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ABSTRACT

Deep learning has become the standard approach for most machine learning tasks.
While its impact is undeniable, interpreting the predictions of deep learning models
from a human perspective remains a challenge. In contrast to model training, model
interpretability is harder to quantify and pose as an explicit optimization problem.
Inspired by the AUC softmax information curve (AUC SIC) metric for evaluating
feature attribution methods, we propose a unified discrete optimization framework
for feature attribution and feature selection based on subset selection. This leads
to a natural adaptive generalization of the path integrated gradients (PIG) method
for feature attribution, which we call Greedy PIG. We demonstrate the success
of Greedy PIG on a wide variety of tasks, including image feature attribution,
graph compression/explanation, and post-hoc feature selection on tabular data. Our
results show that introducing adaptivity is a powerful and versatile method for
making attribution methods more powerful.

1 INTRODUCTION

Deep learning sets state-of-the-art on a wide variety of machine learning tasks, including image
recognition, natural language understanding, large-scale recommender systems, and generative
models (Graves et al., 2013; He et al., 2016; Krizhevsky et al., 2017; Bubeck et al., 2023). Deep
learning models, however, are often opaque and hard to interpret. There is no native procedure for
explaining model decisions to humans, and explainability is essential when models make decisions
that directly influence people’s lives, e.g., in healthcare, epidemiology, legal, and education (Ahmad
et al., 2018; Wiens & Shenoy, 2018; Chen et al., 2021a; Abebe et al., 2022; Liu et al., 2023).

We are interested in two routines: (i) feature attribution and (ii) feature selection. Given an input
example, feature attribution techniques offer an explanation of the model’s decision by assigning an
attribution score to each input feature. These scores can then be directly rendered in the input space,
e.g., as a heatmap highlighting visual saliency (Sundararajan et al., 2017), offering an explanation of
model decisions that is human-interpretable. On the other hand, feature selection methods find the
set of most-informative features for a machine learning model across many examples to optimize
its prediction quality. While the goal of both feature attribution and feature selection is to find
the most impactful features, they are inherently different tasks with a disjoint set of approaches
and literature. Concretely, feature attribution considers one example per invocation, while feature
selection considers an entire dataset. For literature surveys, see (Zhang et al., 2021) for feature
attribution and interpretability see and (Li et al., 2017) for feature selection.

Our main contributions are as follows:

• We consider the problem of feature attribution from first principles and, inspired by evalua-
tion metrics in the literature (Kapishnikov et al., 2019), we propose a new formulation of
feature attribution as an explicit subset selection problem.

• Using this subset selection formulation, we ascribe the main shortcomings of the path
integrated gradient (PIG) algorithms to their limited ability to handle feature correlations.
This motivates us to introduce adaptivity to these algorithms, which is a natural way to
account for correlations, leading to a new algorithm that we call Greedy PIG.

• We leverage the generality of the subset selection formulation to propose different objectives
for feature attribution based on model loss that can better capture the model’s behavior, as
well as a unification between feature attribution and feature selection formulations.

• We evaluate the performance of Greedy PIG on a variety of experimental tasks, including
feature attribution, graph neural network (GNN) compression, and post-hoc feature selection.
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Our results show that adaptivity is a powerful ingredient for improving the quality of deep
learning model interpretability methods.

2 PRELIMINARIES & NOTATION

2.1 PATH INTEGRATED GRADIENTS (PIG)

Let f(·;θ) be a pre-trained neural network with parameters θ. Our work assumes that f is pre-
trained and therefore, we often omit θ for brevity. Suppose x ∈ Rn is an input example. The path
integrated gradients (PIG) method of Sundararajan et al. (2017) attributes the decision of f given x ,
by considering a line path from the “baseline”1 example x (0) to x :

γ : [0, 1]→ Rn with γ(t; x (0),x ) = x (0) + t(x − x (0)) for t ∈ [0, 1]. (1)

Then, the top features i ∈ [n] maximizing the following (weighted) integral are chosen:

arg sort
i∈[n]

[
(x [i] − x

(0)
[i] )

∫ 1

0

∂

∂x [i]
f(γ(t))dt

]
. (2)

Our work addresses a weakness of PIG, which is that it is a one-shot algorithm. Specifically, an
invocation to PIG computes (in-parallel) Eq. 1 and chooses (at-once) the indices ⊆ [n] maximizing
Eq. 2.

