitably leads to a longer visual sequence as the resolution increases, e.g.,
5,329 tokens for 1,022 × 1,022 resolution in LLaVA-1.5. In practice, processing such a large number
of tokens is computationally expensive in MLLMs. To further reduce the number of visual tokens,
recent advances adopt the sampler-based module for FP(·) , e.g., QFormer (Li et al., 2023b), which
aggregates visual features into several query tokens that LLM can directly handle. Nevertheless, these
methods often require large-scale pre-training to achieve VL alignments (Bai et al., 2023).

Based on the above analyses, we conclude that the main difficulty of high-resolution image adaptation
lies in the rapidly growing visual sequence. This issue motivates us to further explore how to
efficiently encode richer visual information with fewer visual tokens.

4 MIXTURE-OF-RESOLUTION ADAPTATION

4.1 OVERVIEW

To address the above issues, we propose a novel and efficient method for MLLMs, termed mixture-of-
resolution adaptation (MRA). As shown in Fig. 2, MRA aims to embed high-resolution information
into the low-resolution one via a dual pathway design. In this case, MRA can keep a smaller number
of visual tokens while encoding richer visual information.

In particular, given the input images of two resolutions Il ∈ RHl×Wl×3 and Ih ∈ RHh×Wh×3, the
process of MRA can be formulated as

Fv = FIl
(Il,FA (Fvh; θA) ; θIl

) ,

where Fvh = FIh
(Ih; θIh

).
(2)

Here, Fvh ∈ Rhh×wh×dh and Fv ∈ Rh×w×d denote the high-resolution features and the final visual
features, respectively. And FIl

(·) and FIh
(·) are the visual encoders for high-resolution and low-

resolution images, respectively. FA denotes the mixture-of-resolution adapter (MR-Adapter). Based
on Eq. 2, the obtained visual features will be further processed by the LLM based on Eq. 1.

4.2 DUAL VISUAL PATHWAYS

As shown in Fig. 2, dual visual pathways, i.e., FIl
(·) and FIh

(·) are the key design of MRA. To
maximize their benefits, we consider the heterogeneous dual-branch design from two aspects.

Visual functionality. Firstly, the dual visual pathways process images from macro- and micro-views,
which is inspired by the visual system of human being (Merigan & Maunsell, 1993; Robertson &
Lamb, 1991). Particularly, Robertson & Lamb (1991) find that the visual system processes local
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and global semantics via different pathways. Similar mechanisms in computer vision are not new.
Previous works (Chen et al., 2021; Peng et al., 2021) like CrossViT (Chen et al., 2021) typically
incorporate this feature into their network design for image classification.

However, the exploration of dual visual pathways in high-resolution adaptation for MLLMs can
still bring new insights beyond previous works, i.e., fewer visual tokens can also result in stronger
visual understanding. Specifically, one visual pathway aims to capture fine-grained semantics from
high-resolution images i.e., processing images from local view. The other pathway is designed
to encode global information from low-resolution images for a larger receptive field. In this case,
MRA can not only efficiently process high-resolution images, but also greatly benefits from two
complementary visual semantics.

Visual alignment. The alignment of two pathways is also challenging in MLLMs, which typically
requires additional fusion layers like cross-attentions (Vaswani et al., 2017). Due to different
resolutions, these two pathways often produce visual features of different shapes, impeding their
quick alignments (Yu et al., 2019). To overcome this limitation, we adopt different downsampling
rates for the low- and high-resolution pathways, respectively. Thus, their output features can keep the
same spatial shape.

Based on the above motivations, FIl
(·) and FIh

(·) are designed as a vision transformer (ViT) (Doso-
vitskiy et al., 2020) and a convolutional network (CNN) (Liu et al., 2022), respectively. Specifically,
CNN is equipped with a downsampling stride of 32 to process high-resolution images. ViT encodes
low-resolution images with a downsampling stride of 14. Notably, such designs also ensure the
efficiency of MLLMs, where the high-resolution images are processed by the efficient CNN, and the
number of visual tokens is also kept small via the large downsampling stride.

