
Appendix of “TransGAN: Two Pure Transformers
Can Make One Strong GAN, and That Can Scale Up”

A Implementation of Data Augmentation
We mainly follow the way of differentiable augmentation to apply the data augmentation on our
GAN training framework. Specifically, we conduct {Translation, Cutout, Color} augmentation
for TransGAN with probability p, while p is empirically set to be {1.0, 0.3, 1.0}. However, we find
that Translation augmentation will hurt the performance of CNN-based GAN when 100% data is
utilized. Therefore, we remove it and only conduct {Cutout, Color} augmentation for AutoGAN.
We also evaluate the effectiveness of stronger augmentation on high-resolution generative tasks (E.g.
256 × 256), including random-cropping, random hue adjustment, and image filtering.
Moreover, we find image filtering helps remove the boundary artifacts in a very early stage of
training process, while it takes longer training iterations to remove it in the original setting.

B Detailed Architecture Configurations
We present the specific architecture configurations of TransGAN on different datasets, shown in
Table 1, 2, 3, 4. For the generator architectures, the “Block” represents the basic Transformer Block
constructed by self-atention, Normalization, and Feed-forward MLP. “Grid Block” denotes the Trans-
former Block where the standard self-attention is replaced by the propose Grid Self-Attention,
with grid size equals to 16. Upsampling layer represents Bicubic Upsampling by default. The
“input_shape" and “output_shape" denotes the shape of input feature map and output feature map,
respectively. For the discriminator architectures, we use “Layer Flatten” to represent the process of
patch splitting and linear transformation. In each stage, the output feature map is concatenated with
another different sequence, as described in Sec. 3.2. In the final stage, we add another CLS token and
use a Transformer Block to build correspondence between CLS token and extracted representation.
In the end, only the CLS token is taken by the Classification Head for predicting real/fake. For
low-resolution generative tasks (e.g., CIFAR-10 and STL-10), we only split the input images into two
different sequences rather than three and only two stages are built as well.

C Failure Cases Analysis
Since TransGAN shows inferior FID scores compared to state-of-the-art ConvNet-based GAN
on high-resolution synthesis tasks, we try to visualize the failure cases of TransGAN on CelebA-
HQ 256 × 256 dataset, to better understand its drawbacks. As shown in Fig. 1, We pick several
representative failure examples produced by TransGAN. We observe that most failure examples are
from the “wearing glasses” class and side faces, which indicates that TransGAN may also suffer from
the imbalanced data distribution issue, as well as the issue of insufficient training data. We believe
this could be also a very interesting question and will explore it further in the near future.

Figure 1: Analyzing the failure cases produced by TransGAN on High-resolution synthesis tasks.

D Training Cost
We include the training cost of TransGAN on different datasets, with resolutions across from 32× 32
to 256× 256, shown in Table 5. The largest experiment costs around 3 days with 32 V100 GPUs.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.



Table 1: Architecture configuration of TransGAN on CIFAR-10 dataset.

Generator
Stage Layer Input Shape Output Shape

- MLP 512 (8× 8)× 1024

1

Block (8× 8)× 1024 (8× 8)× 1024
Block (8× 8)× 1024 (8× 8)× 1024
Block (8× 8)× 1024 (8× 8)× 1024
Block (8× 8)× 1024 (8× 8)× 1024
Block (8× 8)× 1024 (8× 8)× 1024

2

PixelShuffle (8× 8)× 1024 (16× 16)× 256
Block (16× 16)× 256 (16× 16)× 256
Block (16× 16)× 256 (16× 16)× 256
Block (16× 16)× 256 (16× 16)× 256
Block (16× 16)× 256 (16× 16)× 256

3
PixelShuffle (16× 16)× 256 (32× 32)× 64

Block (32× 32)× 64 (32× 32)× 64
Block (32× 32)× 64 (32× 32)× 64

- Linear Layer (32× 32)× 64 32× 32× 3

Discriminator
Stage Layer Input Shape Out Shape

- Linear Flatten 32× 32× 3 (16× 16)× 192

1

Block (16× 16)× 192 (16× 16)× 192
Block (16× 16)× 192 (16× 16)× 192
Block (16× 16)× 192 (16× 16)× 192

AvgPooling (16× 16)× 192 (8× 8)× 192
Concatenate (8× 8)× 192 (8× 8)× 384

2

Block (8× 8)× 384 (8× 8)× 384
Block (8× 8)× 384 (8× 8)× 384
Block (8× 8)× 384 (8× 8)× 384

-

Add CLS Token (8× 8)× 384 (8× 8 + 1)× 384
Block (8× 8 + 1)× 384 (8× 8 + 1)× 384

CLS Head 1× 384 1

Table 2: Architecture configuration of TransGAN on STL-10 dataset.

