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Appendix

In this document, references that point to the main manuscript will be referenced as “P-”.

A Implementation Details

A.1 Epipolar Line Searching Range

Given a pixel pr in reference image I0, we can determine the position ps in the source image Ii by
Eq. 1 based on multi-view geometric consistency.

K−1
i psds = R ·

(
K−1

0 prdr
)
+ T, (1)

where dr denotes the depth in reference view, ds denotes the depth in source view. R and t denote the
rotation and translation between the reference and the source view, K−1

0 and K−1
i denote the intrinsic

matrices. In order to determine the range of epipolar line matching the observability condition
dr > 0, ds > 0 in multi-view images, we segregate dr, ds and treat them individually. Specifically,
to determine the relationship between the depth in the reference view dr and the coordinates in the
source view ps, we multiply both sides of the equation by a skew-symmetric matrix of K−1

i ps:
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∧ ·K−1
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i ps)
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∧ · T, (2)

where (·)∧ represents the skew-symmetric matrix function:(
x1

x2

x3

)∧

=

(
0 −x3 x2

x3 0 −x1

−x2 x1 0

)
, (3)

Due to the inherent properties of the skew-symmetric matrix x∧ · x = 0, we can transform Eq. 2 into
an equation between dr and ps.

(K−1
i ps)

∧ ·R ·
(
K−1

0 prdr
)
+ (K−1

i ps)
∧ · T = 0, (4)

Let (K−1
i ps) = (psx, psy, psz)

T , R · K−1
0 pr = (prx, pry, prz)

T and T = (tx, ty, tz)
T , we can

obtain the reference depth and source depth by Eq. 5.{
psx = (prxdr − tx)/(przdr − tz)
psy = (prydr − ty)/(przdr − tz)

(5)
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Figure 1: Epipolar line searching range on DTU [1] and BlendedMVS [2] datasets. Green points
represent the pixel on the reference image, red points represent the pixel on the source images and
blue lines represent the epipolar line. Due to physical constraints of positive depth for both the
reference image and source image, the search range along the epipolar line of the source image is
narrowed down to a specific interval.

We can then obtain the two endpoints on the epipolar line in the source image, thereby defining the
search range along the epipolar line:
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We employ a similar approach to determine the epipolar searching range that satisfies the observability
condition ds > 0 in the source view. It is crucial to ensure that both the source depth ds and the
reference depth dr are greater than zero. Therefore, the final sampling interval is determined by the
intersection of the two intervals. The initial position p0s of the source image is determined by selecting
the midpoint of the search range along the epipolar line. Fig. 1 illustrates the epipolar searching range
for a pixel in the reference image, corresponding to multi-view source images from the DTU [1] and
BlendedMVS [2] datasets. It can be observed that leveraging the epipolar line ranges derived from
physical properties effectively narrows the optimization region, resulting in more accurate sampling.

A.2 Depth Normalization

DispMVS [3] utilizes the depth range in the depth regression process to enhance the stability of the
network. Specifically, the depth range is employed for initialization in Eq. 7, and regularization for
depth upsampling and fusion in Eq. 8.

1

d0r
= rand ·

(
1

dmin
− 1

dmax

)
+

1

dmax
, (7)

dnorm =
1/d− 1/dmax

1/dmin − 1/dmax
, (8)

In the initialization, DispMVS ensures the reliability of d0 by randomly selecting an initial position
within the depth range, thereby facilitating easier convergence of the network. In the multi-view
depth fusion, DispMVS converts the epipolar disparity flow to depth by triangulation and utilizes
depth normalization to decrease the effect of outliers.

To further enhance the network’s generalization ability regarding depth range, we attempt to eliminate
depth range-related operations within the network. Specifically, this entails removing certain initial-
ization and depth normalization procedures. Thanks to the previously computed epipolar line range,
we can obtain a relatively accurate initial value. Additionally, with the introduction of the Multi-view
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Table 1: Quantitative evaluation towards VideoFlow setting on DTU validation set. The lower the
Endpoint Error (EPE), e2, e4, e8, the better.

