
8th ICML Workshop on Automated Machine Learning (2021)

PonderNet: Learning to Ponder

Anonymous Authors.

Abstract

In standard neural networks the amount of computation used grows with the size of the in-
puts, but not with the complexity of the problem being learnt. To overcome this limitation
we introduce PonderNet, a new algorithm that learns to adapt the amount of computa-
tion based on the complexity of the problem at hand. PonderNet learns end-to-end the
number of computational steps to achieve an effective compromise between training pre-
diction accuracy, computational cost and generalization. On a complex synthetic problem,
PonderNet dramatically improves performance over previous adaptive computation meth-
ods and additionally succeeds at extrapolation tests where traditional neural networks fail.
Also, our method matched the current state of the art results on a real world question and
answering dataset, but using less compute. Finally, PonderNet reached state of the art
results on a complex task designed to test the reasoning capabilities of neural networks.

1. Introduction

The time required to solve a problem is a function of more than just the size of the inputs.
Commonly problems also have an inherent complexity that is independent of the input size:
it is faster to add two numbers than to divide them. Most machine learning algorithms do
not adjust their computational budget based on the complexity of the task they are learning
to solve, or arguably, such adaptation is done manually by the machine learning practitioner.
This adaptation is known as pondering. In prior work, Adaptive Computation Time (ACT;
Graves, 2016) automatically learns to scale the required computation time via a scalar
halting probability. This halting probability modulates the number of computational steps,
called the “ponder time”, needed for each input. Unfortunately ACT is notably unstable and
sensitive to the choice of a hyper-parameter that trades-off accuracy and computation cost.
Additionally, the gradient for the cost of computation can only back-propagate through the
last computational step, leading to a biased estimation of the gradient. Another approach
is represented by Adaptive Early Exit Networks (Bolukbasi et al., 2017) where the forward
pass of an existing network is terminated at evaluation time if it is likely that the part
of the network used so far already predicts the correct answer. More recently, work has
investigated the use of REINFORCE (Williams, 1992) to perform conditional computation.
A discrete latent variable is used to dynamically adjust the number of computation steps.
This approach has been applied to recurrent neural networks (Chung et al., 2016; Banino
et al., 2020), but has the downside that the estimated gradients have high variance, requiring
large batch sizes to train them. A parallel line of research has explored using similar
techniques to reduce the computation by skipping elements from a sequence of processed
inputs (Yu et al., 2017; Campos Camunez et al., 2018).

In this paper we present PonderNet that builds on these previous ideas. PonderNet is
fully differentiable which allows for low-variance gradient estimates (unlike REINFORCE).

c©2021 Anonymous Authors.

Anonymous Authors

It has unbiased gradient estimates (unlike ACT). We achieve this by reformulating the
halting policy as a probabilistic model. This has consequences in all aspects of the model:

1. Architecture: in PonderNet, the halting node predicts the probability of halting con-
ditional on not having halted before. We exactly compute the overall probability of
halting at each step as a geometric distribution.

2. Loss: we don’t regularize PonderNet to explicitly minimize the number of comput-
ing steps, but incentivize exploration instead. The pressure of using computation
efficiently happens naturally as a form of Occam’s razor.

3. Inference: PonderNet is probabilistic both in terms of number of computational steps
and the prediction produced by the network.

2. Methods

2.1 Problem setting

We consider a supervised setting, where we want to learn a function f : x → y from
data (x,y), with x = {x(1), ..., x(k)} and y = {y(1), ..., y(k)}. We propose a new general
architecture for neural networks that modifies the forward pass, as well as a novel loss
function to train it.

2.2 Step recurrence and halting process

The PonderNet architecture requires a step function s of the form ŷn, hn+1, λn = s(x, hn), as
well as an initial state h0

1. The output ŷn and λn are respectively the network’s prediction
and scalar probability of halting at step n. The step function s can be any neural network,
such as MLPs, LSTMs, or encoder-decoder architectures such as transformers. We apply
the step function recurrently up to N times.