4.3 MIXTURE-OF-RESOLUTION ADAPTER

To better collaborate the feature learning of two pathways, we propose a mixture-of-resolution adapter
(MR-Adapter) to embed high-resolution information of CNN into different stages of ViT. This early
fusion strategy can leverage ViT’s deep Transformer layers to excavate fine-grained context from
different visual sources.
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Figure 3: Illustration of MR-Adapter.
MR-Adapter can dynamically embed the
high-resolution features into the low-
resolution pathway.

In particular, given the visual features Fvh ∈ Rh×w×dh

of the a high-resolution image, we embed them into the
low-resolution visual pathway by

Fi′

vl = Fl(Fi
vl; θl) + g · Fh(Fvh; θh). (3)

Here, Fi
vl ∈ Rh×w×dl are features from the i-th stage

of ViT. Fl(·) is a lightweight convolution layer with a
residual connection. Fh(·) denotes an MLP layer. g is a
dynamic score to control the weights of high-resolution
information, defined by

g = δ(W2σ(W1fv)). (4)

Here, fv ∈ R2d is the global average pooling of visual
features [Fl(Fi

vl),Fh(Fvh)], where [·] denotes the concate-
nation operation. W1 ∈ R2d× d

2 and W2 ∈ R d
2×d are two

projection matrices. σ and δ denote the activation function
of GELU and Tanh, respectively.

As shown in Fig. 2, high-resolution information can be fused with the features in each block of ViT.
In this case, the low-resolution features of ViT also contain rich semantics, improving the visual
descriptive power of MLLMs.

4.4 THE DEPLOYMENT ON MLLM

We apply MRA to LLaVA-1.5 (Liu et al., 2023a) and construct a new model, namely LLaVA-HR. Its
training consists of two stages, i.e., low-resolution pre-training and high-resolution instruction tuning.
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Stage 1: Low-resolution pre-training. Similar to LLaVA (Liu et al., 2023b) and LLaVA-1.5 (Liu
et al., 2023a), this stage aims to optimize the projector to align the visual features with the word
embedding space of LLM. Therefore, the image encoder and the LLM are frozen during pre-training.
Besides, we adopt low resolutions for two pathways, i.e., 384 × 384 and 336 × 336. In this stage, the
MR-Adapter is not inserted, and output features of dual pathways are upsampled to the same size and
directly combined.

Stage 2: High-resolution instruction tuning. During instruction tuning, we increase the resolution
of the high-resolution pathway, e.g., from 384× 384 to 1,024× 1,024. And the low-resolution
one is also accordingly adjusted to ensure the visual alignment of two pathways, e.g., from 336×
336 to 448× 448. Meanwhile, the MR-Adapter is then applied to connect two visual pathways.
Different from the first training stage, the entire MLLM will be fully optimized to better accommodate
high-resolution images.

5 EXPERIMENTS

5.1 EVALUATIONS AND METRICS

Multimodal benchmarks for MLLM. We evaluate LLaVA-HR on six emerging multimodal bench-
marks for MLLMs, including MME (Fu et al., 2023), POPE (Li et al., 2023c), SEED (Li et al.,
2023a), MM-VET (Yu et al., 2023b), MMMU (Yue et al., 2023) and MathVista (Lu et al., 2023).
In particular, MME and MM-VET evaluate the multimodal perception and cognition abilities of
MLLMs. SEED extends the modalities of evaluation to images and videos. POPE aims to evaluate
the visual hallucinations of MLLMs. MMMU and MathVista aim to evaluate the multi-discipline and
math understanding ability, respectively. The metrics used in our paper follow their default settings.

General visual question answering benchmarks. We also evaluate LLaVA-HR on seven VL
datasets, including VQAv2 (Goyal et al., 2017), GQA (Hudson & Manning, 2019), OKVQA (Marino
et al., 2019), OCRVQA (Mishra et al., 2019), ScienceQA (Lu et al., 2022a), VizWiz (Gurari et al.,
2018) and TextVQA. In particular, ScienceQA (Lu et al., 2022a) and VizWiz (Gurari et al., 2018) are
two zero-shot tasks, and their samples are not appeared in our training data. We report the accuracy
on the test set of OCRVQA, the test set of VizWiz, and the val set of OKVQA. We organize samples
of these tasks in instruction formats of LLaVA-1.5 (Liu et al., 2023a).