Method EPE(mm) ↓ e2(mm) ↓ e4(mm) ↓ e8(mm)

Concatenation Setting [3] 3.376 0.139 0.070 0.041
Ours 3.298 0.123 0.063 0.038

Disparity Attention (MDA) module in our network, we can better utilize geometric information
across multi-view frames, leading to improved convergence. Consequently, we set the initial position
p0s in the reference image as the midpoint of the epipolar line searching range (pmin

s , pmax
s ) in Eq. 9

and then obtain the initial position p0s.

p0s = (pmin
s + pmax

s )/2, (9)
We remove the depth normalization to further reduce the reliance on the depth range and enhance the
network’s generalization capabilities. Experimental results demonstrate that our setup does not result
in performance degradation and we can still achieve comparable reconstruction accuracy.

A.3 Feature Extraction

Given a reference image I0 and multi-view source images {Ii}N−1
i=1 , we utilize two share-weighted

feature extraction modules to extract image features F l
0 ∈ RH×W×C and {F l

i }
N−1

i=1 ∈ RH×W×C .
These features are extracted at two down-sampled scale levels, corresponding to the resolution of
1/4l, with channel dimensions C of 96,128 and levels l of 1,2. Additionally, we design a context
feature network to extract features from the reference image I0, preparing for subsequent GRU
updates. Notably, the context network does not share weights with the feature extraction network.

B More Ablation Study

B.1 VideoFlow Setting

Our method is inspired by VideoFlow [4], which estimates optical flows for multiple frames by
effectively leveraging temporal cues. However, we decided not to adopt some of the structures from
VideoFlow. In this section, we provide an analysis of our decision.

VideoFlow utilizes the Global Motion Aggregation (GMA) module [5] to perceive context information
from the reference image and construct global features Fg ∈ RH×W×H×W . The GMA module
utilizes a transformer to identify long-range dependencies among pixels in the reference image and
conducts global aggregation on the associated motion features. Therefore, the input to the GRU
update module in VideoFlow consists of the motion feature Fm, along with the global context feature
Fg and the hidden state feature hk, where k representing the k − th iteration. However, due to
the typically high resolution with 864× 1152 of the test dataset in the MVS task, which results in
significant memory consumption during GMA computation, we have decided to abandon the GMA
module.

Additionally, VideoFlow concatenates the flow and correlation of all images along the channel
dimension, and then the concatenated features are input into the motion encoder. The flow Fk ∈
RB×N×H×W of all images are directly output through the GRU module. In our approach, we input
the respective optical flow and correlation of each source image into the disparity encoder separately.
Subsequently, after obtaining the disparity features, we fuse the multi-view information using the
Multi-view Disparity Attention (MDA) module. Table 1 demonstrates that our method can more
efficiently integrate the potential relationships between 2D epipolar disparity flows across multi-view
frames. EPE (Endpoint Error) represents the average l − 1 distance between ground truth and the
prediction within the mask region, e2, e4 and e8 represent the proportions of pixels with depth error
larger than 2, 4, and 8, respectively.

B.2 Multi-view Loss

In this section, we explore the integration of multi-view constraints into the loss function as regu-
larization terms. The objective is to prompt the network to learn consistent 3D information across
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Table 2: Quantitative evaluation towards multi-view loss on DTU validation set. The lower the
Endpoint Error (EPE), e2, e4, e8, the better.

Loss EPE(mm) ↓ e2(mm) ↓ e4(mm) ↓ e8(mm) ↓

L1 loss add multi-view loss [3] 3.322 0.125 0.064 0.038
L1 loss 3.298 0.123 0.063 0.038

Table 3: Ablation study on number of input views N on DTU evaluation set [1]. The lower the
Accuracy (Acc), Completeness (Comp), Overall, the better.

DTU 3 views 4 views 5 views 6 views 7 views 8 views 9 views 10 views

EPE(mm) 5.375 5.108 4.992 4.964 4.929 4.967 5.002 5.024

multi-view source images. To accomplish this, we compute the variance of depths obtained from
multiple frames and incorporate it into the loss function.

