
A Theory

A.1 H-step lookahead with approximation error

We aim to show that H-step model-based lookahead policies are more robust to certain types of
approximation errors than 1-step greedy policies given an approximate value function. We restate
Theorem 1 here for convenience and then provide a proof.

Theorem 1. (H-step lookahead policy) Suppose M̂ is an approximate dynamics model such that
maxs,aDTV

(
M(.|s, a), M̂(.|s, a)

)
≤ εm. Let V̂ be an approximate value function such that

maxs|V ∗(s) − V̂ (s)|≤ εv. Let the reward function by bounded in [0,Rmax] and V̂ be bounded in
[0,Vmax]. Let εp be the suboptimality incurred in H-step lookahead optimization (Eqn. 3) such that
J∗ − Ĵ ≤ εp, where J∗ is the optimal return for the H-step optimization and Ĵ is the result of the
suboptimal H-step optimization. Then the performance of the H-step lookahead policy πH,V̂ can be
bounded as:

Jπ
∗ − JπH,V̂ ≤ 2

1− γH [C(εm, H, γ) +
εp
2

+ γHεv]

where

C(εm, H, γ) = Rmax

H−1∑

t=0

γttεm + γHHεmVmax

Proof. Assume we have an εv-approximate value function i.e ‖V̂ − V ∗‖∞< εv and we have an
approximate transition model which satisfies DTV

(
M(.|s, a), M̂(.|s, a)

)
≤ εm , similar to assump-

tions in [19, 18]. We analyze the optimality gap of the policy which uses an H-step lookahead
optimization (Eqn. 3) with this approximate model and value function. First, we define some useful
notations: letM be the MDP defined by (S,A,M, r, s0) which uses the ground truth dynamics M ,
state space S , action space A, reward function r and starting state s0, and let M̂ be the MDP defined
by (S,A, M̂ , r, s0) which uses the approximate dynamics model M̂ . Correspondingly, letH be an
H-step finite horizon MDP given by (S,A,M, rmix, s0) and let Ĥ be an H-step finite horizon MDP
given by (S,A, M̂ , rmix, s0) where

rmix(st, at) =

{
r(s, a) if t < H

V̂ (sH) if t = H
(11)

We redefine πH,V̂ to be the policy obtained by repeatedly optimizing for the H-step lookahead
objective (Eqn. 3) in Ĥ and acting for H steps in M. We do not consider the MPC setting for
simplicity in proof i.e. the policy does not perform any replanning after taking its initial actions. We
will use π∗K denote the optimal policy for some MDP K. Let τ̂ denote an H-step trajectory sampled
by running π∗Ĥ inM and similarly τ is used to denote an H-step trajectory sampled by running π∗H
inM. Let τ∗ denote the H-step trajectory sampled by running π∗M inM. Let pτ̂ , pτ and pτ∗ be the
corresponding trajectory distributions. The performance gap we want to upper bound is given by:

Jπ
∗ − JπH,V̂ = V ∗(s0)− V πH,V̂ (s0) (12)

= Eτ∗∼pτ∗
[∑

γtr(st, at) + γHV ∗(sH)
]
− Eτ̂∼pτ̂

[∑
γtr(st, at) + γHV πH,V̂ (sH)

]
(13)

= Eτ∗∼pτ∗
[∑

γtr(st, at) + γHV ∗(sH)
]
− Eτ̂∼pτ̂

[∑
γtr(st, at) + γHV ∗(sH)

]
(14)

+ Eτ̂∼pτ̂
[∑

γtr(st, at) + γHV ∗(sH)
]
− Eτ̂∼pτ̂

[∑
γtr(st, at) + γHV πH,V̂ (sH)

]
(15)

= Eτ∗∼pτ∗
[∑

γtr(st, at) + γHV ∗(sH)
]
− Eτ̂∼pτ̂

[∑
γtr(st, at) + γHV ∗(sH)

]
(16)

+ γHEτ̂∼pτ̂ [V ∗(sH)− V πH,V̂ (sH)] (17)

13

Since we have |V ∗(s)− V̂ (s)|≤ εv ∀s, we can bound the following expressions:

Eτ∗∼pτ∗
[∑

γtr(st, at) + γHV ∗(sH)
]
≤ Eτ∗∼pτ∗

[∑
γtr(st, at) + γH V̂ (sH)

]
+ γHεv (18)

Eτ̂∼pτ̂
[∑

γtr(st, at) + γHV ∗(sH)
]
≥ Eτ̂∼pτ̂

[∑
γtr(st, at) + γH V̂ (sH)

]
− γHεv (19)

Subtracting these two inequalities (18 and 19), we get:

Eτ∗∼pτ∗
[∑

γtr(st, at) + γHV ∗(sH)
]
− Eτ̂∼pτ̂

[∑
γtr(st, at) + γHV ∗(sH)

]
(20)

≤ Eτ∗∼pτ∗
[∑

γtr(st, at) + γH V̂ (sH)
]
− Eτ̂∼pτ̂

[∑
γtr(st, at) + γH V̂ (sH)

]
+ 2γHεv

Substituting Eqn. 20 into Eqn. 16 we can bound the performance gap as follows:

Jπ
∗ − JπH,V̂ = V ∗(s0)− V πH,V̂ (s0)

≤ Eτ∗∼pτ∗
[∑

γtr(st, at) + γH V̂ (sH)
]
− Eτ̂∼pτ̂

[∑
γtr(st, at) + γH V̂ (sH)

]
(21)

+ 2γHεv + γHEτ̂∼pτ̂ [V ∗(sH)− V πH,V̂ (sH)]

= Eτ∗∼pτ∗
[∑

γtr(st, at) + γH V̂ (sH)
]
− Eτ∼pτ

[∑
γtr(st, at) + γH V̂ (sH)

]
(22)

+ Eτ∼pτ
[∑

γtr(st, at) + γH V̂ (sH)
]
− Eτ̂∼pτ̂

[∑
γtr(st, at) + γH V̂ (sH)

]

+ 2γHεv + γHEτ̂∼pτ̂ [V ∗(sH)− V πH,V̂ (sH)] (23)

≤ Eτ∼pτ
[∑

γtr(st, at) + γH V̂ (sH)
]
− Eτ̂∼pτ̂

[∑
γtr(st, at) + γH V̂ (sH)

]
(24)

+ 2γHεv + γHEτ̂∼pτ̂ [V ∗(sH)− V πH,V̂ (sH)] (25)

The last step is due to the fact that τ is generated by the optimal action sequence in the ground-
truth H-step MDPH as defined earlier which implies that Eτ∗∼pτ∗

[∑
γtr(st, at) + γH V̂ (sH)

]
≤

Eτ∼pτ
[∑

γtr(st, at) + γH V̂ (sH)
]

Now we aim to characterize the performance gap between an optimal policy of MDP Ĥ , π∗Ĥ, with the
optimal policy of MDPH, π∗H, evaluating both in the ground truth MDPH. We wish to characterize
this performance gap as a function of model errors and value errors f(εm, εv, γ,H):.