The output ŷn is a learned prediction conditioned on the dynamic number of steps
n ∈ {1, . . . , N}. We rely on the value of λn to learn the optimal value of n. We define a
Bernoulli random variable Λn in order to represent a Markov process for the halting with
two states “continue” (Λn = 0) and “halt” (Λn = 1). The decision process starts from state
“continue” (Λ0 = 0). We set the transition probability:

P (Λn = 1|Λn−1 = 0) = λn ∀ 1 ≤ n ≤ N (1)

that is the conditional probability of entering state “halt” at step n conditioned that there
has been no previous halting. Note that “halt” is a terminal state. We can then estimate the
unconditioned probability that the halting happened in steps 0, 1, 2, ..., N where N is the
maximum number of steps allowed before halting. We derive this probability distribution
pn as a generalization of the geometric distribution:

pn = λn

n−1∏
j=1

(1− λj) (2)

1. Alternatively, one can consider a step function of the form ŷn, hn+1, λn = s(hn) together with an encoder
e of the form h0 = e(x).

2

Ponder Net: Learning to Ponder

which is a valid probability distribution if we integrate over an infinite number of possible
computation steps (N →∞).

The prediction ŷ ∼ Ŷ made by PonderNet is sampled from a random variable Ŷ with
probability distribution P (Ŷ = yn) = pn. In other words, the prediction of PonderNet is
the prediction made at the step n at which it halts. This is in contrast with ACT, where
model predictions are always weighted averages across steps. Additionally, PonderNet is
more generic in this regard: if one wishes to do so, it is straightforward to calculate the
expected prediction across steps, similar to how it is done in ACT.

2.3 Maximum number of pondering steps

Since in practice we can only unroll the step function for a limited number of iterations, we
must correct for this so that the sum of probabilities pn sums to 1. We can do this in two
ways. One option here is to normalize the probabilities pn so that they sum up to 1 (this
is equivalent to conditioning the probability of halting under the knowledge that n ≤ N).
Alternatively, we could assign any remaining halting probability to the last step, so that
pN = 1−

∑N−1
n=1 pn instead of as previously defined.

In our experiments, we specify the maximum number of steps using two different criteria.
In evaluation, and under known temporal or computational limitations, N can be set naively
as a constant (or not set any limit, i.e. N → ∞). For training, we found that a more
effective (and interpretable) way of parameterizing N is by defining a minimum cumulative
probability of halting. N is then the smallest value of n such that

∑n
j=1 pj > 1 − ε, with

the hyper-parameter ε positive near 0 (in our experiments 0.05).

2.4 Training loss

The total loss is composed of reconstruction LRec and regularization LReg terms:

L =

N∑
n=1

pnL(y, ŷn)︸ ︷︷ ︸
LRec

+β KL(pn||pG(λp))︸ ︷︷ ︸
LReg

(3)

where L is a pre-defined loss for the prediction (usually mean squared error, or cross-
entropy); and λp is a hyper-parameter that defines a prior on the halting policy. LRec is the
expectation of the pre-defined reconstruction loss L across halting steps. LReg is the KL
divergence between the halting probability pn and a prior geometric distribution (truncated
at N) parameterized by λp, a hyper-parameter that defines a prior on how likely it is that
the network will halt. This regularisation serves two purposes. First, it biases the network
towards the expected prior number of steps 1/λp. Second, it provides an incentive to give
a non-zero probability to all possible number of steps, thus promoting exploration.

2.5 Evaluation sampling

At evaluation, the network samples on a step basis from the halting Bernoulli random
variable Λn ∼ B(p = λn) to decide whether to continue or to halt. This process is repeated
on every step n until a “halt” outcome is sampled, at which point the output y = yn

3

Anonymous Authors

becomes the final prediction of the network. If a maximum number of steps N is reached,
the network is automatically halted and produces a prediction y = yN .