OCR-related benchmarks. To validate the fine-grained recognition ability of LLaVA-HR, we
further evaluate it on five text-rich image understanding tasks, including TextVQA (Singh et al.,
2019), DocVQA (Mathew et al., 2021), InfoVQA (Mathew et al., 2022), AI2D (Kembhavi et al.,
2016) and ChartVQA (Masry et al., 2022). For DocVQA and InfoVQA, we use the metric of ANLS.
For remaining benchmarks, we use the accuracy as the metric. Results of LLaVA-HR on OCR-related
benchmarks are evaluated by the VLMEvalKit Duan et al. (2024).

5.2 IMPLEMENTATION DETAILS

In LLaVA-HR, we use CLIP-ViT-L (Radford et al., 2021; Ilharco et al., 2021) and CLIP-ConvNeXt-
L (Liu et al., 2022) as the dual visual paths to encode low- and high-resolution images, respectively.
In LLaVA-HR-X, the CLIP-ConvNeXt-L is replaced with the stronger CLIP-ConvNeXt-XXL. The
MR-Adapter is applied into the last three stages of ViT. Following LLaVA-1.5, we first pre-train
LLaVA-HR on LCS-558K (Liu et al., 2023b), which contains 558k image-text pairs. During the
pre-training stage, both the visual encoder and the LLM are frozen, and only the MLP projector is
fine-tuned. AdamW (Kingma & Ba, 2014) is used as the optimizer, and the learning rate and batch
size are set to 1e-3 and 256, respectively. Visual resolutions are set to 336×336 and 384×384 for
the ViT and the CNN, respectively. During instruction tuning, we follow LLaVA-1.5 to use 665k
VL instruction data. When fairly comparing with recent MLLMs like MM1 (McKinzie et al., 2024),
we use additional 1.6M instruction data including ShareGPT4V (Chen et al., 2023b), LAION-GPT-
4V (laion, 2023), ALLAVA (Chen et al., 2024a), LIMA (Zhou et al., 2024), OpenAssistant2 (Köpf
et al., 2024), Tabmwp (Lu et al., 2022b), MathQA (Yu et al., 2023a), KVQA (Shah et al., 2019),
Geometry (Lu et al., 2021), STVQA (Biten et al., 2019), ChartQA (Masry et al., 2022), DVQA (Kafle
et al., 2018), AI2D (Kembhavi et al., 2016), LLaVA-Med (Li et al., 2024a), InfoVQA (Mathew et al.,
2022) and MathV360k Shi et al. (2024). At this stage, the entire model is updated with a learning
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Table 1: Performance and efficiency comparisons of existing high-resolution adaptation solutions.
All experiments are conducted based on LLaVA-1.5. The training and inference costs are measured
on NVIDIA A800s. “Res.” and ‘V-Token” denote image resolutions and the number of visual tokens,
respectively. “t/s” denotes the number of generated tokens per second. “N/A” means that GPU
memory overflows, so we reduce the batch size.

Methods Res. V-Token
Vision-Language Tasks Training

Time ↓
GPU

Memory ↓
Inference
Speed ↑VQAv2 TVQA MME POPE

LLaVA-1.5 (Liu et al., 2023a) 336 pix 576 80.4 59.4 1461 86.2 15.6h 28G 23.8 t/s
+Resize 448 pix 1024 81.1 62.1 1493 87.2 19.4h 49G 19.9 t/s
+Resize 672 pix 2304 81.5 64.2 1498 87.9 31.8h 79G 12.7 t/s
+Resize 1022 pix 5329 74.2 37.8 1266 84.4 69.4h N/A 5.6 t/s
+Avg. Pooling 756 pix 729 80.6 59.6 1480 86.5 37.3h 45G 23.9 t/s
+CNN Encoder (Liu et al., 2022) 768 pix 576 80.3 64.6 1415 86.6 17.6h 37G 23.7 t/s
+Resampler (Jaegle et al., 2021) 756 pix 64 79.8 58.9 1403 85.8 36.5h 40G 27.6 t/s
+AnyRes (Liu et al., 2024a) ∼1088 pix ∼2880 81.7 65.1 1487 87.7 33.5h 65G 14.8 t/s
+MRA (ours) 768 pix 576 81.8 64.3 1524 88.0 18.2h 38G 23.5 t/s
+MRA (ours) 1024 pix 1024 81.9 67.1 1554 87.6 20.7h 40G 19.7 t/s

rate of 2e-5. Besides, we increase the resolution of ViT and CNN to 448×448 and 1,024×1,024,
respectively. The training epoch is set to 1 for pre-training and instruction tuning.