Eτ∼pτ
[∑

γtr(st, at) + γH V̂ (sH)
]
− Eτ̂∼pτ̂

[∑
γtr(st, at) + γH V̂ (sH)

]
≤ f(εm, εv, γ,H)

Let JπH denote the performance of policy π when evaluated in MDPH starting from same initial state
s0. Then we can write this performance gap as

Eτ∼pτ
[∑

γtr(st, at) + γH V̂ (sH)
]
− Eτ̂∼pτ̂

[∑
γtr(st, at) + γH V̂ (sH)

]
(26)

= J
π∗H
H − Jπ

∗
Ĥ
H (27)

= J
π∗H
H − Jπ

∗
H
Ĥ + J

π∗H
Ĥ − Jπ

∗
Ĥ
Ĥ + J

π∗Ĥ
Ĥ − Jπ

∗
Ĥ
H (28)

=
(
J
π∗H
H − Jπ

∗
H
Ĥ

)
−
(
J
π∗Ĥ
H − Jπ

∗
Ĥ
Ĥ

)
+
(
J
π∗H
Ĥ − Jπ

∗
Ĥ
Ĥ

)
(29)

≤
(
J
π∗H
H − Jπ

∗
H
Ĥ

)
−
(
J
π∗Ĥ
H − Jπ

∗
Ĥ
Ĥ

)
+εp (30)

≤ 2 max
π∈{π∗H,π∗Ĥ}

|
(
JπH − JπĤ

)
|+εp (31)

The second-to-last equation is due to the assumed suboptimality of H-step lookahead planner where
we have ∀ policies π, J

π∗Ĥ
Ĥ + εp ≥ JπĤ . Since the total variation between M and M̂ is at most

εm, i.e DTV

(
M(.|s, a), M̂(.|s, a)

)
≤ εm, we have that |ρt1(s, a)− ρt2(s, a)|≤ tεm, where ρ1(s, a)

14

is the discounted state-action visitation induced by π on H, ρ2(s, a) is the discounted state-action
visitation induced by the same policy on Ĥ and superscript t indicates the state-action marginal at
the tth timestep (for proof see Lemma B.2 Markov Chain TVD Bound [13]). Then we can write
the performance of policy π in terms of its induced state marginal and the reward function, i.e
JπH =

∑
s,a ρ1(s, a)rmix(s, a) =

∑
s,a

∑H
t=0 γ

tρt1(s, a)rmix(s, a) and use the Markov chain TVD
bound:

JπH − JπĤ =
∑

s,a

(ρ1(s, a)− ρ2(s, a))rmix(s, a) (32)

|JπH − JπĤ| = |
∑

s,a

(ρ1(s, a)− ρ2(s, a))rmix(s, a)| (33)

= |
∑

s,a

H∑

t=0

γt(ρt1(s, a)− ρt2(s, a))rtmix(s, a)| (34)

≤
∑

s,a

H∑

t=0

γt|(ρt1(s, a)− ρt2(s, a))|rtmix(s, a) (35)

≤ Rmax

H−1∑

t=0

γttεm + γHHεmVmax (36)

= C(εm, H, γ) (37)

Combining Eqn. 31 and Eqn. 37 we have:

Eτ∼pτ
[∑

γtr(st, at) + γH V̂ (sH)
]
− Eτ̂∼pτ̂

[∑
γtr(st, at) + γH V̂ (sH)

]
≤ 2C(εm, H, γ)+εp

(38)

We substitute Eqn. 38 in Eqn. 24. Also observe that the last term in Eqn. 24
γHEτ̂ [V ∗(sH)− V πH,V̂ (sH)] can be bounded recursively. Then, we will have the following opti-
mality gap for the H-step lookahead policy πH,V̂ :

Jπ
∗ − JπH,V̂ ≤ 2

1− γH [C(εm, H, γ)+
εp
2

+ γHεv] (39)

The H-step lookahead policy πH,V̂ reduces the dependency on εv (the maximum error of the value
function) by a factor of γH and introduces an additional dependency on εm (the maximum error
of the model). In contrast, when we use 1-step greedy policy, the performance gap is bounded by
(Lemma 1):

Jπ
∗ − JπH,V̂ ≤ γ

1− γ [2εv] (40)

Lemma 1 can be seen as a special case of our bound when εm is set to 0 and H is set to 1.

A.2 H-step lookahead with model generalization error

In this section, we derive a similar proof as the previous section with a weaker assumption on model
error. We consider a model trained by supervised learning where the sample error can be computed
by PAC generalization bounds which bounds the expected loss and empirical loss under a dataset
with high probability.

We define D to be the dataset of transitions and πD to be the data collecting policy.

Corollary 1. (H-step lookahead with function approximation) Suppose M̂ is an approx-
imate dynamics model such that maxt Es∼πD,t

[
DTV (M(.|s, a)‖M̂(.|s, a))

]
≤ ε̃m. Let

V̂ be an approximate value function such that maxs|V ∗(s) − V̂ (s)|≤ εv. Let the maxi-
mum TV distance of state distribution visited by lookahead policy πH,V̂ be bounded wrt

state visitation of data generating policy by maxt Es∼πH,V̂
[
DTV (ρtπH,V̂ ‖ρ

t
πD)
]
≤ εi and

max
(
DTV (πD(a|s)||π∗H(a|s)), DTV (πD(a|s)||π∗

Ĥ
(a|s))

)
≤ ε̃π ∀s. Let the reward function by

15

bounded in [0,Rmax] and V̂ be bounded in [0,Vmax]. Then the performance of the H-step lookahead
policy πH,V̂ can be bounded as:

Jπ
∗ − JπH,V̂ ≤ 2

1− γH [C(ε̃m, ε̃π, εi, H, γ) + γHεv]

where

C(ε̃m, ε̃π, H, γ) = Rmax

H−1∑

t=0

γtt(ε̃m + ε̃π) +Rmaxεi + γHH(ε̃m + ε̃π)Vmax

Proof. In the function approximation setting, a more realistic perfomance bound depends on the gen-
eralization error of model and distribution shift for the new policy under the collected dataset of tran-
sitions D. Let πD be the data collecting policy. Let Es∼πD,t

[
DTV (M(.|s, a)||M̂(.|s, a))

]
≤ ε̃m ∀s

and max
(
DTV (πD(a|s)||π∗H(a|s)), DTV (πD(a|s)||π∗

Ĥ
(a|s))

)
≤ ε̃π ∀s. Following Lemma B.2

Markov Chain TVD Bound [13] with model generalization error ε̃m, policy distribution shift ε̃π and
bounded state visitation of lookahead policy by εi, we have: |ρt1(s, a)− ρt2(s, a)|≤ t(ε̃m + ε̃π) + εi
Substituting the new state-action divergence bound in Eqn. 35 from Theorem 1 we get the following
performance bound:

Jπ
∗ − JπH,V̂ ≤ 2

1− γH [C(ε̃m, ε̃π, εi, H, γ) + γHεv] (41)

where C(ε̃m, ε̃π, H, γ) = Rmax

∑H−1
t=0 γtt(ε̃m + ε̃π) +Rmaxεi + γHH(ε̃m + ε̃π)Vmax.