Generator
Stage Layer Input Shape Output Shape

- MLP 512 (12× 12)× 1024

1

Block (12× 12)× 1024 (12× 12)× 1024
Block (12× 12)× 1024 (12× 12)× 1024
Block (12× 12)× 1024 (12× 12)× 1024
Block (12× 12)× 1024 (12× 12)× 1024
Block (12× 12)× 1024 (12× 12)× 1024

2

PixelShuffle (12× 12)× 1024 (24× 24)× 256
Block (24× 24)× 256 (24× 24)× 256
Block (24× 24)× 256 (24× 24)× 256
Block (24× 24)× 256 (24× 24)× 256
Block (24× 24)× 256 (24× 24)× 256

3
PixelShuffle (24× 24)× 256 (48× 48)× 64

Block (48× 48)× 64 (48× 48)× 64
Block (48× 48)× 64 (48× 48)× 64

- Linear Layer (48× 48)× 64 48× 48× 3

Discriminator
Stage Layer Input Shape Out Shape

- Linear Flatten 48× 48× 3 (16× 16)× 192

1

Block (24× 24)× 192 (24× 24)× 192
Block (24× 24)× 192 (24× 24)× 192
Block (24× 24)× 192 (24× 24)× 192

AvgPooling (24× 24)× 192 (12× 12)× 192
Concatenate (12× 12)× 192 (12× 12)× 384

2

Block (12× 12)× 384 (12× 12)× 384
Block (12× 12)× 384 (12× 12)× 384
Block (12× 12)× 384 (12× 12)× 384

-

Add CLS Token (12× 12)× 384 (12× 12 + 1)× 384
Block (12× 12 + 1)× 384 (12× 12 + 1)× 384

CLS Head 1× 384 1

E Memory Cost Comparison
We compare the GPU memory cost between standard self-attention and grid self-attention. Our
testbed is set on Nvidia V100 GPU with batch size set to 1, using Pytorch V1.7 environment. We
evaluate the inference cost of these two architectures, without calculating the gradient. Since the
original self-attention will cause out-of-memory issue even when batch size is set to 1, we reduce the
model size on (256× 256) resolution tasks to make it fit GPU memory, and apply the same strategy
on 128× 128 and 64× 64 architectures as well. When evaluating the grid self-attention, we do not
reduce the model size and only modify the standard self-attention on the specific stages where the
resolution is larger than 32× 32, and replace it with the proposed Grid Self-Attention. As shown in
in Figure 2, even the model size of the one that represents the standard self-attention is reduced, it
still costs significantly larger GPU memory than the proposed Grid Self-Attention does.

0

10000

20000

30000

64x64 128x128 256x256

Standard Grid

Memory Cost

Figure 2: Memory cost comparison between standard self-attention and grid self-attention

2



Table 3: Architecture configuration of TransGAN on CelebA (128× 128) dataset.

Generator
Stage Layer Input Shape Output Shape

- MLP 512 (8× 8)× 1024

1

Block (8× 8)× 1024 (8× 8)× 1024
Block (8× 8)× 1024 (8× 8)× 1024
Block (8× 8)× 1024 (8× 8)× 1024
Block (8× 8)× 1024 (8× 8)× 1024
Block (8× 8)× 1024 (8× 8)× 1024

2

Upsampling (8× 8)× 1024 (16× 16)× 1024
Block (16× 16)× 1024 (16× 16)× 1024
Block (16× 16)× 1024 (16× 16)× 1024
Block (16× 16)× 1024 (16× 16)× 1024
Block (16× 16)× 1024 (16× 16)× 1024

3

PixelShuffle (16× 16)× 1024 (32× 32)× 256
Block (32× 32)× 256 (32× 32)× 256
Block (32× 32)× 256 (32× 32)× 256
Block (32× 32)× 256 (32× 32)× 256
Block (32× 32)× 256 (32× 32)× 256

4

PixelShuffle (32× 32)× 256 (64× 64)× 64
Grid Block (64× 64)× 64 (64× 64)× 64
Grid Block (64× 64)× 64 (64× 64)× 64
Grid Block (64× 64)× 64 (64× 64)× 64
Grid Block (64× 64)× 64 (64× 64)× 64

5

PixelShuffle (64× 64)× 64 (128× 128)× 16
Grid Block (128× 128)× 16 (128× 128)× 16
Grid Block (128× 128)× 16 (128× 128)× 16
Grid Block (128× 128)× 16 (128× 128)× 16
Grid Block (128× 128)× 16 (128× 128)× 16

- Linear Layer (128× 128)× 16 128× 128× 3

Discriminator
Stage Layer Input Shape Out Shape

- Linear Flatten 128× 128× 3 (32× 32)× 96

1

Block (32× 32)× 96 (32× 32)× 96
Block (32× 32)× 96 (32× 32)× 96
Block (32× 32)× 96 (32× 32)× 96