5.3 EXPERIMENTAL RESULTS

5.3.1 QUANTITATIVE ANALYSIS

Comparison with high-resolution baselines. In Tab. 1, we compare the performance and efficiency
of MRA and existing high-resolution solutions on LLaVA-1.5 (Liu et al., 2023a). In this table,
“Resize” aims to directly increase the image resolution. ‘CNN Encoder” replaces the visual backbone
with ConvNeXt (Liu et al., 2022), which uses a larger downsampling rate to reduce the number
of visual tokens. “Avg. Pooling” and “Resampler” refer to the two pooling strategies for reducing
the number of visual tokens. For “Resampler”, we follow QwenVL-Chat and reduce the number
of visual tokens to 64. “AnyRes” divides a high-resolution image into several sub-images (Liu
et al., 2024a). From this table, we observe that directly increasing image resolution obviously
improves the performance of two models on four tasks, e.g., +4.8% of LLaVA-1.5 on TextVQA.
However, the performance of LLaVA-1.5 drops significantly at the resolution of 1,024×1,024. To
explain, the number of visual tokens greatly exceeds the pre-trained context length of the LLM,
which easily causes the instability during training. Besides, we can also see that although several
baselines can well maintain the inference efficiency, their benefits to performance are not obvious.

Table 2: Ablation Study of MRA on LLaVA-1.5. “Tune
vision” means that the image encoder is fine-tuned.

Methods VQAv2 TVQA MME POPE

LLaVA-1.5 (Liu et al., 2023a) 78.5 58.2 1510.7 85.9
+Tune vision 80.4 +0.9 59.4 +1.2 1461.2 -49.5 86.2 +0.3

+Dual-pathway 81.3 +1.8 62.8 +4.6 1513.1 +2.4 87.2 +1.3

+MR-Adapter 81.8 +2.3 64.4 +6.2 1524.8 +14.1 88.0 +2.1

+1024 resolution 81.9 +2.4 67.1 +8.9 1554.9 +44.2 87.6 +1.7

+13B LLM 82.3 +2.8 68.1 +9.9 1540.9 +30.2 87.8 +1.9

+1B Vision 82.6 +3.1 70.9 +12.7 1487.3 -23.4 88.0 +2.1

In particular, “Resampler” even hurts
the model performance on four bench-
mark datasets, which often requires
large-scale pre-training to achieve a
promising performance. In contrast,
as the most popular solution in exist-
ing literature (Liu et al., 2024a; Gao
et al., 2024), “AnyRes” can effectively
bring obvious performance gains on
TextVQA and POPE. Nevertheless,
the number of visual token increases
significantly, leading to extremely high computational complexity. Compared to these methods,
the performance of MRA is consistently improved from 768 × 768 resolution to 1,024 × 1,024
resolution. Besides, the total gain of MRA is more obvious than that of all compared methods, e.g.,
+2.0% against AnyRes (Liu et al., 2024a) on TextVQA.

In addition to performance, the expenditure of LLaVA-HR is also cost-effective. In particular,
increasing resolution from 336 × 336 to 1,022 × 1,022 slows down the training and inference of
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Table 4: Comparison with existing methods on four MLLM benchmarks. “Param.”, “Res.” and
“Data” refer to the parameters, the resolution and the training data, respectively. “t/s” refers to tokens
per second. CogVLM-Chat and InternVL-1.2 use more data and parameters, so we mark it in gray.