3. Results

3.1 Parity

In this section we are reporting results on the parity task as introduced in the original ACT
paper (Graves, 2016). Out of the four tasks presented in that paper we decided to focus on
parity as it was the one showing greater benefit from adaptive compute. In our instantiation
of the parity problem the input vectors had 64 elements, of which a random number from
1 to 64 were randomly set to 1 or −1 and the rest were set to 0. The corresponding target
was 1 if there was an odd number of ones and 0 if there was an even number of ones. We
refer the reader to the original ACT paper for specific details on the tasks (Graves, 2016).
Also, please refer to Appendix B for further training and evaluation details.

In figure 1a we can see that PonderNet achieved better accuracy than ACT on the parity
task and it did so with a more efficient use of thinking time (1a at the bottom). Moreover,
if we consider the total computation time during training (figure 1c) we can see that, in
comparison to ACT, PonderNet employed less computation and achieved higher score.

Figure 1: Performance on the parity task. a) Interpolation. Top: accuracy for both PonderNet(blue)
and ACT(orange). Bottom: number of ponder steps at evaluation time. Error bars calculated over
10 random seeds. b) Extrapolation. Top: accuracy for both PonderNet(blue) and ACT(orange).
Bottom: number of ponder steps at evaluation time. Error bars calculated over 10 random seeds.
c) Total number of compute steps calculated as the number of actual forward passes performed by
each network. Blue is PonderNet, Green is ACT and Orange is an RNN without adaptive compute.

Another analysis we performed on this version of the parity task was to look at the
effect of the prior probability on performance. In figure 2b we show that the only case
where PonderNet could not solve the task is when the prior (λp) was set to 0.9, that is when
the average number of thinking steps given as prior was roughly 1 (1/0.9). Interestingly,
when the prior (λp) was set to 0.1, hence starting with a prior average thinking time of 10
steps (1/0.1), the network managed to overcome this and settled to a more efficient average
thinking time of roughly 3 steps (figure 2c). These results are important as they show that
our method is particularly robust with respect to the prior, and a clear advancement in
comparison to ACT, where the τ parameter is difficult to set and it is a source of training
instability, as explained in the original paper and confirmed by our results. Indeed, Fig.
2a shows that only for few configuration of τ ACT is able to solve the task and even when

4

Ponder Net: Learning to Ponder

it does so there is a great variance across seeds. Finally, one advantage of setting a prior
probability is that this parameter is easy to interpret as the inverse of the “number of
ponder steps”, whereas the τ parameter does not have any straightforward interpretation,
which makes it harder to define a priori.

Figure 2: Sensitivity to hyper-parameter. a) Sensitivity of ACT to τ . Each box-plot is over 10
random seeds. b) Sensitivity of PonderNet to λp. Each box-plot is over 10 random seeds. c)
Box-plot over 30 random seeds for number of ponder steps when λp = 0.1.

Next we moved to test the ability of PonderNet to allow extrapolation. To do this we
consider input vectors of 96 elements instead. We train the network on input vectors up
from integers ranging from 1 to 48 elements and we then evaluate on integers between 49
and 96. Figure 1b shows that PonderNet was able to achieve almost perfect accuracy on
this hard extrapolation task, whereas ACT remained at chance level. It is interesting to see
how PonderNet increased its thinking time to 5 steps, which is almost twice as much as the
ones in the interpolation set (see Fig. 1a), showing the capability of our method to adapt
its computation to the complexity of the task.

3.2 bAbI

We then turn our attention to the bAbI question answering dataset (Weston et al., 2015),
which consists of 20 different tasks. This task was chosen as it proved to be difficult for
standard neural network architecture that do not employ adaptive computation (Dehghani
et al., 2018). In particular we trained our model on the joint 10k training set. Also, please
see Appendix C for further training and evaluation details.

