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A PROOF OF THEOREM 1

Theorem. Let Laux(✓t) and Lprim(✓t) represent the full batch losses of the auxiliary tasks and pri-

mary task respectively at step t. We assume the gradients of Laux
and Lprim

are Lipschitz continuous

with constant L > 0. Following the update rule : ✓t+1 = ✓t �↵ · g̃aux, where ↵  1
L is the learning

rate, we are guaranteed :

Laux(✓t+1)  Laux(✓t)

Lprim(✓t+1)  Lprim(✓t)

If ⌘� = 0 and ⌘?, ⌘+ � 0

Proof. Let Vt 2 Rk⇥D be the orthonormal matrix whose rows span the per-example primary task
gradients J⇤ at timestep t. The projections of the average primary task gradient gprim = 1

m

Pm
i=1 J

⇤
i,:

and average auxiliary task gradient gaux at iteration t are

pprim = Vt

�
gprim

�T

paux = Vt

�
gaux

�T

pprim and paux will agree on some directions (same sign on those components). We use the operator
[x]+ to mark these directions of agreement. This operator preserves components that agree and
sets those that disagree to zero. As an example given pprim = [1, 1,�1] and paux = [1, 3, 10],
[pprim]+ = [1, 1, 0] and [paux]+ = [1, 3, 0]. For directions that disagree (different signs of the
respective components), we introduce the operator [x]�. In the above example [pprim]� = [0, 0,�1]
and [paux]� = [0, 0, 10]. Note that our operators are defined by comparing two vectors x1 and x2,
Our operators have the following properties by definition :

x = [x]� + [x]+

and
[x]+ ? [x]�, [x1]± ? [x2]⌥

From Equation 2 :
g̃aux = ⌘+g

+
aux

+ ⌘�g
�
aux

+ ⌘?g
?
aux

We can re-write this in terms of [x]± as :

g̃aux = ⌘+[paux]+ + ⌘�[paux]� + ⌘?
�
gaux � paux

�

We now proceed to show the effect of the gradient descent update below on Laux(✓t+1) and
Lprim(✓t+1).

✓t+1 = ✓t � ↵ · g̃aux (3)

How does this update affect the loss on the primary task loss Lprim(✓t+1)?

Lprim(✓t+1) = Laux(✓t � ↵ · g̃aux)

⇡ Lprim(✓t)� ↵
�
g̃aux

�T
gprim (First order Taylor Expansion)

= Lprim(✓t)� ↵

✓
⌘+[paux]+ + ⌘�[paux]� + ⌘?g

?
aux

◆T

gprim

= Lprim(✓t)� ↵

✓
⌘+[paux]+ + ⌘�[paux]� + ⌘?g

?
aux

◆T✓
[pprim]+ + [pprim]�

◆

= Lprim(✓t)� ↵

✓
⌘+

✓
[paux]

T
+[pprim]+ + [paux]

T
+[pprim]�

◆
+ ⌘�

✓
[paux]

T
�[pprim]+ + [paux]

T
�[pprim]�

◆◆

= Lprim(✓t)� ↵

✓
⌘+[paux]

T
+[pprim]+ + ⌘�[paux]

T
�[pprim]�

◆

 Lprim(✓t) (if ⌘�  0, ⌘?, ⌘+ � 0)

12



Under review as a conference paper at ICLR 2021

Note that in going from line 3 to 4 in the proof above, we use the fact that
�
g?

aux

�T
gprim = 0 since

g?
aux

lies outside the subspace and gprim lies inside it. For the last step of the proof, we use the
observations below :

[paux]+[pprim]+ � 0 since these directions agree in sign
[paux]�[pprim]�  0 since these directions disagree in sign
[paux]+[pprim]� = 0 by the property of the [x]± operator
[paux]�[pprim]+ = 0 same motivation as above

How does Equation 3 affect the auxiliary task loss Laux(✓t+1)?

Laux(✓t+1) = Laux(✓t � ↵ · g̃aux)

⇡ Laux(✓t)� ↵
�
g̃aux

�T
gaux (First order Taylor Expansion)

= Laux(✓t)� ↵
�
⌘?g

?
aux

+ ⌘+g
+
aux

+ ⌘�g
�
aux

�T �
g?

aux
+ g+

aux
+ g�

aux

�

= Laux(✓t)� ↵
�
⌘?kg?

aux
k2 + ⌘+kg+

aux
k2 + ⌘�kg�

aux
k2
�

(Cross terms cancel due to orthogonality)

 Laux(✓t) (If ⌘�, ⌘?, ⌘+ � 0)

Thus, choosing ⌘� = 0 ensures that we are minimizing both Laux(✓t) and Lprim(✓t). We can
combine this with the constraint on ↵  1

L to derive convergence guarantees after some T steps as
in optimization literature.