Method Settings General MLLM Benchmarks Inference
Param. Res. Data MME POPE SEED SEEDI MM-Vet MMMU MathVista Speed

BLIP-2 (Li et al., 2023b) 14B 224 129M 1293.8 85.3 46.4 49.7 22.4 - - -
InstructBLIP (Dai et al., 2023) 14B 224 130M 1212.8 78.9 - - 25.6 - - -
QwenVL-Chat (Bai et al., 2023) 10B 448 1.4B 1487.5 - 58.2 65.4 - 35.9 - 17.0 t/s
Fuyu-8B (Fuyu-8B, 2023) 8B 600 - 728.6 74.1 - - 21.4 - - 15.6 t/s
mPLUG-Owl2 (Ye et al., 2023) 8B 448 400M 1450.2 - 57.8 - 36.2 32.7 - 19.6 t/s
I-MoF (Tong et al., 2024) 13B 336 1.2M - 86.7 - - 34.6 - - -
LLaVA-1.5 (Liu et al., 2023a) 7B 336 1.2M 1510.7 85.9 58.6 66.1 30.5 - - 23.8 t/s
LLaVA-1.5 (Liu et al., 2023a) 13B 336 1.2M 1531.3 85.9 61.6 68.2 35.4 36.4 27.6 16.1 t/s
LLaVA-HR 7B 1024 1.2M 1554.9 87.6 64.2 70.6 31.5 35.2 28.5 19.7 t/s
LLaVA-HR 13B 1024 1.2M 1540.9 87.8 64.5 70.9 35.5 35.7 27.7 15.0 t/s
LLaVA-HR-X 14B 1024 1.2M 1487.3 88.0 65.3 71.4 40.3 36.6 28.1 12.9 t/s
More Instruction Data:
LLaVA-NeXT (Liu et al., 2024a) 7B 1344 1.6M 1519.0 86.5 - 70.2 43.9 35.8 34.6 14.8 t/s
SPHINX-intern2 (Gao et al., 2024) 7B 448 16M 1260.4 86.9 - - 36.5 - 35.5 -
InternLM-XC (Zhang et al., 2023) 7B 224 1.1B 1528.4 - - - 35.2 - 29.5 -
Mini-Gemini (Li et al., 2024b) 7B 672 2.7M 1546.0 - - - 41.3 36.8 32.2 16.2 t/s
MM1 (McKinzie et al., 2024) 7B 1792 1B 1529.3 86.6 64.0 69.9 42.1 37.0 35.9 -
CogVLM-Chat (Wang et al., 2023) 17B 490 1.5B - - - - 51.1 41.1 34.5 11.5 t/s
InternVL-1.2 (Chen et al., 2023d) 40B 448 450M 1687.0 - - - 48.9 51.6 47.7 11.3 t/s
LLaVA-HR† 7B 1024 2.7M 1490.5 86.9 64.9 71.9 45.1 38.4 46.0 19.7 t/s

LLaVA-1.5 by 344.8% and 325%, respectively. However, these costs are reduced to only 17.6% and
20.8% in LLaVA-HR. Despite better performance, the training and inference speeds of LLaVA-HR
are three times faster than LLaVA-1.5. Besides, the costs of GPU memory also remain cheap for
LLaVA-HR. For example, adapting the resolution of 1,024 × 1,024 for LLaVA-HR only consumes
40G GPU memory, but the same settings for LLaVA-1.5 will cause GPU memory overflow. These
results greatly confirm the efficiency of our MRA and LLaVA-HR.

Table 3: Different choices of MRA on LLaVA-HR. “L-
Res Path.”, “H-Res Path.” and “Fusion Direct.” denote
the low-resolution pathway, the high-resolution pathway
and the fusion direction, respectively. Our final setting
is colored in gray.

Settings Choices VQAv2 TVQA MME POPE
L-Res
Path.

ViT-L 81.8 64.4 1524.8 88.0
ViT-G 81.7 65.3 1469.7 87.9

H-Res
Path.

ConvXt-L 81.8 64.4 1524.8 88.0
ConvXt-XXL 82.3 66.5 1479.2 87.9

Fusion
Direct.

High to Low 81.8 64.4 1524.8 88.0
Low to High 81.0 62.8 1463.5 87.3

Insert
Position

last 3 stages 81.8 64.4 1524.8 88.0
last stage 81.3 62.8 1513.1 87.2

last 2 stages 81.6 63.8 1508.4 87.5
last 4 stages 81.4 63.1 1461.6 87.5

Ablation studies. In Tab. 2 and 3, we
conduct comprehensive ablation studies for
MRA on four benchmarks. Firstly, we val-
idate each design of our MRA in Tab. 2.
From these results, we find that each com-
ponent obviously contributes to the final
performance. For example, the dual vi-
sual pathways and the MR-Adapter pro-
vide +3.4% and +1.6% performance gains
on TextVQA, respectively. After increas-
ing the resolution to 1,024 × 1,024, the
performance on TextVQA further boosts
by +2.7%. In the second block of Tab. 2,
we also ablate the parameter scale of the
LLM and the visual encoder. Experimental
results show that larger visual backbone or
LLM will consistently improve the model
performance, further confirming the scala-
bility of MRA.