Intuitively this bound highlights the tradeoff between model error and value error reasonably when
the dataset is sufficiently exploratory to cover π∗H and H-step lookahead policy has visitation close to
the dataset.

A.3 H-step lookahead with Empirical Dataset Distribution using Fitted-Q Iteration

In this section, we take a look at the analysis of H-step lookahead under a set of different assumptions.
In particular, we assume a form of model generalization error and that the optimal H-step trajectory
is obtained via fitted-Q iteration in the H-step MDP at every timestep during policy deployment. This
analysis largely follows the fitted-Q iteration analysis from [60, 61, 41] but we adapt it to H-step
lookahead in a simplified form.
Assumption 1. Let our replay buffer dataset be denoted by D and the data generating distribution
be given by dπD , where πD is the data generating policy. Let the Q-function class is given by
Q ⊂ RS×A. The empirical bellman update T̂ Q under the learned model is given by:

L
d
π
M̂ (Q,Qk) = E

s,a,r,s′∼d
π
M̂

[
(Q(s, a)− r − γQk(s′, πQ(s′)))2

]
(42)

where Qk is the Q-function at k iteration, dπM̂ is the state visitation under a learned model M̂ from
dataset D. Also we define:

LdπD (Q,Qk) = Es,a,r,s′∼dπD
[
(Q(s, a)− r − γQk(s′, πQ(s′)))2

]
(43)

A form of model generalization error: We assume the following uniform deviation bound which holds
with high probability (≥ 1− δ):

∀Q,Qk, |LD(Q,Qk)− LdπD (Q,Qk)|≤ ε̃m (44)

This bound can be obtained by concentration inequality as in [41] using concentration inequality ε̃m
to be a function of size of dataset |D|, δ and size of function space for Q.

Intuitively the assumption above states that the bellman error obtained in the data-generating distribu-
tion is close to the bellman error obtained via state-action distribution induced by the learned model,
where the model is learned on a finite fixed dataset D sampled from data generating distribution.

In the following analysis, we assume that H-step lookahead policy is obtained by performing fitted-Q
iteration in the H-step approximate MDP Ĥ defined in Theorem 1.

16

Theorem 2. Suppose M̂ is an approximate dynamics model such that Assumption 1 holds. Let V̂
be an approximate value function such that maxs|V ∗(s)− V̂ (s)|≤ εv. Let the reward function by
bounded in [0,Rmax] and V̂ be bounded in [0,Vmax]. Let concentrability coefficient C̃ be such that
∀s, a ν(s,a)

dπD (s,a) ≤ C̃ where ν(s, a) is state-action distribution induced by any non-stationary policy.
Then the performance of the H-step lookahead policy πH,V̂ obtained by running fitted-Q iteration on
the learned model to convergence can be bounded as:

Jπ
∗ − JπH,V̂ ≤ 2

1− γH [C(ε̃m, C̃,H, γ) + γHεv]

where

C(ε̃m, C̃,H, γ) =
2(1− γH)

1− γ

(
1

1− γ

√
2ε̃mC̃

)

Proof. In this section we analyze the performance of H-step lookahead policies under the assumptions
for Fitted Q Iteration [41]. This analysis extends the fitted-Q iteration analysis from greedy to H-step
lookahead policies.

Let ‖g‖p,ν denote a weighted p-norm under distribution ν given by ‖g‖p,ν= Es∼ν [|g(s)|p] 1
p . We

start by reusing the previous analysis in Theorem 1 under the new stated assumptions to replace the
bound for Eqn. 26. Let π∗Ĥ be denoted by π̂H and π∗H by π∗H for ease of notation. In this analysis
π̂H is the 1-step greedy policy obtained from Qk the learned Q-function after k iterations of fitted-Q
iteration on the H-step MDP Ĥ.

Rewriting Eqn. 26:

Eτ∼pτ
[∑

γtr(st, at) + γH V̂ (sH)
]
− Eτ̂∼pτ̂

[∑
γtr(st, at) + γH V̂ (sH)

]
(45)

= J
π∗H
H − J π̂HH (46)

Using performance difference lemma we can write:

J
π∗H
H − J π̂HH ≤

H∑

t=1

γt−1Es∼dπ̂H
[
V π
∗
H (s)−Qπ∗H (s, π̂H)

]
(47)

≤
H∑

t=1

γt−1Es∼dπ̂H
[
V π
∗
H (s)−Qk(s, π∗H) +Qk(s, π̂H)−Qπ∗H (s, π̂H)

]
(48)

≤
H∑

t=1

γt−1
(
‖Qπ∗H −Qk‖1,dπ̂H×π∗H+‖Qπ∗H −Qk‖1,dπ̂H×π̂H

)
(49)

≤
H∑

t=1

γt−1
(
‖Qπ∗H −Qk‖dπ̂H×π∗H+‖Qπ∗H −Qk‖dπ̂H×π̂H

)
(50)

The second line follows from the fact that Qk(s, π̂H) ≥ Qk(s, π∗H) since π̂H maximizes Qk.The
concentrability assumptions allows us to compare weighted norms under state distribution induced
by any policy ν(s, a) and dπD (s, a) as follows: ‖.‖ν≤

√
C̃‖.‖dπD . We can bound ‖Qπ∗H −Qk‖µ,π

for arbitrary state distribution µ and policy π as:

‖Qπ∗H −Qk‖µ×π = ‖Qπ∗H − T Qk−1 + T Qk−1 −Qk‖ (51)

≤ ‖T Qπ∗H − T Qk−1‖µ×π+‖T Qk−1 −Qk‖µ×π (52)

≤ ‖T Qπ∗H − T Qk−1‖µ×π+
√
C̃‖T Qk−1 −Qk‖dπD (53)

= γ‖Qk−1(·, πQk−1
)−Qπ∗H (·, π∗H)‖P (µ×π)+

√
C̃‖T Qk−1 −Qk‖dπD (54)