Table 2 suggests that imposing such constraints aggressively introduces unknown biases into the
network, resulting in diminished performance compared to direct utilization of L1 loss. Particularly
in scenarios where some images experience severe occlusion or objects extend beyond the field of
view, enforcing consistency among depths corresponding to multiple frames becomes impractical
and may even introduce noise.

B.3 Dense View Setting

For images with a resolution of 512x640, our method can handle up to 77 views in V100 during
testing phase, and up to 5 views simultaneously during training phase. Using the model trained on the
DTU dataset with 5 views, we verify the impact of the number of views on system accuracy. Due to
DTU providing co-visible relationships for only 10 frames, we selected 10 frames as the upper limit.
The results are shown in Table 3, which uses 2D metric. It can be observed that the error decreases as
the number of used views increases and gradually basically coverage. Increasing the view during
training may further increase the performance after convergence.

B.4 Initializations of Depth

We add the comparison with different initializations of depth. However, due to the unknown depth
range, it is not feasible to design a random sampling range for 3D sampling, which is impractical.
Additionally, when the initial depth is set to 0, significant noise can occur during feature warping.
Therefore, we designed three sets of ablation experiments in Table 4: setting all depths to one,
randomly initializing within the epipolar search range, and initializing fixed at the left endpoint of the
epipolar line.

C More Experiment Results

C.1 Evaluation on BlendedMVS Dataset

We evaluate the proposed method on the evaluation set of BlendedMVS dataset [2]. Following [6],
we test any method with five input images on the standard test set, composed of 7 heterogeneous
scenes. We compute the mean absolute error (MAE), root mean squared error (RMSE), and the
percentage of pixels having depth error larger than a given threshold (> τ ). As shown in Table 5, our
method has the best overall score among depth-range-free methods.

Table 4: Comparison of Initializations

Ablation Acc.(mm)↓ Comp.(mm)↓ Overall(mm)↓

The Left Endpoint 0.389 4.373 2.381
Randomly 2D Initializing 2.597 2.211 2.404
Ours 0.338 0.331 0.335
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Table 5: Quantitative point cloud evaluation results on BlendedMVS evaluation set.

Method MAE ↓ RMSE ↓ > 1 ↓ > 2 ↓ > 3 ↓ > 4 ↓ > 8 ↓

MVSNET [7] 0.6168 1.5943 0.1392 0.0731 0.0457 0.0309 0.0103
R-MVSNet [8] 0.7815 1.7397 0.1864 0.1007 0.0637 0.0433 0.0141
PatchmatchNet [9] 0.3849 1.3581 0.0749 0.0386 0.0247 0.0175 0.0067
Vis-MVSNet [10] 0.3318 1.2396 0.0662 0.0323 0.0197 0.0133 0.0044

IterMVS [11] 1.9644 9.0190 0.2322 0.1384 0.0989 0.0767 0.0392
CER-MVS [12] 2.1666 26.934 0.0752 0.0441 0.0316 0.0247 0.0138

RAMDepth [6] 0.2982 1.1724 0.0645 0.0285 0.0159 0.0102 0.0033
DispMVS [3] 0.2734 0.9471 0.0593 0.0277 0.0161 0.0104 0.0033
Ours 0.2531 0.8999 0.0545 0.0250 0.0143 0.0092 0.0030

Figure 2: The epipolar disparity flows across multi-view

C.2 Depth Range

As shown in Fig. P-1, since we have completely removed the depth range prior, the output results
are not affected by any errors in the depth range. In contrast, IterMVS samples based on the depth
range, which prevents it from obtaining the correct depth for foreground (425mm - 552.5mm) and
background (807.5mm - 935mm) points. DispMVS’s initialization also rely on the depth range.
During each iteration, it uses the depth range to apply a depth normalization and filter out outliers for
stability, so an underestimated depth range can significantly affect its performance.