In Tab 3, we compare different designs in
MRA. From these results, we find that a
larger high-resolution visual encoder typi-
cally brings more gains than a larger low-
resolution one. Besides, the fusion direction of MRA is also significant. Specifically, changing the
fusion direction obviously degenerates the performance, e.g., -61.3 on MME. Such results also con-
firm our design principle of MRA, i.e., embedding high-resolution information in to low-resolution
pathway. Meanwhile, the best choice of the insert position of MRA is the last 3 stages of ViT. These
ablations further confirm the designs of MR-Adapter.
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Table 5: Comparison with existing methods on seven general visual question answering tasks.
SQAI refers to the IMG subset of ScienceQA.

Method Settings General Visual Question Answering Infer.
Param. Res. Data VQAv2 GQA OKVQA OCRVQA SQAI VizWiz TVQA Speed

BLIP-2 (Li et al., 2023b) 14B 224 129M 41.0 41.0 45.9 40.6 61.0 19.6 42.5 -
InstructBLIP (Dai et al., 2023) 14B 224 130M - 49.5 - 44.8 63.1 33.4 50.7 -
Shikra (Chen et al., 2023a) 13B 224 6.1M 77.4 - - - - - - -
IDEFICS-9B (IDEFICS, 2023) 9B 224 354M 50.9 - 38.4 - - 35.5 25.9 30.5 t/s
IDEFICS-80B (IDEFICS, 2023) 80B 224 354M 60.0 - 45.2 - - 36.0 30.9 -
QwenVL-Chat (Bai et al., 2023) 10B 448 1.4B 78.2 57.5 56.6 70.5 68.2 38.9 61.5 17.0 t/s
Fuyu-8B (Fuyu-8B, 2023) 8B 600 - 74.2 - 60.6 - - - - 15.6 t/s
mPLUG-Owl2 (Ye et al., 2023) 8B 448 400M 79.4 56.1 57.7 - 68.7 54.5 58.2 19.6 t/s
I-MoF (Tong et al., 2024) 13B 336 1.2M 79.3 - - - - - 58.7 -
LLaVA-1.5 (Liu et al., 2023a) 7B 336 1.2M 78.5 62.0 - - 66.8 50.0 58.2 23.8 t/s
LLaVA-1.5 (Liu et al., 2023a) 13B 336 1.2M 80.0 63.3 - - 71.6 53.6 61.3 16.1 t/s

LLaVA-HR 7B 1024 1.2M 81.9 64.2 58.9 68.4 67.9 48.7 67.1 19.7 t/s
LLaVA-HR 13B 1024 1.2M 82.3 64.8 60.7 67.7 70.1 57.9 68.1 15.0 t/s
LLaVA-HR-X 14B 1024 1.2M 82.6 65.2 61.5 69.0 69.7 56.6 70.9 12.9 t/s

Table 6: Comparison with existing MLLMs on five multimodal OCR-related benchmarks.
Method Param. Res. Data. TextVQA DocVQA InfoVQA AI2D ChartQA

QwenVL (Bai et al., 2023) 10B 336 1.4B 63.8 65.1 35.4 - 65.7
Monkey (Li et al., 2024c) 10B 1344 1.4M 67.6 66.5 36.1 62.6 -
LLaVA-NeXt (Liu et al., 2024a) 7B 1344 1.6M 64.9 - - 66.6 54.8
TextMonkey (Liu et al., 2024b) 10B 1344 2.5M 65.9 73.0 28.6 - 65.5
DocOwl-1.5-Chat (Hu et al., 2024) 8B 4032 4M 68.6 82.2 50.7 - 70.2
CogAgent Hong et al. (2023) 18B 1120 >300M 76.1 81.6 44.5 - 68.4