17

where P (µ × π) as distribution over S where s, a ∼ µ, s′ ∼ p(s, a). Define πmix =
argmaxa∈A(Qπ

∗
H (s, a), Qk−1(s, a)). Then we have:

‖Qπ∗H −Qk‖ν,π = γ‖Qk−1(., πQk−1
)−Qπ∗H (., π∗H)‖P (µ×π)+

√
|A|C̃‖T Qk−1 −Qk‖dπD (55)

≤
√
C̃‖T Qk−1 −Qk‖dπD+γ‖Qk−1 −Qπ

∗
H‖P (µ×π)×πmix (56)

The second term ‖Qk−1 −Qπ
∗
H‖P (µ×π)×πmix can be expanded via recursion for k times, since the

same analysis holds. We now bound ‖T Qk−1 −Qk‖dπD .
‖T Qk−1 −Qk‖2dπD = LdπD (Qk, Qk−1)− LdπD (T Qk−1, Qk−1) (57)

≤ LD(Qk, Qk−1)− LD(T Qk−1, Qk−1) + 2ε̃m w.p ≥ 1− δ (58)
≤ 2ε̃m (59)

As fitted Q iteration converges k →∞ for γ < 1, we have:

‖Qπ∗H −Qk‖µ×π≤
1− γk
1− γ

√
2ε̃mC̃ + γk

Vmax
1− γ (60)

In this analysis we obtain π̂H by performing fitted Q iteration (k → ∞) under the dataset D.
Therefore our bound for Eqn. 26 from the previous analysis under the current assumptions reduces to:

Eτ∼pτ
[∑

γtr(st, at) + γH V̂ (sH)
]
− Eτ̂∼pτ̂

[∑
γtr(st, at) + γH V̂ (sH)

]
(61)

= J
π∗H
H − J π̂HH (62)

≤ 2(1− γH)

1− γ

(
1

1− γ

√
2ε̃mC̃

)
(63)

≤ C(ε̃m, C̃,H, γ) (64)

Plugging this back in our previous analysis we have the following performance bound for H-step
lookahead policy:

Jπ
∗ − JπH,V̂ ≤ 2

1− γH [C(ε̃m, C̃,H, γ) + γHεv] (65)

where C(ε̃m, C̃,H, γ) = 2(1−γH)
1−γ

(
1

1−γ
√

2ε̃mC̃
)

.

A.4 ARC constrains trajectories close to the parameterized actor

In section 5.1, we use ARC, an iterative importance sampling procedure to solve the constrained
optimization in Eqn. 6. The following lemma shows that the final trajectory distribution output as a
result of finite importance sampling iteration is bounded in total variation to the trajectory distribution
given by the parameterized actor.
Lemma 2. Let pτprior be a distribution over action sequences. Applying M KL-based trust region
steps of size ε to pτprior results in a distribution pτM that satisfies:

DTV (pτprior||pτ) ≤ T
√
ε

2
(66)

Proof. This lemma is adapted from [42] and provided for completeness. Let pτk be the distribution at
the k trust region step. pτ0 = pτprior Using Pinsker’s inequality we have:

DKL(pτk||pτk+1) ≤ ε (67)

DTV (pτk||pτk+1) ≤
√
ε

2
(68)

Using triangle inequality we have:

DTV (pτprior||pτM) ≤M
√
ε

2
(69)

18

B Algorithm Details

B.1 LOOP for online RL

Algorithm 1 LOOP-SAC (for Online RL and Safe RL)

Initialize the parametrized actor πφ, Q-function Qθ, predictive model M̂ψ, empty replay buffer D.
Given planning horizon H.

1: // Training
2: for t = 1..(train_steps) do
3: Select action given by a = ARC(s, πφ). . Use safeARC for safeLOOP
4: Execute a in the environment and observe reward r and new state s′.
5: Store the transition (s, a, r, s′) in replay buffer D.
6: Optimize πφ and Qθ using SAC over replay buffer D.
7: Train model M̂ψ on the replay buffer D until convergence every Km training steps.
8: end for
9: // Evaluation

10: for t = 1..(eval_steps) do
11: Select action given by a = ARC(s, πφ).
12: Execute a in the environment and observe reward r and new state s′.
13: end for

B.2 LOOP for offline RL

Algorithm 2 LOOP-offline

Initialize the parametrized actor πφ, Q-function Qθ, predictive model M̂ψ, empty replay buffer D.
Given planning horizon H.

1: // Training
2: Train model M̂ψ on the replay buffer D till convergence.
3: Run an Offline RL algorithm till convergence on D to learn Qθ and πφ.
4: // Evaluation
5: for t = 1..(eval_steps) do
6: Select action given by a = ARC(st, πφ).
7: Execute a in the environment and observe reward r and new state s′.
8: end for

19

B.3 Actor Regularized Control (ARC)

Eqn. 6 gives a general constrained optimization for policy update. In Eqn. 6, with terminal state-action
value functions,when [pτprior = Uniform , H = 0], we recover the SAC [5] deployment policy, when
[pτprior = πβ , H = 0], we recover the AWAC [45] deployment policy and when πprior = N (0, σ),
we recover the MPPI [35] deployment policy.

In the LOOP framework we use ARC as our trajectory optimization routine to solve Eqn. 6.
Algorithm 3 shows the pseudocode for ARC routine used for Online and Offline RL experiments.

Algorithm 3 Actor Regularized Control (ARC)
Input: sT , πφ
Given the parameterized actor πφ, Q-function Qθ, predictive model M̂ψ, reward model r̂, replay
buffer D, Planning Horizon H, 1-timestep shifted solution from the previous timestep µT−1, ARC
iterations nARC , number of trajectories (population size) N .

1: for i = 1..nARC do
2: R1:N = 0 . Rewards of N trajectories
3: A1:N,1:H = 0 . N action sequences with horizon H
4: for j = 1..N trajectories do
5: // Generate a trajectory with the model
6: s1 = sT
7: for t = 1..H horizon do
8: // Generate actions from a mixture prior
9: Aj,t = at = βπφ(st) + (1− β)N (µT−1t , σ)

10: st+1 = M̂ψ(st, at)
11: end for
12: // Rollout the action sequence P times in each model within the ensemble
13: R = 0
14: for k = 1..Kmodels do
15: for p = 1..P particles do
16: s1 = sT
17: for t = 1..H horizon do
18: at = Aj,t
19: st+1 = M̂ψ(st, at)
20: R = R+ γt−1(1(t = H)Qθ(st, at) + 1(t 6= H)r̂(st, at))
21: end for
22: end for
23: end for
24: //Uncertainty penalized average reward
25: Rj = 1

K

(∑K
k=1(R/P)− βpess

∑
(R/P −∑K

k=1(R
KP))2

)

26: end for
27: µnew,1:H = weighted-mean(A1:N , weights = exp(R1:N/η))
28: Σnew,1:H = weighted-mean((A1:N − µnew)2, weights = exp(R1:N/η))
29: µTi+1 = α ∗ µnew + (1− α)µTi . Update mean
30: ΣTi+1 = α ∗ Σnew + (1− α)ΣTi . Update variance
31: end for
Output: µT = µTnARC+1

βpess is set to zero for Online RL experiments and safe RL experiments where trajectories are scored
by unpenalized average. It is tuned for Offline RL experiments as detailed in Appendix C.