Table 1 reports the averaged accuracy of our model and the other baselines on bAbI.
Our model is able to match state of the art results, but it achieves them faster and with a
lower average error. The comparison with Universal transformer (Dehghani et al., 2018, UT)
is interesting as it uses the same transformer architecture as PonderNet, but the compute

5

Anonymous Authors

time is optimised with ACT. Interestingly, to solve 20 tasks, Universal Transformer takes
10161 steps, whereas our methods 1658, hence confirming that approach uses less compute
than ACT.

Architecture Average Error Tasks Solved

Memory Networks (Sukhbaatar et al., 2015) 4.2± 0.2 17
DNC (Graves, 2016) 3.8± 0.6 18
Universal Transformer (Dehghani et al., 2018) 0.29± 1.4 20
Transformer+PonderNet 0.15± 0.9 20

Table 1: bAbI. Test results chosen by validation loss. Average error is calculated over 5 seeds

3.3 Paired associative inference

Finally, we tested PonderNet on the Paired associative inference task (PAI) (Banino et al.,
2020). This task is thought to capture the essence of reasoning – the appreciation of distant
relationships among elements distributed across multiple facts or memories and it has been
shown to benefit from the addition of adaptive computation. Please refer to Appendix D
for further details on the task and the training regime.

Length UT MEMO PonderNet

3 items (trained on: A-B-C - accuracy on A-C) 85.60 98.26(0.67) 97.86(3.78)

Table 2: Inference trial accuracy. PonderNet results chosen by validation loss, averaged on 3 seeds.
For Universal Transformer (UT) and MEMO the results were taken from Banino et al. (2020)

Table 2 reports the averaged accuracy of our model and the other baselines on PAI.
Our model is able to match the results of MEMO, which was specifically designed with this
task in mind. More interestingly, our model although is using the same architecture as UT
(Dehghani et al., 2018) is able to achieve higher accuracy. For the complete set of results
please see Table 7 in Appendix D.

4. Discussion

We introduced PonderNet, a new algorithm for learning to adapt the computational com-
plexity of neural networks. It optimizes a novel objective function that combines prediction
accuracy with a regularization term that incentivizes exploration over the pondering time.
We demonstrated on the parity task that a neural network equipped with PonderNet can
increase its computation to extrapolate beyond the data seen during training. Also, we
showed that our methods achieved the highest accuracy in complex domains such as ques-
tion answering and multi-step reasoning. Finally, adapting existing recurrent architectures
to work with PonderNet is very easy: it simply requires to augment the step function with
an additional halting unit, and to add an extra term to the loss. Critically, we showed that
this extra loss term is robust to the choice of λp, the hyper-parameter that defines a prior
on how likely is that the network will halt, which is an important advancement over ACT.

6

Ponder Net: Learning to Ponder

References

Andrea Banino, Adrià Puigdomènech Badia, Raphael Köster, Martin J. Chadwick, Vinicius
Zambaldi, Demis Hassabis, Caswell Barry, Matthew Botvinick, Dharshan Kumaran, and
Charles Blundell. MEMO: A deep network for flexible combination of episodic memories.
In International Conference on Learning Representations, 2020.

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural
networks for efficient inference. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 527–536. JMLR. org, 2017.

Victor Campos Camunez, Brendan Jou, Xavier Giró Nieto, Jordi Torres Viñals, and Shih-
Fu Chang. Skip RNN: learning to skip state updates in recurrent neural networks. In
Sixth International Conference on Learning Representations: Monday April 30-Thursday
May 03, 2018, Vancouver Convention Center, Vancouver:[proceedings], pages 1–17, 2018.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural
networks. arXiv preprint arXiv:1609.01704, 2016.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhut-
dinov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv
preprint arXiv:1901.02860, 2019.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser.
Universal transformers. arXiv preprint arXiv:1807.03819, 2018.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In
Advances in Neural Information Processing Systems, pages 2440–2448, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems, pages 5998–6008, 2017.

Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural
execution of graph algorithms. arXiv preprint arXiv:1910.10593, 2019.