LLaVA-HR† 7B 1024 2.7M 73.8 85.8 52.3 75.3 77.6

Comparison with existing MLLMs. In Tab. 4 and 5, we compare LLaVA-HR with existing MLLMs
on 13 VL tasks. On the six MLLM benchmarks, we observe comprehensive advantages of LLaVA-HR
against existing MLLMs. In particular, LLaVA-HR achieves 1554.9 scores in MME benchmark,
outperforming LLaVA-1.5 by +23.6. On POPE, a benchmark including video evaluations, LLaVA-
HR-X still outperforms existing MLLMs by a large margin, i.e., +3.7% gains. Besides, LLaVA-HR
achieves the best performance on the benchmark for visual hallucinations, i.e., POPE, suggesting that
its visual hallucinations are greatly alleviated. Meanwhile, we also compare the recently proposed
MLLMs in the second block of Tab. 4. In particular, we still observe the better performance of LLaVA-
HR against LLaVA-NeXT (Liu et al., 2024a), SPHINX-intern2 (Gao et al., 2024), Mini-Gemini (Li
et al., 2024b) and MM1 (McKinzie et al., 2024), e.g., +3.0% on MM-Vet.

Tab. 5 gives the performance comparison on common VL tasks. On in-domain tasks, LLaVA-HR
achieves the best results on three tasks, e.g., 82.6 on VQAv2 and 61.5 on OKVQA. On OCRVQA,
Qwen-VL-Chat collects more in-domain data for training, so it performs better than LLaVA-HR.
Under the zero-shot setting, we can observe more significant advantages of LLaVA-HR on the
fine-grained tasks, e.g., VizWiz. Most notably, even Qwen-VL-Chat is pre-trained with 24.8M
OCR samples, it still performs worse than LLaVA-HR-X on TextVQA. These results suggest the
significance of high resolution for these tasks. In contrast, most images of ScienceQA are synthetic
and of low resolution, so the advantages of LLaVA-HR are not obvious. Overall, these results greatly
confirm the effectiveness and generalization of LLaVA-HR and our MRA.

Tab. 6 compares LLaVA-HR and existing MLLMs on text-rich image understanding tasks. Compared
to common MLLM benchmarks and VQA benchmarks, these OCR-related benchmarks pose a higher
requirement for image resolution. As shown in Tab. 6, low-resolution MLLMs like QwenVL often
perform inferior to high-resolution ones, e.g., -4.8% on TextVQA compared to DocOwl-1.5-Chat Hu
et al. (2024). However, we still observe that LLaVA-HR greatly outperforms existing MLLMs on
five benchmarks. For example, although DocOwl-1.5-Chat has larger model size, input resolution
and data size, LLaVA-HR also demonstrates superior fine-grained text recognition ability, e.g.,
+3.6 on DocVQA and +1.6 on InfoVQA. These results further validate the effectiveness of our
mixture-of-resolution design on text-rich image understanding tasks.
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User: What color is the tiniest 
boat in the forefront?

LLaVA-HR (384 pix): Red

LLaVA-HR (1024 pix): White

User: How many boats are fully 
visible?

LLaVA-HR (384 pix): 2

LLaVA-HR (1024 pix): 3

User: what page is this book on?

LLaVA-HR (384 pix): This is the first 
page of a book.
LLaVA-HR (1024 pix): This book is on 
page 87.

User: what are the last three words on 
this page?

LLaVA-HR (384 pix): "and other stories."

LLaVA-HR (1024 pix): Wo ich wohne.

LLaVA-HR (384 pix): 

[0.92, 0.69, 0.97, 0.72] 

LLaVA-HR (1024 pix): 

[0.66, 0.68, 0.74, 0.73]

Ground-truth: [0.66, 0.68, 0.74, 0.74]

User: Please provide the bounding 
box coordinate of the region this 
sentence describes: The  child 
sliding down in red clothes.