20

B.3.1 ARC for safe-RL

We optimize for the following objective in LOOP for safe RL:

argmaxatEM̂
[
RH,V̂ (st)

]
s.t. max

[K]

H∑

t=0

γtc(st, aT) ≤ d0 (70)

where [K] are the model ensembles, c is the constraint cost function and RH,V̂ is the H-horizon
lookahead objective defined in Eqn. 3. We incorporate safety in the trajectory optimization procedure
following previous work [62, 63]. The pseudocode for safeARC used in safeLOOP is shown in
Algorithm 4.

B.4 Discussion on the choice of terminal value function

LOOP-SAC, LOOP-SARSA and POLO use different ways to learn a terminal value funcion. LOOP-
SARSA is evaluating the "replay buffer policy" instead of the H-step lookahead policy because we
are using off-policy data (where the original SARSA is an on-policy algorithm). We believe this is the
main reason behind its poor performance. Unfortunately, on-policy LOOP-SARSA would be too slow,
due to the need for collecting on-policy data. POLO is formulated to evaluate V π with the model.
However, POLO requires running trajectory optimization during the value function update, which is
computationally expensive. In contrast to these methods, LOOP uses an off-policy algorithm to learn
V ∗. We found that this approach has good performance and it is significantly more computationally
efficient than POLO. An interesting direction of future work could be to try to combine LOOP with
an efficient off-policy evaluation algorithm to estimate V π .

21

Algorithm 4 safeARC
Input: sT , πφ
Given the parameterized actor πφ, Q-function Qθ, predictive model M̂ψ, reward model r̂, replay
buffer D, planning horizon H, 1 timestep shifted solution from the previous timestep µT−1, safety
threshold d0, minimal safe trajectories m, ARC iterations nARC , number of trajectories (population
size) N .

1: for i = 1..nARC do
2: R1:N = 0 . Rewards of N trajectories
3: C1:N = 0 . Cost of N trajectories
4: A1:N,1:H = 0 . N action sequences with horizon H
5: for j = 1..N trajectories do
6: // Generate a trajectory with the model
7: s1 = sT
8: for t = 1..H horizon do
9: // Generate actions from a mixture prior

10: Aj,t = at = βπφ(st) + (1− β)N (µT−1t , σ)

11: st+1 = M̂ψ(st, at)
12: end for
13: // Rollout the action sequence P times in each model within the ensemble
14: R = 0
15: for k = 1..K models do
16: for p = 1..P particles do
17: s1 = sT
18: for t = 1..H horizon do
19: at = Aj,t
20: st+1 = M̂ψ(st, at)
21: R = R+ γt−1(1(t = H)Qθ(st, at) + 1(t 6= H)r̂(st, at))
22: C = C + γt−1(ĉ(st, at))
23: end for
24: end for
25: end for
26: Rj = 1

K

∑K
k=1(R/P) . Average Reward across the ensemble

27: Cj = max[K] max[P](C) . Maximum Cost across the ensemble and particles
28: end for
29: if count(C1:N < d0) < m then
30: µnew = weighted-mean(A1:N , weights = exp(−CN/η))
31: Σnew = weighted-mean((A1:N − µnew)2, weights = exp(−CN/η))
32: . Weighted mean w.r.t neg-cost
33: else
34: safe-idx = {i for Ci < d0}
35: µnew= weighted-mean(Asafe-idx, weights = exp(Rsafe-idx/η))
36: Σnew = weighted-mean(Asafe-idx − µnew)2, weights = exp(Rsafe-idx/η))
37: . Weighted mean w.r.t safe actions
38: end if
39: µTi+1 = α ∗ µnew + (1− α)µTi . Update mean
40: ΣTi+1 = α ∗ Σnew + (1− α)ΣTi . Update variance
41: end for
Output: µT = µTnARC+1

C Experiment Details

We use the same hyperparameters for the underlying off-policy method (SAC) and the ensemble
dynamics models following previous work for LOOP and all the baselines [21, 17, 5]. All the results
presented are averaged over 5 random seeds.

22

C.1 Implementation Details for the Dynamics Model Ensemble

Following [21, 17], we use probabilistic ensembles of dynamics models that capture the epistemic
uncertainty as well as the aleatoric uncertainty in forward predictions [64]. The dynamics model M̂
is comprised of K neural networks. Each individual network is randomly initialized and trained with
the same dataset. Using the transition dataset, we train the dynamics model to predict the next state
as well as the reward. In practice, instead of directly regressing to the next state, we instead predict
∆t+1, where ∆t+1 = st+1 − st parametrized as a Gaussian distribution with a diagonal covariance
matrix. We regress directly to the scalar reward.

C.2 Online RL

Additional details on PenGoal-v1 and Claw-v1: We modify the original Pen-v1 environment 2

to have a narrower range of goals given by: [0.7, 0.7] + N (0, 0.1) and name this environment
as PenGoal-v1. We use the Claw-v1 environment from Nagabandi et al. [21] using the original
implementation3 but we find the scale of rewards to be different from the paper.

Baselines: We use the original implementation for MBPO4. For SAC, we use a public implementa-
tion 5. We use a planning horizon of 3 for PETS-restricted which is the same as LOOP. LOOP-SARSA
is based on the same H-step lookahead idea, but with a terminal value function that is a evaluation of
the replay buffer. The value function is updated using the following SARSA update from the replay
buffer transitions:

T πDQ(st, at) = r(st, at) + γQ(st+1, at+1) ,where (st, at, rt, st+1, at+1 ∼ D) (71)
This baseline is similar to MBOP [33]. The main difference is that in this case the Q-function is
learned via TD-backups for evaluation whereas MBOP uses Monte Carlo Evaluation. For SAC-VE,
we implement H-step value expansion from [15] on top of SAC for a fair comparison. This is
following the value expansions baseline implemented in MBPO [13].

Training Details: For LOOP-SAC we use SAC [5] as the underlying off-policy RL algorithm. Both
the policy network (the parameterized actor) and the Q-function are parameterized by (256, 256)
MLP with ReLU activations. The output of the policy network is a tanh squashed Gaussian. We use
Adam to optimize both the policy and the Q-network with a learning rate of 3e-4. The temperature
for SAC is learned to match a predefined target entropy. The replay buffer has a size of 1e6 and we
use a batch size of 256. The target networks are updated with polyak averaging. Dynamics model
related hyperparameters are listed in Table 2 and ARC related hyperparameters are in Table 3.