2.2 SUBSET SELECTION

Subset selection is a family of discrete optimization problems, with goal of selecting subset S ⊆
[n] := {1, 2, . . . , n} that maximizes a set function G : 2[n] → R subject to a cardinality constraint k:

S∗ = arg max
S⊆[n],|S|≤k

G(S). (3)

Prominent examples of subset selection in machine learning include data summarization (Kleindessner
et al., 2019), feature selection (Cai et al., 2018; Elenberg et al., 2018; Bateni et al., 2019; Chen et al.,
2021b; Yasuda et al., 2023), and submodular optimization (Krause & Golovin, 2014; Mirrokni &
Zadimoghaddam, 2015; Fahrbach et al., 2019b;a).

Throughout this work, we let 1 denote n-dimensional all-one vector, 1S ∈ {0, 1}n be the indicator
vector of S, and let xS = 1S � x ∈ Rn where � denotes Hadamard product.

3 OUR METHOD

3.1 MOTIVATION: DISCRETE OPTIMIZATION FOR FEATURE ATTRIBUTION AND SELECTION

The general subset selection framework (§2.2) allows recovering several tasks. For (i) feature
attribution, the softmax information curve (SIC) of Kapishnikov et al. (2019) can be recovered from
(Eq. 3) by setting G(S) to the softmax output of a target class (see Eq. 4). For (ii) feature selection,
we can set G(S) to maximum log likelihood achievable by a model trained on a subset of features S.
Finally, if one sets G(S) to be the maximum model output perturbation achieved by only changing
the values of features in S, one recovers a task of finding counterfactual explanations.

The generality of framework (§2.2) encourages us to pose the tasks (i) and (ii) as instances. Conse-
quently, we inherit algorithms and intuitions from the subset selection and submodular optimization
literature. The area of submodular optimization has a vast literature with different theoretical analyses
and algorithms based on the specific properties of the set function. For example, for maximization
of weakly submodular functions, it is known that the greedy subset selection algorithm achieves
a constant approximation ratio. In general, determining the right realistic assumptions on the set
function is a major open problem in the area. As such, it is not yet clear which of these assumptions
are realistic for each use case. We believe this is a very important question for future work.

1Sundararajan et al. (2017) uses a black-image and Kapishnikov et al. (2019) averages the integral over black-
and white-images. Random noise baselines have also been considered.
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3.2 INSTANTIATIONS

Multi-class attribution. Suppose that classifier f is the softmax output of a multi-class neural
network, then the softmax information curve of Kapishnikov et al. (2019) can be written in (§4.1;
Eq. 3) as:

GATTRIBUTIONSOFTMAX(S) = fc∗(xS) , with c∗ = arg max
j

fj(x ). (4)

Maximizing S in Eq. 4 chooses feature subset S that maintains the model’s decision, as compared to
the fully-observed example x . Crucially, however, the top class c∗ doesn’t tell the whole story, since
the input might be ambiguous or the classifier might be uncertain. It is then natural that one would
want to capture the behavior of f on all classes, rather than just the top one. A natural alternative is
to re-use the objective (`) that the model was trained with, and incorporate it into a subset selection
problem. Specifically, we define the set function:

GATTRIBUTIONKL(S) = `(f(x ), f(xS)) = f(x ) log f(xS) , (5)
where, for classification, ` is the log-likelihood. This quantifies the similarity of probability dis-
tribution f(xS), i.e., considering a subset of features, with the distribution f(x ), i.e., considering
all features. Maximizing G(S) under a cardinality constraint is then equivalent to seeking a small
number of features that capture the multiclass behavior of the model on a fixed input example.