7

Anonymous Authors

Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van Merrinboer,
Armand Joulin, and Tomas Mikolov. Towards AI-complete question answering: A set of
prerequisite toy tasks. arXiv preprint arXiv:1502.05698, 2015.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3-4):229–256, 1992.

Adams Wei Yu, Hongrae Lee, and Quoc V Le. Learning to skim text. arXiv preprint
arXiv:1704.06877, 2017.

8

Ponder Net: Learning to Ponder

Appendix A. Comparison to ACT

PonderNet builds on the ideas introduced in Adaptive Computation Time (ACT; Graves,
2016). The main contribution of this paper is to reformulate how the network learns to halt
in a probabilistic way. This has consequences in all aspects of the model, including: the
architecture and forward computation; the loss used to train the network; the deployment
of the model; and the limitation of how multiple pondering modules can be combined. We
explain in more detail all these differences below.

A.1 Forward computation

PonderNet’s step function (that is computed on every step) is identical to the one proposed
in ACT. They both assume a mapping yn, hn+1, λn = s(x, hn). The main difference between
ACT and PonderNet’s forward computation is how the halting node λn is used.

In ACT, the network is unrolled for a number of steps NACT = min{N :
∑N

n=1 λn ≥
1− ε}. ACT’s halting nodes learn to predict the overall probability that the network halted
at step n, so that λn = pn. The value of the halting node in the last step is replaced with
a remainder quantity R = λN = pN = 1 −

∑N−1
n=1 λn. In ACT it would not make sense to

unroll the network for a larger number of steps than NACT because the sum of probabilities
of halting would be > 1. When training ACT, higher values of N are not necessarily
better, and N is being determined (and learnt) via the halting node λn. In PonderNet, any
sufficiently high value of N can be used, and the unroll length of the network at training
is distinguished from the learning of the halting policy (which is most critical for saving
computation when deployed at evaluation).

The output of ACT is not treated probabilistically but as a weighted average ŷACT =∑NACT
n=1 ŷnλn over the outputs at each step. The halting, as well as the output, are com-

puted identically for training and evaluation. In PonderNet, the output is probabilistic. In
training, we compute the output and halting probabilities across many steps so that we can
compute a weighted average of the loss. In evaluation, the network returns its prediction
as soon as a halt state is sampled.

Finally, ACT considers the case of sequential data, where the step function can ponder
dynamically for each new item in the input sequence. Given the introduction of attention
mechanisms in the recent years (e.g. Transformers; Vaswani et al., 2017) that can process
arrays with dynamic shapes, we suggest that pondering should be done holistically instead
of independently for each item in the sequence. This can be useful in learning e.g. how
many message-passing steps to do in a graph network (Veličković et al., 2019).

A.2 Training loss

ACT proposes a heuristic training loss that combines two intuitive costs: the accuracy of
the model, and the cost of computation. These two costs are in different units, and not
easily comparable. Since NACT is not differentiable with respect to λn, ACT utilizes the
remainder R = 1 −

∑N−1
n=1 as a proxy for minimizing the total number of computational

steps. This is unlike in PonderNet, where the expected number of steps can be computed
(and differentiated) exactly as

∑N
n=1 npn.

9

Anonymous Authors

In PonderNet, however, we propose that naively minimizing the number of steps (subject
to good performance) is not necessarily a good objective. Instead, we propose that matching
a prior halting distribution has multiple benefits: a) it provides an incentive for exploring
alternative halting strategies; b) it provides robustness of the learnt step function, which
may improve generalization; c) the KL is in same units as information-theoretic losses such
as cross-entropy; and d) it provides an incentive to not ponder for longer than the prior.

Note that in PonderNet, we compute the loss for every possible number of computational
steps, and then minimize the expectation (weighted average) over those. This is unlike
in ACT where the expectation is taken over the predictions, and a loss is computed by
comparing the average prediction with the target. This has the consequence that combining
multiple networks is easier in ACT than in PonderNet. One could easily chain multiple
ACT modules next to each other, and the size of the network during training would grow
linearly with the number of modules. However, the network size when chaining PonderNet
modules grows exponentially because the loss would need to be estimated conditioned on
each PonderNet module halting at each step.