Hyperparameter Value
Model Update frequency (Km) 250
Ensemble Size (K) 5
Network Architecture (200,200,200,200)
Model Learning rate 0.001

Table 2: Dynamics Model Hyperparameters

C.3 Offline RL

Baselines: We reimplement the CRR baseline in Pytorch. For PLAS, we use the original implemen-
tation 6. Note that LOOP requires terminal Q-functions which estimate the cumulative value of future
rewards. Some offline RL methods such as CQL will not be suitable to be combined with LOOP
because CQL estimates a conservative lower-bound of the Q-function [31]. For MBOP [33], we
report the results from their paper.

Training Details: For both LOOP-CRR and LOOP-PLAS we use the provided hyperparameters in
the original papers. To optimize for the H-step lookahead objective given in Eqn. 3, we use ARC with

2https://github.com/vikashplus/mj_envs
3https://github.com/google-research/pddm/tree/master/pddm
4https://github.com/JannerM/mbpo
5https://github.com/openai/spinningup
6https://github.com/Wenxuan-Zhou/PLAS

23

Hyperparamater Value
Planning Horizon (H) 3
Population Size (N) 100
Number of Particles (P) 4
Alpha (α) 0.1
Iterations (nARC) 5
Mixture ratio (β) 0.05
Eta (η) 1

Table 3: Online RL: ARC Hyperparameters

1 iteration of Iterative importance sampling and β = 1 in the mixture prior. This is done to ensure
that ARC trajectories are close to the actor trajectory distribution since the estimated Q-functions
are only accurate within the data distribution. For each dataset, We perform an hyperparameter
search over horizons h - [2,4,10], pessimism parameter βpess - [0,0.5,1,5], exponential weighting
temperature 1/η - [0.01,0.03,0.1,1,3,10] and noise standard deviation σ- [0.01,0.05,0.1]. We list the
hyperparameters from the best experiments in Table 1.

Dataset-type Environments LOOP-CRR LOOP-PLAS
h 1/η βpess σ h 1/η βpess σ

random
hopper 2 10.0 0.5 0.4 4 3 0.5 0.4

halfcheetah 2 0.01 5.0 0.4 2 1 0 0.01
walker2d 4 3.0 0.0 0.05 10 10 0 0.05

medium
hopper 2 3.0 1.0 0.01 2 10 0.5 0.01

halfcheetah 2 0.01 0.0 0.01 2 0.01 1.0 0.01
walker2d 2 0.1 0.5 0.05 4 3.0 0 0.01

med-replay
hopper 4 0.03 0.5 0.01 2 3.0 1.0 0.01

halfcheetah 2 1.0 0.5 0.01 2 0.03 5.0 0.01
walker2d 4 1.0 0.5 0.1 4 0.01 0.5 0.01

med-expert
hopper 4 0.1 1.0 0.05 4 0.1 5.0 0.01

halfcheetah 2 0.01 5.0 0.01 2 0.01 0.5 0.05
walker2d 4 0.01 1.0 0.01 2 10.0 1.0 0.01

Table 4: Hyperparameters used in LOOP behavior policy during evaluation for Offline RL methods

C.4 Safe RL

Details on the Environments: For benchmarking safety environments we use the OpenAI safety
gym environments [55]. We use a modified observation space for the agents where each agent
observes its readings from velocimeter, magnetometer, and gyro sensors, LiDAR observations for
the obstacles, and the goal location to a total of a 26-dimensional observation space. We also use
an RC-car environment [56] in safe RL experiments shown in Figure 7. RC-car environment has a
6-dimensional observation space consisting of car’s position and rate of change of its position. It’s
action space comprises of throttle and steer command.

Figure 7: Safety environments. Left to Right: PointGoal1, CarGoal1, Drift-v0

24

Baselines: We compare against CPO [57], LBPO [58], and PPO-lagrangian [59]. We use the original
implementation for LBPO7 and the safety benchmark [55] for CPO and PPO-lagrangian. All of the
three baselines require a threshold to be set in order to optimize for safety. SafeLOOP optimizes for
in-horizon safety whereas the baselines optimize for the infinite-step cumulative discounted return,
so it becomes difficult to compare the methods directly. We design safeLOOP to optimize for 0 cost
within the planning horizon and use the asymptotic safety cost reached by safeLOOP as the threshold
for the baselines. We see that safeLOOP can reach average infinite horizon cost less than 10 which is
lower than the threshold of 25 used in the official benchmark.

Training details: We use the safeARC algorithm presented in Algorithm 4 to solve the constrained
optimization objective in Eqn. 10. The ARC parameters are the same as given in Table 3 with the
Iterations(N) changed to 8 and Planning horizon(H) changed to 8. For OpenAI safety environments
we use an action repeat of 5 across our method and the baselines.

7https://github.com/hari-sikchi/LBPO

25

D Additional Experiments

D.1 Online RL experiments for additional environments

Figure 8 shows the comparison of LOOP-SAC with baselines on additional tasks InvertedPendulum-
v2, Swimmer, Hopper-v2 and TruncatedHumanoid-v2. LOOP-SAC is significantly more sample
efficient than SAC as we observed in Figure 3. PETS-restricted has poor performance due to
planning over a limited horizon. LOOP-SAC outperforms SAC-VE and is competitive to MBPO,
except in Humanoid-v2 where MBPO outperforms. LOOP-SARSA has a poor performance across
environments.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Timesteps 1e4

0

250

500

750

1000

A
ve

ra
ge

 R
ew

ar
d

InvertedPendulum-v2

0.0 0.5 1.0 1.5 2.0

Timesteps 1e4

0

100

200

300

Swimmer-v2

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e5

0

1000

2000

3000

4000
Hopper-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Timesteps 1e5

0

1000

2000

3000

4000

5000

Humanoid-v2

LOOP-SAC (ours) MBPO SAC LOOP-SARSA SAC-VE PETS-restricted

Figure 8: Comparisons of LOOP and the baselines for online RL for InvertedPendulum-v2, Swimmer,
Hopper-v2 and TruncatedHumanoid-v2. LOOP-SAC is significantly more sample efficient than SAC.
The dashed line indicates the performance of SAC at 1 million timesteps.