Feature selection. Unlike feature attribution, outputting attributions for a single example, in feature
selection, the goal is to select a global set of features for all dataset examples, that maximize the
predictive capability of the model. Feature selection can be formulated by defining

GFEATSELECT(S) = max
θ

`(y , f(X S ;θ)) , (6)

i.e., the maximum log likelihood obtainable by training the model f on the whole dataset X , given
only the features in S. Such formulation of feature selection as subset selection has been studied
extensively, e.g., Liberty & Sviridenko (2017); Elenberg et al. (2018); Bateni et al. (2019); Chen
et al. (2021b); Yasuda et al. (2023); Axiotis & Yasuda (2023). To avoid re-training f , we consider a
simpler problem of post-hoc feature selection, with GFEATSELECTPH(S) = `(y , f(X S ;θ)) where the
model parameters θ are pre-trained on all features.We leave further investigation of (6) to future work.
The post-hoc formulation has the advantage of making the objective differentiable, and thus directly
amenable to gradient-based approaches, while also not requiring access to the training process of f ,
which is seen as a black box. This can be particularly useful for applications with limited resources
or engineering constraints that discourage running or modifying the training pipeline. As we will
show in §5.3, high quality feature selection can be performed even in this restricted setting.

3.3 CONTINUOUS EXTENSION

To make the problem (Eq. 3) amenable to continuous optimization methods, we rely on a continuous
extension g : [0, 1]n → R with G(S) := g(1S). The extension can be derived by replacing the
invocation of f on xS or X S in Eq.4–6 by an invocation on a path, similar to Eq. 1, but with domain
equal to the n-hypercube:

g : [0, 1]n → Rn with g(s; x (0),x ) = x (0) + s� (x − x (0)) for s ∈ [0, 1]n. (7)
This makes it easy to adapt feature attribution methods from the literature to our framework and
is a lightweight assumption since loss functions in deep learning are continuous by definition. In
particular, the integrated gradients algorithm of Sundararajan et al. (2017) can simply be stated as
computing the vector of feature scores given by

∫ 1

t=0
∇g(t1)dt.

3.4 GREEDY PATH INTEGRATED GRADIENTS (GREEDY PIG)
Given the framework in §3.1, we now move to identify and improve the weaknesses of the integrated
gradients algorithm. In contrast to previous works that focus on reducing the amount of “noise”
perceived by humans in the attribution result,2 we identify a different weakness of PIG—it is
sensitive to feature correlations. In §4.1, we show that even in simple linear regression settings,
PIG exhibits pathologies such as outputting attribution scores that are negative, or whose ordering
can be manipulated via feature replication. This leads us to introduce adaptivity to the algorithm.
We are motivated by the greedy algorithm for subset selection, which is known to provably tackle
submodular optimization problems, even when there are strong correlations between features.

2In fact, as noticed in Smilkov et al. (2017), a noisy attribution output is not necessarily bad, since our goal
is to explain model predictions and not produce a human-interpretable understanding of the data, which is an
important but different task. Neural net predictions do not have to conform to human understanding of content.
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Why Greedy captures correlations. A remarkable property of the greedy algorithm is that its
adaptivity property can automatically deal with correlations. Consider a set function G and three
elements i, j, k. Suppose that greedy initially selects element i. Then, it will recurse on the residual
set function G′(S) = G(S ∪ {i}). Thus, in the next phases, correlations between i and the remaining
elements are eliminated, since i is fixed (selected). In other words, since greedy conditions on the
already selected variables, this eliminates their correlations with the rest of the unselected variables.

Greedy PIG. Inspired by the adaptivity complexity of submodular maximization (Balkanski &
Singer, 2018), where it has been shown that Ω(log n/ log log n) adaptive rounds of evaluating G
are needed to achieve provably-better solution quality than one-shot algorithms (such as integrated
gradients), we propose a generalization of integrated gradients with multiple rounds. We call this
algorithm Greedy PIG since it greedily selects the top-attribution features computed by integrated
gradients in each round, i.e. the set of S ⊆ [n] maximizing the arg sort of Eq. 2, and hardcodes their
corresponding entries in s to 1.