LLaVA-HR (384 pix): 

[0.4, 0.6, 0.51, 0.78] 

LLaVA-HR (1024 pix): 

[0.53, 0.57, 0.6, 0.71]

Ground-truth: [0.52, 0.56, 0.6, 0.7]

User: Please read the text in this image and return the information in the 
following JSON format (note xxx is placeholder, if the information is not 
available in the image, put "N/A" instead). {"class": XXX，"DLN": Xxx，
"DOB": Xxx，"Name": XXX，"Address": XXX，"EXP": XXX，"ISS": XXX，
"SEX": XXX，"HGT": XXX, WGT": XXX，"EYES": XXX，"HAIR": XXX，
"DONOR": XXX}

GPT4-V:{"class": "D", "DLN": "97542954****", "DOB": "15-03-1984", "Name": 
"GP VEERE*****", "Address": "52 KLINK RD ROCHESTER ** *****", "EXP": 
"10-01-16", "ISS": "09-30-08", "SEX": "M", "HGT": "5-09", "WGT": "N/A", 
"EYES": "BR", "HAIR": "N/A", "DONOR": "YES"}

LLaVA-1.5: {"class": Class D, "DLN": 97745434, "DOB": 03/15/1988, "Name": Gopal 
Veerendhar, "Address": 54 Klinck Rd, Rochester, NY 14607, "EXP": 10/01/2016 - 
10/01/2017, "ISS": New York State Department of Motor Vehicles, "SEX": Male, 
"HGT": 5'10", "WGT": 170, "EYES": Brown, "HAIR": Black, "DONOR": N/A}

LLaVA-HR-X: {"class": Class D, "DLN": 97542954****, "DOB": 15/03/1984, 
"Name": GP Veere*****, "Address": 52 Klink Rd, Rochester ** *****, "EXP": 
10/01/2016, "ISS": New York State, "SEX": Male, "HGT": N/A, "WGT": N/A, 
"EYES": Brown, "HAIR": Black, "DONOR": N/A}

(a) Comparison of LLaVA-HR with different resolutions 

(b) Comparison of LLaVA-HR-X, LLaVA-1.5 and GPT4-V in visual information extraction

User: Please provide the 
bounding box coordinate of the 
region this sentence describes: 
The deer on the far right.

Figure 4: Visualizations of LLaVA-HR and existing MLLMs. Subfig-(a) shows that high image
resolution greatly improves the capability of MLLMs on fine-grained VL tasks. In Subfig-(b), LLaVA-
HR-X demonstrates the comparable ability with GPT4-V in visual information extraction. Correct
and incorrect answers are colored in green and red, respectively.

5.3.2 QUALITATIVE EXPERIMENTS

In Fig 4 (a), we compare the predictions of LLaVA-HR with different resolutions. The visualizations
show that higher image resolution obviously improves the capability of MLLMs on fine-grained tasks.
For example, LLaVA-HR with a resolution of 1,024 × 1,024 can well capture granular visual content,
e.g., the tiny boat in the first example. Besides, high image resolution also enables LLaVA-HR a
stronger ability of text recognition. For instance, the small and blurred phrase of “wo ich wohne” in
the second example are correctly identified by the high-resolution LLaVA-HR. These results greatly
confirm the significance of high image resolution in addressing visual shortcoming. In Fig 4 (b),
we further compare the predictions of LLaVA-HR-X, LLaVA-1.5 (Liu et al., 2023a) and GPT4-
V (OpenAI, 2023) in visual information extraction. Notably, LLaVA-HR-X shows a comparable
ability with GPT4-V on this challenging task. As shown in Fig 4 (b), LLaVA-HR-X and GPT4-V
can correctly extract almost all visual content of the driver license and organize it in JSON format.
Compared to GPT4-V, LLaVA-HR-X also correctly identifies the hair color of the person, which
requires fine-grained visual reasoning. In contrast, LLaVA-1.5 can only recognize simple visual
content like “class” and “SEX”, and fail to extract most visual information. These results further
validate the effectiveness of MRA in addressing visual shortcoming of MLLMs.

6 CONCLUSION

In this paper, we focus on the efficient high-resolution adaptation for MLLMs and propose a novel
method, namely mixture-of-resolution adaptation (MRA). MRA adopts dual visual pathways to
process images of both high and low resolutions, where high-resolution information is embeded into
the low-resolution modeling via the novel mixture-of-resolution adapters (MR-Adapters). We apply
MRA to a popular MLLM called LLaVA-1.5, and construct a new high-resolution MLLM, termed
LLaVA-HR. Experimental results not only validate the effectiveness of LLaVA-HR in addressing
visual shortcoming, but also confirm its remarkable efficiency against existing MLLMs.
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