C.3 Visualization of Epipolar Disparity Flows

To consider the information interaction of multiple source images during 2D sampling, it is necessary
to train the flow. As shown in Fig. 2, after the MDA and GRU modules, the flow obtained from
different source images is consistent in terms of details. By incorporating geometric information,
although the flow magnitudes on different source images vary, the representation of edges and other
details is unified.

C.4 Visualization of GRU Updating

As shown in Fig. 3 (b), the depth error decreases progressively with each iteration. The vertical axis
represents the depth error, and the horizontal axis represents the number of iterations. Iterations 0-7
correspond to the coarse stage, while iterations 8-9 correspond to the fine stage. Fig. 3 (a) shows the
depth maps on DTU, in which we can see that the depth map recovers from coarse to fine.

C.5 2D Experiment Results

As illustrated in Fig. 4, our method achieves more accurate 2D depth maps on the DTU and
BlendedMVS datasets compared to DispMVS [3].
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Figure 3: Depth Maps in each iteration(a) and Depth Error variation with GRU iterations(b).

C.6 Generalization Capability

To evaluate the generalization of our method, we used an iPad to capture data and add inference
experiments in multiple scenes. We collected images from various real-world environments, with
intrinsic and extrinsic parameters obtained by running COLMAP. As shown in Fig. 5, our model is
capable of generating dense point cloud reconstructions for both indoor and outdoor environments.
However, the accuracy of these reconstructions is somewhat lacking, which is affected by the
following three factors:

Inaccurate Camera Pose: The pose estimation from COLMAP is far from satisfying. In contrast,
the evaluation benchmark provides more accurate camera pose. For example, DTU uses a structured
light scanner and MATLAB calibration toolbox for camera pose estimation. The inaccurate camera
pose can lead to large error during the MVS process.

Image Quality Issues: As illustrated in Fig. 6, issues such as overexposed, inadequate lighting and
blurriness affect the reconstruction quality. These deficiencies in image quality contribute to the
observed inaccuracies in the point cloud.

Training Data Limitations: Our model was trained on the DTU dataset, which is relatively small
and features a narrow range of scenes. While our model can effectively mitigate depth range effects
in various environments, it still struggles with fine detail accuracy. The limited diversity of the DTU
dataset constrains the model’s ability to capture detailed features accurately. Constructing an MVS
dataset with diverse scenes is a promising approach to enhance the robustness and accuracy of point
cloud reconstructions.

C.7 Larger-scale Experiments

We collected some real-world data to test our method in more large-scale environment and also test
its generalization. The camera intrinsic and camera pose are both obtained by running COLMAP. As
shown in Fig. 5, our model is capable of generating dense point cloud reconstructions for the collected
data, which shows basic generalization ability. However, the accuracy of these reconstructions is
somewhat lacking. We guess one of the primary factors is the inaccurate camera pose from the
COLMAP. It is a promising direction to explore the joint optimization of the camera pose for the
MVS in the future. Besides, the limited training data also hinders the performance of our method.
Compared with Dust3r which is trained with a mixture of eight datasets, covering millions of image
data, our method and other MVS methods are only trained on DTU or BlendedMVS. How to utilize
these large datasets for training MVS is also one of our future work.
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DispMVSGroundTruth Ours

Figure 4: The qualitative comparison on DTU [1] and BlendedMVS [2] datasets. Our method
achieves more accurate depth results, especially along the object boundary.

Figure 5: Visualization of Point Clouds of Custom Data.

C.8 Known Depth Prior

To validate the effectiveness of the depth prior, we designed the experiment. The initial depth is
reverted to random initialization based on the depth prior, similar to DispMVS. The results are shown
in Table 6. It can be observed that adding depth prior can improve performance to some extent, but
the difference compared to our depth-range-free method is not significant. This indicates that the
current initial point selection strategy and the design of the Transformer enable the network to regress
to the correct range, resulting in accurate depth estimation.
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Figure 6: Challenges of Custom Data in MVS Point Cloud Reconstruction.

