
Generalization to Real Robots772

We were unable to validate our method on real robots due to the current COVID-19 pandemic. We773

believe our proposed method, LOOP, will also generalize to real-world robots for the following774

reasons.775

LOOP achieves better simulation results than prior work which has been demonstrated to776

work on real robots.777

More sample efficient than SAC: SAC [5] has been demonstrated to work well on real robots and is778

widely used in a number of robotics application [2, 60, 61]. We build upon SAC without making any779

algorithmic assumptions or having additional requirements (such as using a ground truth dynamics780

model). Also, Figure 3 shows that LOOP is consistently more sample efficient than SAC. This implies781

that it requires less deployment time of robot in real world and thus decreases wear-and-tear to the782

hardware. Hence we believe LOOP should generalize to real robots with the added improvement in783

sample efficiency.784

Less runtime than PDDM: PDDM [21] was demonstrated to work on physical robots. In terms of785

trajectory optimization, LOOP optimizes for a shorter horizon utilizing its terminal value function and786

can achieve a better runtime performance on the real robot. In addition, PDDM also requires more787

hyperparameter tuning than LOOP as it sets different hyperparameters for different environments.788

LOOP is evaluated over a wide range of simulated tasks and RL domains.789

LOOP outperform the baselines across a range of simulated tasks consisting of Locomotion, Manipu-790

lation and Navigation experiments. Section 6 shows that LOOP shows improved sample efficiency791

in both the Online RL and Safe RL domain, making it a preferable choice to deploy with physical792

robots. Offline RL is an important problem in robotics as it allows for learning behaviors from static,793

previously collected datasets. LOOP shows versatility by improving over the performance of the794

parameterized actor in Offline RL as well.795

LOOP uses more interpretable policies that are more amenable to safety increasing its utility796

in real world applications797

LOOP uses semiparameteric policies in the form of H-step lookahead. This way of online planning798

allows to interpret and reason about the outcome of the policy, while giving us flexibility to incorporate799

constraints during deployment. Incorporating constraints during deployment is important in physical800

robots where constraints could be safety considerations (possibly non-stationary). Online planning801

also allow LOOP to adapt faster to changing dynamics due to wear and tear of robot or any other802

phenomena.803

LOOP requires less hyperparameter-tuning for each task compared to model-based804

alternatives.805

Tuning hyperparameters in real world requires multiple environment runs for the experiments and806

is a non-trivial task. LOOP for Online RL works with a single set of hyperparameters across all807

environments and did not require much hyperparameter tuning. In contrast, other ways of utilizing808

model in off-policy methods like MBPO relies on hyperparameters specifically tuned for each809

environment as can be seen in Appendix C from [13]. The ease of hyperparameter tuning in LOOP810

will likely make it easier to be applied to real-robots compared to the previous works.811
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