B RANDOMIZED MATRIX THEORY

Algorithm 2: randomized lowrank approx : Construct low rank approximation
Require : J 2 Rm⇥D : Input Matrix
Require : k : Rank of subspace

⇧ ⇠ N (0, I) 2 Rk⇥m

C = ⇧J
V  Gram Schmidt(C)

Return : V 2 Rk⇥D : Low rank approximation of J

The Gram Schmidt procedure orthogonalizes the rows of an input matrix.

C MORE EXPERIMENTAL DETAILS

Image Classification For MultiCifar100, unlike Rosenbaum et al. (2017); Yu et al. (2020) who
use a 500-100 train-test split for examples under each fine-grained CIFAR 100 label, we include a
validation set and therefore opt for a 400-100-100 train-validation-test split. We test on all 1000 test
examples per class.

For Cat-vs-Dog, we use 100 examples from the training set as validation and test on all 1000 test
examples per-class.

For Image Classification experiments, we perform pre-training with a learning rate of 1e-4 for all
experiments and finetuning learning rate of 5e-4. These values were selected after coarse hyper-
parameter search. In both pre-training and finetuning settings, we decay the learning rate by 0.5 if
the validation loss has not improved over 4 epochs, up till a minimum learning rate of 1e-5. we use
the Adam Optimizer (Kingma & Ba, 2014) with � = (0.9, 0.999). We clip all gradient norms to 1.0
before performing gradient descent. We cross-validated dropout rates within the set {0.05, 0.1, 0.2,
0.3} for both pre-training and finetuning steps. We cross validate ⌘prim based on the relative sizes of
primary and auxilary task datasets. All experiments are averaged over 5 random seeds.

Medical Imaging Transfer Table 5 presents a more detailed breakdown of the ChexPert task. For
0.5% of Imagenet, our best performing configuration was ⌘aux = (1.0, 0.0,�1.0). We did not use
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the primary task gradient directly for pre-training so ⌘prim = 0.0 for all cases. For ATTITUD, we
use the same learning rates as in the Image classification setup above. For the No-Pretraining and
Vanilla pretraining we cross-validated the learning rates for both finetuning and pre-training from
the set {1e-3, 1e-4}. We cross-validated the same list of dropout values above.

Method No-Pretraining Pretrained w Imgnet Ours (0.5% Imgnet) Ours (1% Imgnet)
Atelectasis 76.0 ± 1.82 79.0 ± 3.66 81.6 ± 1.38 81.8±0.80

Cardiomegaly 74.9 ± 2.34 75.8 ± 4.04 78.0 ± 2.13 80.7±1.79

Consolidation 83.2 ± 2.26 85.3±1.86 85.6±2.32 84.9 ± 1.36
Edema 79.5 ± 1.27 82.6 ± 0.76 85.2±1.23 84.7 ± 1.78

P. Effusion 77.9 ± 1.88 84.4±0.75 83.4 ± 1.80 84.3±0.65

Table 5: Results on ChexPert-5k tasks measured by average AUC (Area Under Roc-Curve)

Text Classification For our NLP experiments, we tried limiting the number of layers we applied
ATTITUD to. We achieved good performance without applying ATTITUD to the word embedding
layers (these were updated with untouched auxiliary task gradients). We cross-validated ⌘prim =
{0.01, 0.05, 0.0025}
For all experiments involving ATTITUD, We cross-validate the following choices of the subspace
size k 2 {5, 10, 20} from J⇤ 2 Rm⇥D using m 2 {32, 64}. We recompute the subspace every 10
steps for vision experiments and every 4 steps for NLP experiments. We performed early stopping
for all experiments if no improvement after 10 epochs.

Ablation of Fraction of Norm within Subspace The left pane of Figure 3 reinforces our intuition
and confirms that our choice of the top-k singular vectors (randomized svd) gives the best accuracy
as averaged across 5 seeds. random is the basis spanned by k randomly chosen orthogonal vectors in
RD, unit avg grad is the basis spanned by the average primary task gradient whilst canonical uses
the per-parameter basis. We use the fraction of the norm of sample gradients within a subspace as
indicators of how semantically meaningful that choice of subspace is. We expect that a semantically

meaningful choice of basis will achieve better generalization performance because it captures the
essential parts of the gradient with k ⌧ D . canonical trivially captures all the norm of the sampled
gradient vectors but because k = D, it generalizes poorly. Notice that only small fractions of the
norms of sample primary and auxiliary task average gradients lie in the subspace for random and
unit avg grad, whilst significant fractions lie in randomized svd.

Figure 3: Experiment conducted on Cat-vr-Dog Cifar10 dataset. We use subspace size k = 5.
Left Averaged accuracy across 5 seeds of different choices of basis. Our choice, randomized svd
performs best. Right We look at the fraction of the norm of gaux within each subspace (dashed line).
We also do so for a randomly sampled mini-batch of the primary task (solid line).
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