D.2 Comparison to modified POLO

In this section, we compare against POLO for Claw-v0 and HalfCheetah-v0 in Figure 9. The
author’s implementation of POLO is unavailable so we tried our best to implement it. To have a fair
comparison with LOOP, we keep the hyperparameters as close to LOOP as possible and use a learned
model; since the code for POLO is not available, we are unsure what hyperparameters were used in
the original experiments. The performance of POLO is pretty low compared to LOOP, potentially due
to the limited computation of CEM used for the value function update. Potentially the performance
of POLO would be better with much larger computational resources than what we have available.

We would also like to highlight the difference in computational efficiency in LOOP and POLO.
POLO requires an additional trajectory optimization procedure for value function computation, which
is very computationally expensive. In contrast, LOOP learns a parameterized policy and value
function to make the value function computation significantly faster. In addition, normally for online
planning, we can warm start from the results from the previous time step (“amortization"); LOOP
and PETS [17] take advantage of this optimization. In contrast, POLO cannot take advantage of this
amortization during optimization for the value computation because we sample states IID from the
replay buffer. Our implementation of POLO (after reasonable optimizations) takes ≈84 hours for
100k steps of HalfCheetah on a single NVIDIA 1080 GPU whereas LOOP takes ≈7 hours (12x less
computation) while taking ≈1/5 the memory consumption of POLO.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Timesteps 1e5

0

2000

4000

6000

8000

10000

12000

14000

A
ve

ra
ge

 R
ew

ar
d

HalfCheetah-v2

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Timesteps 1e5

15000

10000

5000

0

5000

10000

Claw-v1

LOOP-SAC (ours) POLO MBPO SAC LOOP-SARSA

Figure 9: Comparisons of LOOP with modified-POLO for online RL for HalfCheetah-v2 and Claw-
v1. POLO demonstrates poor performance which might be attributed to one of the reasons mentioned
above.

26

D.3 Offline RL experiments for D4RL

Table 5 shows the performance of LOOP on four types of D4RL locomotion datasets. The random
dataset is generated by a randomly initialized policy. The medium dataset is generated by executing a
“medium quality” policy trained up to half of the final performance at convergence. The medium-
replay dataset is the replay buffer of the medium quality policy. The medium-expert dataset is
generated by a medium quality policy and a fully trained policy.

Dataset Env CRR LOOP Improve% PLAS LOOP Improve% MBOP
CRR PLAS

random
hopper 10.40 10.68 2.7 10.35 10.71 3.5 10.8

halfcheetah 4.23 7.55 78.5 26.05 26.14 0.3 6.3
walker2d 1.94 2.04 5.2 0.89 2.83 218.0 8.1

medium
hopper 65.73 85.83 30.6 32.08 56.47 76.0 48.8

halfcheetah 41.14 41.54 1.0 39.33 39.54 0.5 44.6
walker2d 69.98 79.18 13.1 46.20 52.66 14.0 41.0

med-replay
hopper 27.69 29.08 5.0 29.29 31.29 6.8 12.4

halfcheetah 42.29 42.84 1.3 43.96 44.25 0.7 42.3
walker2d 19.84 27.30 37.6 35.59 41.16 15.7 9.7

med-expert
hopper 112.02 113.71 1.5 110.95 114.32 3.0 55.1

halfcheetah 21.48 24.19 12.6 93.08 98.16 5.5 105.9
walker2d 103.77 105.76 1.9 90.07 99.03 9.9 70.2

Table 5: Normalized scores for LOOP on the D4RL datasets comparing to the underlying offline RL
algorithms and a baseline MBOP. LOOP improves the base algorithm across various types of datasets
and environments.

D.4 Pessimism ablation for Offline RL

Table 6 shows an ablation of the pessimism term βpess in Eqn. 9 as used in LOOP for Offline RL
experiments. We note that the pessimistic term is not itself one of our contributions; this pessimistic
term was used in previous works in model-based offline RL like [49, 50] which learn a policy given
the data in an uncertainty penalized MDP. We observe that being pessimistic allows us to control
incorrect extrapolation and obtain higher returns in most of the environments.

Dataset
Env LOOP LOOP β∗ LOOP LOOP β∗

CRR CRR PLAS PLAS
(β = 0) (β = β∗) (β = 0) (β = β∗)

random
hopper 10.31 10.68 0.5 10.67 10.71 0.5

halfcheetah 5.12 7.55 5.0 26.14 26.14 0.0
walker2d 2.04 2.04 0.0 2.83 2.83 0.0

medium
hopper 78.56 85.83 1.0 54.97 56.47 0.5

halfcheetah 41.54 41.54 0.0 38.01 39.54 1.0
walker2d 75.21 79.18 0.5 52.66 52.66 0.0

med-replay
hopper 28.28 29.08 0.5 31.08 31.29 1.0

halfcheetah 42.71 42.84 0.5 44.01 44.25 5.0
walker2d 23.17 27.30 0.5 32.99 41.16 0.5

med-expert
hopper 104.57 113.71 1.0 98.87 114.32 5.0

halfcheetah 23.84 24.19 5.0 94.19 98.16 0.5
walker2d 104.57 105.76 1.0 97.87 99.03 1.0

Table 6: Normalized scores for LOOP on the D4RL datasets ablating the pessimism parameter.

D.5 Empirical analysis for ARC

In this section, we aim to verify how the ARC and its specfic hyperparameters affect the performance
of LOOP for both the online RL and offline RL settings.

27

D.5.1 Ablation Study on Actor Regularized Control

In this experiment, we compare the performance of LOOP with ARC to a variant of LOOP which
optimize Eqn. 3 without any constraint using CEM in the Online RL setting. CEM starts the
optimization from the mean action sequence from the previous environment time step. It does
not include actions proposed by the parameterized actor in the population. During training, we
measure the actor-divergence defined to be the L2 distance between the proposed action means of the
parameterized actor and the CEM output.

The results are shown in Figure 10. The training process sometimes become unstable in the absence
of ARC. We also observe that ARC empirically reduces actor-divergence during training.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e4

0

200

400

600

800

1000

A
ve

ra
ge

 R
ew

ar
d

InvertedPendulum-v2

0.00 0.25 0.50 0.75 1.00 1.25
Timesteps 1e5

0

2000

4000

6000

8000

10000

12000

HalfCheetah-v2

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e5

0

1000

2000

3000

4000
Hopper-v2

0 1 2 3
Timesteps 1e5

0

1000

2000

3000

4000

5000

6000
Walker-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e4

0

1

2

3

4

5

6

A
ct

or
 D

iv
er

ge
nc

e

InvertedPendulum-v2

0.00 0.25 0.50 0.75 1.00 1.25
Timesteps 1e5

0.0

0.5

1.0

1.5

2.0

2.5

HalfCheetah-v2

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e5

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Hopper-v2

0.0 0.5 1.0 1.5 2.0 2.5
Timesteps 1e5

0

1

2

3

4

5

6

7
Walker-v2

LOOP-SAC-noARC LOOP-SAC

Figure 10: Top: We illustrate the effect of ARC on the performance for online-RL. Without ARC, the
performance is worse and the training becomes unstable. Bottom: We illustrate that ARC effectively
reduces the actor-divergence between the H-step lookahead policy and the parameterized actor.