3.5 THE GREEDY PIG ALGORITHM

Our idea is to iteratively compute the top features as attributed by integrated gradients, and select
these features by always including them in future runs of integrated gradients (and only varying the
rest of the variables along the integration path). We present this algorithm in detail in Algorithm 1.

Algorithm 1 Greedy PIG (path integrated gradients)

1: Input: access to a gradient oracle for g : [0, 1]n → R
2: Input: number of rounds R, number of selections per round z
3: Initialize S ← ∅ . Selected set of features
4: Initialize a ← 0 . Vector of attributions
5: for r = 1 to R do
6: Set â ←

∫ 1

t=0
∇S̄g(1S + t1S̄)dt

7: Set Ŝ ← topz(â) . Top-z largest entries of â
8: Update a ← a + â Ŝ

9: Update S ← S ∪ Ŝ
return a , S

In practice, Greedy PIG can be implemented by repeated invocation of PIG (Eq. 1&2). The impact of
g (Eq. 7) can be realized by iteratively updating:

Ŝ ← top indices of Eq. 2 with γ(.; x (j+1),x ) with x (j+1) ← x Ŝ + x
(j)
¯̂
S

(8)

Specifically, Greedy PIG is related to a continuous version of Greedy. In the continuous setting,
selecting an element i is equivalent to fixing the i-th element of the baseline to its final value. The
i-th element now does not vary and its correlations with the remaining elements are eliminated. At a
high level, our approach has similarities to (Kapishnikov et al., 2021), which adaptively computes the
trajectory of the PIG path based on gradient computations.

Similar to previous work, the integral in Algorithm 1 on Line 6 can be estimated by discretizing it
into a number of steps. A simpler approach that we found to be competitive and more frugal is to
approximate the integral by a single gradient∇S̄g(1S), which we call the Sequential Gradient (SG)
algorithm. It should be noted that, in contrast to integrated gradients, Algorithm 1 empirically does
not return negative attributions.

4 ANALYSIS

4.1 ATTRIBUTION AS SUBSET SELECTION

The integrated gradients method is widely used because of its simplicity and usefulness. Since its
inception, it was known to satisfy two axioms that Sundararajan et al. (2017) called sensitivity and
implementation invariance, as well as the convenient property that the sum of attributions is equal to
the function value. However, there is still no deep theoretical understanding of when this method (or
any attribution method, for that matter) succeeds or fails, or even how success is defined.
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Previous works have studied a variety of failure cases. In fact, it is well-observed that the attributions
on image datasets are often “grainy,” a property deemed undesirable from a human standpoint
(although as stated before, it is not necessarily bad as long as the attributions are highly predictive
of the model’s output). In addition, there will almost always exist some negative attribution scores,
whose magnitude can be even higher than that of positive attribution scores. There have been efforts
to mitigate these effects for computer vision tasks, most notably by ascribing them to noise (Smilkov
et al., 2017; Adebayo et al., 2018), region grouping (Ancona et al., 2017; Kapishnikov et al., 2019),
or ascribing them to the magnitude of the gradient (Kapishnikov et al., 2021).

In this work, we take a different approach and start from the basic question:

What are attribution scores supposed to compute?

An important step towards answering this question was done in (Kapishnikov et al., 2019), which
defined the softmax information curve (SIC) for image classification. In short, the idea is that if we
only keep k features with the top attributions and drop the rest of the features, the softmax output of
the predicted class should be as large as possible. This is because then, the model prediction can be
distilled down to a small number of features.