AvgPooling (32× 32)× 96 (16× 16)× 96
Concatenate (16× 16)× 96 (16× 16)× 192

2

Block (16× 16)× 192 (16× 16)× 192
Block (16× 16)× 192 (16× 16)× 192
Block (16× 16)× 192 (16× 16)× 192

AvgPooling (16× 16)× 192 (8× 8)× 192
Concatenate (8× 8)× 192 (8× 8)× 384

3
Block (8× 8)× 192 (8× 8)× 384
Block (8× 8)× 384 (8× 8)× 384
Block (8× 8)× 384 (8× 8)× 384

-

Add CLS Token (8× 8)× 384 (8× 8 + 1)× 384
Block (8× 8 + 1)× 384 (8× 8 + 1)× 384

CLS Head 1× 384 1

Table 4: Architecture configuration of TransGAN on CelebA (256 × 256) and LSUN Church
(256× 256) dataset.

Generator
Stage Layer Input Shape Output Shape

- MLP 512 (8× 8)× 1024

1

Block (8× 8)× 1024 (8× 8)× 1024
Block (8× 8)× 1024 (8× 8)× 1024
Block (8× 8)× 1024 (8× 8)× 1024
Block (8× 8)× 1024 (8× 8)× 1024
Block (8× 8)× 1024 (8× 8)× 1024

2

Upsampling (8× 8)× 1024 (16× 16)× 1024
Block (16× 16)× 1024 (16× 16)× 1024
Block (16× 16)× 1024 (16× 16)× 1024
Block (16× 16)× 1024 (16× 16)× 1024
Block (16× 16)× 1024 (16× 16)× 1024

3

Upsampling (16× 16)× 1024 (32× 32)× 1024
Block (32× 32)× 1024 (32× 32)× 1024
Block (32× 32)× 1024 (32× 32)× 1024
Block (32× 32)× 1024 (32× 32)× 1024
Block (32× 32)× 1024 (32× 32)× 1024

4

PixelShuffle (32× 32)× 1024 (64× 64)× 256
Grid Block (64× 64)× 256 (64× 64)× 256
Grid Block (64× 64)× 256 (64× 64)× 256
Grid Block (64× 64)× 256 (64× 64)× 256
Grid Block (64× 64)× 256 (64× 64)× 256

5

PixelShuffle (64× 64)× 256 (128× 128)× 64
Grid Block (128× 128)× 64 (128× 128)× 64
Grid Block (128× 128)× 64 (128× 128)× 64
Grid Block (128× 128)× 64 (128× 128)× 64
Grid Block (128× 128)× 64 (128× 128)× 64

6

PixelShuffle (128× 128)× 64 (256× 256)× 16
Grid Block (256× 256)× 16 (256× 256)× 16
Grid Block (256× 256)× 16 (256× 256)× 16
Grid Block (256× 256)× 16 (256× 256)× 16
Grid Block (256× 256)× 16 (256× 256)× 16

- Linear Layer (256× 256)× 16 256× 256× 3

Discriminator
Stage Layer Input Shape Out Shape

- Linear Flatten 256× 256× 3 (64× 64)× 96

1

Block (64× 64)× 96 (64× 64)× 96
Block (64× 64)× 96 (64× 64)× 96

Grid Block (64× 64)× 96 (64× 64)× 96
AvgPooling (64× 64)× 96 (32× 32)× 96
Concatenate (32× 32)× 96 (32× 32)× 192

2

Block (32× 32)× 192 (32× 32)× 192
Block (32× 32)× 192 (32× 32)× 192
Block (32× 32)× 192 (32× 32)× 192

AvgPooling (32× 32)× 192 (16× 16)× 192
Concatenate (16× 16)× 192 (16× 16)× 384

3
Block (16× 16)× 192 (16× 16)× 384
Block (16× 16)× 384 (16× 16)× 384
Block (16× 16)× 384 (16× 16)× 384

-

Add CLS Token (16× 16)× 384 (16× 16 + 1)× 384
Block (16× 16 + 1)× 384 (16× 16 + 1)× 384

CLS Head 1× 384 1

F Visual Examples
We include more high-resolution visual examples on Figure 3,4. The visual examples produced by
TransGAN show impressive details and diversity.

3



Table 5: Training Configuration

Dataset Size Resolution GPUs Epochs Time
CIFAR-10 50k 32× 32 2 500 2.6 days
STL-10 105k 48× 48 4 200 2.0 days
CelebA 200k 64× 64 8 250 2.4 days
CelebA 200k 128× 128 16 250 2.1 days
CelebA-HQ 30k 256× 256 32 300 2.9 days
LSUN Church 125k 256× 256 32 120 3.2 days

Figure 3: Latent Space Interpolation on CelebA (256× 256) dataset.

4



Figure 4: High-resolution representative visual examples on CelebA (256× 256) dataset.

5


	Implementation of Data Augmentation
	Detailed Architecture Configurations
	Failure Cases Analysis
	Training Cost
	Memory Cost Comparison
	Visual Examples