In PonderNet we have introduced two loss hyper-parameters λp and β, in comparison to a
single hyper-parameter τ in ACT that trades-off accuracy with computational complexity.
We note that, while τ and β are superficially similar (they both apply a weight to the
regularization term), their effect is not equivalent because the regularization of ACT and
PonderNet have different interpretation.

A.3 Evaluation

ACT’s predictions are computed identically during training and evaluation. In both con-
texts, the maximum number of steps NACT is determined based on the inputs, and the
prediction is computed as a weighted average over the predictions in all steps. In Ponder-
Net, training and evaluation are performed differently. During evaluation, the network halts
probabilistically by sampling Λn, and either outputs the current prediction or performs an
additional computational step. During training, we are not interested in the predictions per
se but in the expected loss over steps, and so estimate this up to a maximum number of
steps N (the higher the better). This estimate will improve with higher probability that the
network has halted at some point during the first N steps (i.e. the cumulative probability
of halting).

Appendix B. Parity.

B.1 Training and evaluation details

For this experiment we used the Parity task as explained by Graves (2016).

All the models used the same architecture, a simple RNN with a single hidden layer con-
taining 128 tanh units and a single logistic sigmoid output unit. All models were optimized
using Adam (Kingma and Ba, 2014), with learning rate fixed to 0.0003. The networks were
trained with binary cross-entropy loss to predict the corresponding target, 1 if there was an
odd number of ones and 0 if there was an even number of ones. We used minibatches of
size 128. For both architectures the weights were optimised using Adam (Kingma and Ba,
2014), with learning rate fixed to 0.0003. For PonderNet we sampled uniformly 10 values

10

Ponder Net: Learning to Ponder

of λp in the range (0, 1]. For ACT we sampled uniformly 19 values of τ in the range [2e-4,
2e-2] and we added also 0, which correspond to not penalising the halting unit at all. For
both ACT and Ponder, N was set to 20. For PonderNet β was fixed to 0.01

Appendix C. bAbI.

C.1 Training and evaluation details

For this experiment we used the English Question Answer dataset Weston et al. (2015). We
use the training and test datasets that they provide with the following pre-processing:

• All text is converted to lowercase.

• Periods and interrogation marks were ignored.

• Blank spaces are taken as word separation tokens.

• Commas only appear in answers, and they are not ignored. This means that, e.g.
for the path finding task, the answer ’n,s’ has its own independent label from the
answer ’n,w’. This also implies that every input (consisting of ’query’ and ’stories’)
corresponds to a single answer throughout the whole dataset.

• All the questions are stripped out from the text and put separately (given as ”queries”
to our system).

At training time, we sample a mini-batch of 64 queries from the training dataset, as well
as its corresponding stories (which consist of the text prior to the question). As a result, the
queries are a matrix of 128× 11 tokens, and sentences are of size 128× 320× 11, where 128
is the batch size, 320 is the max number of stories, and 11 is the max sentence size. We pad
with zeros every query and group of stories that do not reach the max sentence and stories
size. For PonderNet, stories and query are used as their naturally corresponding inputs in
their architecture. The details of the network architecture are described in Section C.2.

After that mini-batch is sampled, we perform one optimization step using Adam Kingma
and Ba (2014). We also performed a search on hyperparameters to train on bAbI, with
ranges reported on Table 4. The network was trained for 2e4 epochs, each one formed by
100 batch updates.

For evaluation, we sample a batch of 10, 000 elements from the dataset and compute
the forward pass in the same fashion as done in training. With that, we compute the mean
accuracy over those examples, as well as the accuracy per task for each of the 20 tasks of
bAbI. We report average values and standard deviation over the best 5 hyper parameters
we used.

For MEMO the results were taken from Banino et al. (2020) and for Universal trans-
former we used the results in Dehghani et al. (2018).