Based on the above intuition, we define the problem in a more general form:

Definition 4.1 (Attribution as subset selection). Given a set functionG : 2[n] → R>0, a value k ∈ [n]
and a permutation r = (r1, r2, . . . , rn) of [n], the attribution quality of r at level k is defined as
G({r1, r2, . . . , rk})/maxS⊆[n]:|S|=kG(S). We define the attribution quality of r (without reference
to k) as the area under the curve defined by the points (k,G({r1, r2, . . . , rk}) for all k ∈ [n].

The key advantage of this approach is that we are able to pose attribution as an explicit optimization
problem, and hence we are able to compare, evaluate, and analyze the quality of attribution methods.
In addition, the formulation in Definition 4.1 gives us flexibility in picking the objective G to be
maximized. In fact, in §5.1 we propose setting G to be the log likelihood (i.e., negative cross entropy
loss) instead of the top softmax score. In §5.3, we will see how this formulation allows us to tie
attribution together with feature selection.

Note. As Definition 4.1 shows, we are interested in the problem of attributing predictions to a small
number of features. For example, when faced with redundant features, we wish to pinpoint only a
small number of them. This does not capture applications in which the goal is to find the attribution
for all features, where the goal would be to assign equal attribution score to all redundant features.

4.2 CORRELATIONS AND ADAPTIVITY

Given the problem formulation in Definition 4.1, we are ready to study the strengths and weaknesses
of attribution methods. First, it is important to define the notion of marginal gain, which is a central
notion in subset selection problems.

Definition 4.2 (Marginal gain). Given a set function G : 2[n] → R≥0, the marginal gain of the i-th
element at S ⊆ [n] is defined by G(S ∪ {i}) − G(S). When S is omitted, we simply define the
marginal gain as G({i})−G(∅).

Marginal gains are important because they are closely related to the well-studied greedy algorithm
for subset selection (Nemhauser et al., 1978), and are crucial for its analysis. Therefore, a natural
question arises: Are the outputs of attribution methods correlated with the marginal gains?

For this, let us assume that the set function G is induced by a continuous relaxation g : [0, 1]n → R.
We show that the integrated gradient attributions approximate the marginal gains up to an additive
term that depends on the second-order behavior of g, and corresponds to the amount of correlation
between variables. In fact, when the variables are uncorrelated, integrated gradient attributions are
equal to the marginal gains.

Lemma 4.3 (PIG vs marginal gain). Let H(w) be the Hessian of a twice continuously differentiable
function g : [0, 1]n → R at w . Then, for all i ∈ [n],∣∣∣∣∫ 1

t=0

∇ig(t1)dt− (g(1i)− g(0))

∣∣∣∣ ≤ 1

2
max

w∈[0,1]n,i∈[n]

∣∣∣∣∣∣
∑
j 6=i

Hij(w)

∣∣∣∣∣∣ ,
where 1i is the i-th standard basis vector of Rn.

5



Under review as a conference paper at ICLR 2024

Lemma 4.3 tells us that the quality of how well the integrated gradient attribution scores approximate
the marginal gains is strongly connected to correlations between input variables. Indeed, if these
correlations are too strong, the attributions can diverge in magnitude and sign, even in simple settings.
This motivates combining integrated gradients with adaptivity (e.g. the Greedy algorithm), since
adaptivity naturally takes correlations into account. The Greedy PIG algorithm, which we will define
in §3.5, is a natural combination of integrated gradients and Greedy.

We now look at a more concrete failure case of integrated gradients in Lemma 4.4, that can arise
because of feature redundancy, and how adaptivity can help overcome this issue.

Lemma 4.4 (Feature redundancy). Consider a continuous set function g : [0, 1]n → R and t redun-
dant features numbered 1, 2, . . . , t, or in other words for any w ∈ [0, 1]n we have g((w1, . . . , wn)) =
h((max{w1, . . . , wt}, wt+1, . . . , wn)) for some h : [0, 1]n−t+1 → R. Then, the integrated gradients
algorithm with a baseline of 0 will assign equal attribution score to features 1 through t.