Table 6: Quantitative evaluation of the model with depth range prior on the DTU dataset. The lower
the Accuracy (Acc), Completeness (Comp), Overall, the better.

Ablation Acc.(mm)↓ Comp.(mm)↓ Overall(mm)↓

Random Depth Initialization among Depth Range Prior 0.331 0.335 0.333
Ours 0.338 0.331 0.335

D Limit

Compared to other methods that uniformly sample depth based on a depth range, our network requires
a more powerful retrieval capability to regress the correct depth due to the lack of depth range priors
and outperform known depth-free methods. There are two main reasons for the discrepancy between
our method and cost-volume approaches.

One reason is the search gratuity. Although our method addresses the receptive field problem to a
large extent by sampling points along the epipolar line at features with different scales, iterating over
the depth range of significantly increases the search gratuity compared to uniformly sampling within
a predefined depth range.

The second reason is the development potential of datasets for deep learning network. Existing MVS
datasets, such as DTU, have a relatively uniform depth distribution, mostly around a mean depth
of 600. This allows methods directly based on a narrow predefined depth range to achieve precise
convergence, limiting the advantage of our method. However, in real-world scenarios, there are many
scenes with a wide depth distribution, such as near and far objects, where the background cannot
be crudely masked out like in the DTU dataset. In such cases, depth cannot be recovered with a
narrow depth prior, necessitating an expanded depth search range, which increases the difficulty of
convergence inevitably. I think enhancing accuracy over a large depth range is a crucial problem that
MVS must address in the future. Currently, our ongoing work focuses on optimizing the acquisition
of initial values and constructing more diverse datasets to endow the network with stronger learning
capabilities.

E Point Cloud Results

E.1 More Point Cloud Results

We compare our method with several state-of-the-art methods [13; 3] on DTU dataset [1], with Fig. 7
illustrating superior performance of our approach. We show more qualitative results on DTU dataset
in Fig. 8 and Tanks and Temples dataset in Fig. 9.

Additionally, we use the model trained on the large-scale BlendedMVS dataset with image resolution
as 576 × 768 and number of input images as 5 to evaluate the BlendedMVS. The BlendedMVS
dataset [2] is a large-scale outdoor multi-view stereo dataset that contains a diverse array of objects
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PatchmatchNet (0.203)GroundTruth (scan1) Ours (0.199)DispMVS (0.202)

PatchmatchNet (0.314)GroundTruth (scan9) Ours (0.283)DispMVS (0.294)

PatchmatchNet (0.404)GroundTruth (scan32) Ours (0.316)DispMVS (0.366)

Figure 7: Comparison of reconstructed results with several state-of-the-art methods [13; 3] on DTU
dataset [1]. Each method corresponds to the number in parentheses, representing the 3D overall
metric (lower is better). We highlight the best-performing method in red.

and scenes. We set the image resolution as 576× 768 and the number of input images as 7 for the
evaluation phase of it. We showcase the performance of the point cloud on the BlendedMVS dataset
in Fig. 10.

E.2 Floater Artifacts

As shown in Fig. 11, we compare our method with MVSFORMER++(SOTA) and find that point
clouds inevitably exhibit artifacts in MVS task. Artifacts are generated during the depth fusion step.
For point cloud fusion, we directly sampled the PCD method from DispMVS. This method selects
multiple relevant depth views for each image to perform back-projection. After threshold filtering,
the back-projected depth is weighted and combined with the current depth, which can lead to the
generation of floater artifacts. This is due to 2D depth errors and inconsistencies across multi-view
frames. Adjusting the threshold can mitigate this issue but may affect the overall quality of the 3D
point cloud.
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Figure 8: Point clouds in DTU evaluation set [1].
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Figure 9: Point clouds of Tanks and Temples Benchmark [14].
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Figure 10: Point clouds in BlendedMVS validation set [2].
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Ours MVSFORMER++ (SOTA)

Figure 11: Comparison of Point Cloud Floater Artifacts.
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