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Abstract
As Large Language Models (LLMs) scale in size and application scope, distributed inference across multiple

computing nodes becomes essential to meet latency and memory demands. However, this introduces new risks
to privacy and trust, especially due to the exposure of sensitive inputs and intermediate states like KV caches. We
present SPADA: a Secure, Performant, and Distributed Architecture that integrates Trusted Execution Environments
(TEEs), a Decentralized Trust Establishment Protocol (DTEP), and secure KV cache transport to address these con-
cerns. SPADA ensures end-to-end privacy protection without sacrificing throughput or latency, making it a practical
foundation for secure LLM deployment in untrusted or multi-tenant settings.

Introduction
LLMs power applications from code generation to chat systems, but their inference cost has surged
due to growing model size and context length. Techniques like KV caching and hardware acceleration
are widely used, yet often insufficient under single-node memory constraints. Distributed inference
improves performance but increases vulnerability to tampering, data leakage, and node imperson-
ation. Current efforts mainly target scalability; SPADA instead focuses on the security-performance
trade-off by introducing a system that safeguards privacy during distributed LLM inference.

Motivation
Modern LLMs are increasingly deployed in sensitive, user-facing contexts—chatbots, virtual assis-
tants, healthcare, education, and finance—where privacy and data security are paramount. While
distributed inference is a practical necessity due to resource constraints, it dramatically increases the
attack surface for leaking sensitive data. SPADA is motivated by the urgent need to secure LLM
inference pipelines in such settings.

Real-world Risk: Personal Information Leakage
Table I in the paper presents a striking analysis of two widely used training datasets: C4 and The Pile.
It demonstrates the staggering prevalence of Personally Identifiable Information (PII) in raw LLM
training data. When these models are deployed for inference, such PII can resurface in generated
outputs or linger in KV caches, posing a severe privacy threat.

Personal Information Type C4 Pile

User Name 1,444,683,066 3,273,163,949
Phone Number 19,592,273 23,191,595
Email Number 9,056,833 13,336,793
US Bank Number 7,139,838 69,763,678
Credit Card Number 61,405 741,815
US SSN 2,352,339 12,541,022
IP Address 1,890,090 14,975,663

Total 1,484,780,621 3,407,722,116

Table 1: Personal Information Counts in C4 and Pile.

Challenges & Solutions

Inter-node Trust Establishment
. Problem: In distributed inference, nodes must exchange sensitive data (e.g., KV caches, em-
beddings) across untrusted domains.
� Risk: Without verifiable trust, malicious nodes may impersonate others, manipulate model
states, or exfiltrate private user inputs.

� SPADA Solution:
• Introduces the Decentralized Trust Establishment Protocol (DTEP)
• Uses TEE-backed attestation to verify node identity and configuration

• Establishes shared session keys via in-enclave Diffie-Hellman exchange

• Eliminates need for centralized trust authorities

Intra-node Isolation and Protection
. Problem: Even within a trusted node, adversarial software or co-tenants may target sensitive
inference data.
� Risk: Prompts, attention maps, and generation outputs can be exposed via memory scraping or
side-channel attacks.

� SPADA Solution:
• Runs entire inference pipeline inside Trusted Execution Environments (TEEs)
• Shields sensitive state from OS, hypervisors, and co-resident processes

• Mitigates TEE resource limits using:

– Quantized operators
– Activation checkpointing
– Batched enclave calls

Secure and Low-Overhead Communication
. Problem: Inter-node communication involves transmission of sensitive states and requires en-
cryption without introducing latency bottlenecks.
� Risk: Traditional TLS outside TEEs may expose plaintext and increase latency.

� SPADA Solution:
• Performs TLS termination inside TEEs using enclave-compatible libraries

• Employs a binary protocol with fixed headers and zero-copy buffers

• Obfuscates traffic patterns using padding and burst-mode aggregation

Secure and Efficient Transmission of Distributed KV Cache
. Problem: KV caches contain private token representations and must be exchanged across nodes
during inference.
� Risk: Unprotected cache transfer can leak sensitive prompts or be tampered with in-flight.

� SPADA Solution:
• Encrypts KV cache fragments using per-session keys derived from attestation

• Adds nonce, sequence number, and MAC for integrity and replay protection

• Applies delta encoding to reduce transmission volume

• Uses token-level prefetching to overlap communication and computation

Overview of SPADA
SPADA delivers secure, high-throughput distributed LLM inference by tightly integrating:

• TEE-based Node Isolation: Each node runs inference inside a Trusted Execution Environment,
ensuring sensitive states (e.g., KV cache, embeddings) are invisible to OS and co-tenants.

• Decentralized Trust (DTEP): Nodes perform remote attestation to mutually verify enclave iden-
tity and derive per-session encryption keys—no centralized trust anchor needed.

• Secure Communication: All inter-node traffic flows through a lightweight encrypted channel,
with in-enclave TLS termination and traffic padding to resist metadata leakage.

• Efficient KV Cache Transfer: SPADA sends only the updated portions of KV cache via delta
encoding, authenticated with nonces and MACs, and prefetches cache blocks to overlap compute
and I/O.

Node1

TEE Trust 
Establishor

Light-weight Secure 
Communication Channel

KV 
Cache

…

NodeX

TEETrust 
Establishor

Light-weight Secure 
Communication Channel

KV 
Cache

Figure 1: Overview of the SPADA architecture

Conclusions
• SPADA secures the entire distributed LLM inference lifecycle—from node authentication to KV

cache transfer.

• By combining TEEs, DTEP, and optimized communication, it defends against inference leakage
without slowing down inference.

• We demonstrate that privacy and performance are not mutually exclusive in large-scale LLM de-
ployments.

Future Work
• Support heterogeneous TEEs (e.g., Intel SGX + AMD SEV + ARM CCA)

• Integrate with memory-efficient LLMs (e.g., LoRA, MoE, quantized models)

• Extend SPADA to support confidential training across distributed TEEs