C.2 Transformer architecture and hyperparameters

We use the same architecture as described in Dehghani et al. (2018). More concretely, we use
the implementation and hyperparameters described as ’universal transformer small’ that is

11

Anonymous Authors

available at https://bit.ly/3frofUI. For completeness, we describe the hyperparameters
used on Table 3.

We also performed a search on hyperparameters to train on our tasks, with ranges
reported on Table 4.

Parameter name Value

Optimizer algorithm Adam
Learning rate 3e-4
Input embedding size 128
Attention type as in Vaswani et al. (2017)
Attention hidden size 512
Attention number of heads 8
Transition function MLP(1 Layer)
Transition hidden size 128
Attention dropout rate 0.1
Activation function RELU
N 10
β 0.01

Table 3: Hyperparameters used for bAbI experiments.

Parameter name Value

Attention hidden size {128, 512}
Transition hidden size {128, 512}
λp uniform(0, 1.0]

Table 4: Hyperparameters ranges used to search over with PonderNet on bAbI.

Appendix D. Paired Associative Inference

D.1 PAI - Task details

For this task we used the dataset published in Banino et al. (2020), also the task is available
at https://github.com/deepmind/deepmind-research/tree/master/memo

To build the dataset, Banino et al. (2020) started with raw images from the ImageNet
dataset (Deng et al., 2009), which were embedded using a pre-trained ResNet (He et al.,
2016), resulting in embeddings of size 1000. Here we are focusing on the dataset with
sequences of length three (i.e. A−B−C) items, which is composed of 1e6 training images,
1e5 evaluation images and 2e5 testing images.
A single entry in the batch is built by selecting N = 16 sequences from the relevant pool
(e.g. training) and it’s composed by three items:

• a memory,

• a query,

• a target.

12

https://bit.ly/3frofUI
https://github.com/deepmind/deepmind-research/tree/master/memo

Ponder Net: Learning to Ponder

Each memory content is created by storing all the possible pair wise association between
the items in the sequence, e.g. A1B1 and B1C1, A2B2 and B2C2, ..., ANBN and BNCN .
With N = 16, this process results in a memory with M = 32 rows each one with 2
embeddings of size 1000.

Each query is composed of 3 images, namely:

• the cue

• the match

• the lure

The cue (e.g. A1) and the match (e.g. C1) are images extracted from the sequence; whereas
the lure is an image from the same memory content but from a different sequence (e.g. C7).
There are two types of queries - “direct” and “indirect”. In “direct” queries the cue and the
match are sampled from the same memory slot. For example, if the sequence is A1 - B1 -
C1, then an example of direct query would be, A1 (cue) - B1 (match) - B12 (lure). More of
interests here is the case of “indirect” queries, as they require an inference across multiple
facts stored at different location in memory. For instance, if we consider again the previous
example sequence: A1 - B1 - C1, then an example of inference trial would be A1 (cue) - C1

(match) - C6 (lure).

The queries are presented to the network as a concatenation of three image embedding
vectors (the cue, the match and the lure), that is a 3 × 1000 dimensional vector. The cue
is always placed in the first position in the concatenation, but to avoid any trivial solution,
the position of the match and lure are randomized. It is worth noting that the lure image
always has the same position in the sequence (e.g. if the match image is a C the lure is also
a C) but it is randomly drawn from a different sequence that is also present in the current
memory. This way the task can only be solved by appreciating the correct connection
between the images, and this need to be done by avoiding the interference coming for other
items in memory. For each entry in the batch we generated all possible queries that the
current memory store could support and then one was selected at random. Finally, the
batch was balanced, i.e. half of the elements were direct queries and the other half was
indirect. Finally, the targets represent the ImageNet class-ID of the matches.