D.5.2 ARC runtime

ARC runs at 14.3 Hz for the HalfCheetah-v1 environment with the hyperparameters specified in
Table 3 on a machine with Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz and NVIDIA GeForce
GTX 1080 Ti with a GPU memory consumption of 1500 MB.

D.5.3 Effect of β in ARC for Online RL

We see in Section 5.1 that ARC uses a mixture distribution of actor and 1-step shifted output from the
previous timestep as the prior given by:

pτprior = βπθ + (1− β)N (µt−1, σ)

where β is the mixture coefficient.

In this experiment, we compare ARC with different parameters of beta for online RL. We observe
empirically in Figure 11 that ARC with β < 1 is more suitable to online RL as it is less restrictive
and allows for a greater improvement on the parametric actor.

D.5.4 Effect of β in ARC for in Offline RL

We use ARC with 1 importance sampling iteration for offline RL. In the following experiment, we
compare ARC over 1 importance sampling iteration with β = 1 against ARC over 5 iterations with
β = 0.05. The latter version utilizes the solution obtained by ARC in previous timestep which may
potentially select trajectories that lead to out-of-distribution states with overestimated value. We see

28

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e5

0

2000

4000

6000

8000

10000

12000

A
ve

ra
ge

 R
ew

ar
d

HalfCheetah-v2

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Timesteps 1e5

0

500

1000

1500

2000

2500

3000

3500

4000
Hopper-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Timesteps 1e4

0

200

400

600

800

1000

1200
InvertedPendulum-v2

beta=1 beta=0.5 beta=0.05

Figure 11: Effect of β in Online RL experiments. A high β constrains output actions to be close to
actor and can restrict policy improvement.

in Table 7 that offline RL results for LOOP using ARC with β = 0.05 has much worse performance
than ARC with β = 1 and also performs worse than the underlying offline RL method.

Dataset Env CRR LOOP-CRR LOOP-CRR PLAS LOOP-PLAS LOOP-PLAS
(β=0.05) (β=1.0) (β=0.05) (β=1.0)

random
hopper 10.40 7.50 10.68 10.35 7.66 10.71

halfcheetah 4.23 2.32 7.55 26.05 5.21 26.14
walker2d 1.94 2.43 2.04 0.89 1.24 2.83

medium
hopper 65.73 15.02 85.83 32.08 9.64 56.47

halfcheetah 41.14 3.09 41.54 39.33 2.99 39.54
walker2d 69.98 6.02 79.18 46.20 4.25 52.66

med-replay
hopper 27.69 8.78 29.08 29.29 6.8 31.29

halfcheetah 42.29 3.10 42.84 43.96 4.68 44.25
walker2d 19.84 6.02 27.30 35.59 6.89 41.16

med-expert
hopper 112.02 8.78 113.71 110.95 7.48 114.32

halfcheetah 21.48 3.09 24.19 93.08 4.10 98.16
walker2d 103.77 6.01 105.76 90.07 3.01 99.03

Table 7: Effect of β in offline-LOOP for the offline RL experiments. A low β can potentially select
trajectories with overestimated returns.

D.6 Benefits of deploying H-step lookahead in Online RL

In LOOP we use a H-step lookahead policy for both exploration and evaluation. In this experiment,
we run the Online RL experiments with LOOP only used for evaluation but not for exploration similar
to the Offline RL experiments. This baseline is named SAC-evalLOOP. From Figure 12, LOOP-SAC
outperforms both SAC-evalLOOP and SAC, which shows the benefits of H-step lookahead in LOOP
during training-time deployment.

0.0 0.5 1.0 1.5 2.0

Timesteps 1e4

300

400

500

600

700

800

900

1000

1100

A
ve

ra
ge

 R
ew

ar
d

InvertedPendulum-v2

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e5

0

2000

4000

6000

8000

10000

12000

HalfCheetah-v2

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e5

0

500

1000

1500

2000

2500

3000

3500

4000
Hopper-v2

SAC-evalLOOP SAC LOOP-SAC

Figure 12: We compare the performance of LOOP-SAC to SAC-Online and SAC-Online-LOOPeval.
LOOP-SAC outperforms both baselines and suggests that LOOP benefits from the H-step lookahead
policy during training-time deployment.

29

D.7 Using Offline RL Algorithms with LOOP for Online RL

In Section 5.1, we mentioned that naively combining H-step lookahead policy with an off-policy
algorithm will lead to the Actor Divergence issue. One potential solution we have considered besides
ARC is to use an Offline RL algorithm as the underlying off-policy algorithm. Offline RL algorithm
are designed to train a policy over a static dataset that is not collected by the parameterized actor
which in principle should mitigate the instability issues of the value function learning caused by Actor
Divergence. Note that in this case we are considering an Online RL problem setting with the help of
Offline RL algorithms.

We investigate a combination of LOOP with Offline RL methods MOPO [49] and CRR [54]. We
reimplement MOPO in PyTorch (originally in Tensorflow) for compatibility with other modules of
LOOP. We also modify the dynamics model activations from Swish to ReLU. We use the same CRR
implementation as the Offline RL experiments discussed above. We adapt MOPO and CRR to the
Online RL setting by updating the policy and the value function for 20 gradient updates for each
environment timestep. From Figure 13, LOOP-SAC has the most consistent performance across
all the environments. LOOP-CRR and LOOP-MOPO work well in some cases but are significantly
worse than LOOP-SAC in the others.

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e5

0

2000

4000

6000

8000

10000

12000

A
ve

ra
ge

 R
ew

ar
d

HalfCheetah-v2

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e5

0

1000

2000

3000

4000
Hopper-v2

0 1 2 3
Timesteps 1e5

0

1000

2000

3000

4000

5000

6000
Walker-v2

0 1 2 3
Timesteps 1e5

2000

0

2000

4000

6000
Ant-v2

LOOP-CRR LOOP-MOPO LOOP-SAC

Figure 13: Using offline RL methods like CRR (model-free) or MOPO (model-based) with LOOP
does not lead to consistently better performance.

Model Update frequency (Km) 250

Ensemble Size 5

Network Architecture MLP with 4 hidden layers of size 200

Model Horizon (H) 3

Model Learning rate 0.001

Policy update per environment step (R) 20

Replay Buffer Size 1e6

Gradient updates per timestep(R) 20

Pessimism parameter(λ) 1

Model rollout length 1

Table 8: LOOP-MOPO Hyperparameters

30