To summarize, for each entry in each batch:

• Memory was of size 32 ∗ 2 ∗ 1000

• Queries were of size 1 ∗ 3 ∗ 1000

• Target was of size 1

D.2 PAI - Architecture details

We used an architecture similar to Universal Transformers (Dehghani et al., 2018, UT),
but we augmented the transformer with a memory as in Dai et al. (2019). The number
of layers in the encoder and the decoder was learnt, but constrained to be the same. This
number was identified as the “pondering time” in our PonderNet architecture. Also, we set
an upper bound N to the number of layers. The initial state h0 was a learnt embedding of

13

Anonymous Authors

the input. On each step, the state was updated by applying the encoder layer once, that
is: hn+1 = encoder(hn). Note that in this case PonderNet only received information about
the inputs through its state. The prediction was computed by applying the decoder layer
an equal number of times to the pondering step, that is ŷn+1 = decoder(...(decoder(hn+1)).
With this architecture, PonderNet was able to optimize how many times to apply the
encoder and the decoder layers to improve its performance in this task.

The weights were optimised using Adam (Kingma and Ba, 2014), using polynomial
weight decay with a maximum learning rate of 0.0003 and learning rate linear warm-up for
the first epoch. The mini-batch size was of size 128. For completeness, we describe the
hyperparameters used on Table 5. We also performed a search on hyperparameters to train
on our tasks, with ranges reported on Table 6.

Parameter name Value

Optimizer algorithm Adam
Input embedding size 256
Attention type as in Vaswani et al. (2017)
Attention hidden size 512
Attention number of heads 8
Transition function MLP(2 Layers)
Transition hidden size 128
Attention dropout rate 0.1
β 0.01

Table 5: Hyperparameters used for PAI experiments.

Parameter name Value

Attention hidden size {256, 512}
Transition hidden size {128, 1024}
λp uniform(0, 0.5]
N [7, 10]

Table 6: Hyperparameters ranges used to search over with PonderNet on PAI.

D.3 PAI - Results based on query type

The result reported below in Table 7 are from the evaluation set at the end of training.
Each evaluation set contains 600 items.

Table 7: Paired Associative - length 3: A-B-C

Trial
Type

MEMO UT PonderNet

A-B 99.82(0.30) 97.43 98.01(2.39)
B-C 99.76(0.38) 98.28 97.43(1.97)
A-C 98.26(0.67) 85.60 97.86(3.78)

14

Ponder Net: Learning to Ponder

For MEMO and for Universal transformer the results were taken from Banino et al.
(2020).

15

Anonymous Authors

Appendix E. Broader impact statement

In this work we introduced PonderNet, a new method that enables neural networks to adapt
their computational complexity to the task they are trying to solve. Neural networks achieve
state of the art in a wide range of applications, including natural language processing,
reinforcement learning, computer vision and more. Currently, they require much time,
expensive hardware and energy to train and to deploy. They also often fail to generalize
and to extrapolate to conditions beyond their training.

PonderNet expands the capabilities of neural networks, by letting them decide to ponder
for an indefinite amount of time (analogous to how both humans and computers think). This
can be used to reduce the amount of compute and energy at inference time, which makes it
particularly well suited for platforms with limited resources such as mobile phones. Addi-
tionally, our experiments show that enabling neural networks to adapt their computational
complexity has also benefits for their performance (beyond the computational requirements)
when evaluating outside of the training distribution, which is one of the limiting factors when
applying neural networks for real-world problems.

We encourage other researchers to pursue the questions we have considered on this work.
We believe that biasing neural network architectures to behave more like algorithms, and
less like “flat” mappings, will help develop deep learning methods to their the full potential.

16

	Introduction
	Methods
	Problem setting
	Step recurrence and halting process
	Maximum number of pondering steps
	Training loss
	Evaluation sampling
	Results
	Parity
	bAbI
	Paired associative inference
	Discussion
	Comparison to ACT
	Forward computation
	Training loss
	Evaluation

	Parity.
	Training and evaluation details
	bAbI.
	Training and evaluation details
	Transformer architecture and hyperparameters
	Paired Associative Inference
	PAI - Task details
	PAI - Architecture details
	PAI - Results based on query type

	Broader impact statement