It follows from Lemma 4.4 that it is possible to replicate the top-attributed feature multiple times
such that the top attributions are all placed on redundant copies of the same feature, therefore missing
features t+ 1 through n. This behavior arises because integrated gradients is a one-shot algorithm,
but it can be remedied by introducing adaptivity. Specifically, if we select one of the features
with top attributions, e.g., feature 1 and then re-run integrated gradients with an updated baseline
(1, 0, . . . , 0)>, then the new attribution scores of the redundant features 2, . . . , t will be 0. Therefore,
the remaining k − 1 top attributions will be placed on the remaining features t+ 1, . . . , n.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the effect of the adaptivity introduced by Greedy PIG. A comparison
with all attribution methods is out of scope, mainly because our proposed modification can be easily
adapted to other algorithms (e.g., SmoothGrad), and so, even though we provide comparisons with
different popular methods, we mostly concentrate on integrated gradients. We defer an evaluation of
adaptive generalizations of other one-shot algorithms to future work.

5.1 FEATURE ATTRIBUTION FOR IMAGE RECOGNITION

Experimental setup. We use the MobileNetV2 neural network (Sandler et al., 2018) pretrained on
ImageNet, and compare different feature attribution methods on individual Imagenet examples. We
use the all-zero baseline for integrated gradients, which, because of the data preprocessing pipeline
of MobileNetV2, corresponds to an all-gray image. To ensure that our results hold across models, we
present additional results on ResNet50 in the appendix.

Top-class attribution. Kapishnikov et al. (2019) introduced the softmax information curve for
image classification, which plots the output softmax probability of the target class using only the top
attributions, as a function of the compressed image size. Since we are interested in a general method,
we instead plot the output softmax as a function of the number of top selected features. To perform
attribution based on our framework, we let c∗ be the class output by the model f(x ;θ) on input x
and with parameters θ, and then define gtop1(s) := fc∗(x � s;θ)), where s ∈ [0, 1]n and � denotes
the Hadamard product. In other words, gtop1 gives the softmax output of the (fixed) class predicted
by the model, after re-weighting input features by s. We can now run gradient-based attribution
algorithms on g. The results can be found in Figure 1 and Figure 7.

Loss attribution. Even though the top class attribution methodology can explain what are the most
important features that influence the model’s top predicted class, it might fail to capture other aspects
of the model’s behavior. For example, if the model has low certainty in its prediction, the softmax
output of the top class will be low. In fact, in such cases the attribution method can select a number
of features that give a much more confident output. However, it can instead be useful to capture the
outputs of all classes, and not just the top one. More generally, we can use arbitrary loss functions to
attribute certain aspects of the model’s behavior to the features.

Specifically, instead of asking which features are most responsible for a specific classification
output, we ask: Which features are most responsible for the distribution on output classes? In
other words, how close is the model’s multiclass output vector when fed a subset of features versus
when fed all the features? In order to answer this question, we use the loss function on which the
model is trained. For multiclass classification, this is usually set to using the negative cross entropy
loss `(ȳ ,y) = 〈ȳ , log y〉 to define a set function G(S) = `(f(x ), f(xS)) and a corresponding
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Algorithm softmax AUC (↑) KL divergence AUC (↓)
Integrated Gradients (Sundararajan et al., 2017) 0.2639 2.0812
Smooth PIG (Smilkov et al., 2017) 0.4433 1.1366
Blur PIG (Xu et al., 2020) 0.1903 2.0812
Guided PIG (Kapishnikov et al., 2021) 0.2623 2.0644
Greedy PIG 0.8486 0.6655

Figure 1: Evaluating the attribution performance across 1466 examples randomly drawn from
Imagenet. The Softmax Information Curve (SIC) plots the softmax output of the top class as a
function of the number of features kept (there are 224× 224× 3 features total for these RGB images).
The Loss Information Curve (LIC) similarly plots the KL divergence from the output probabilities
on the features kept, to the output probabilities when all features are kept. To compute these results,
we run integrated gradients and guided integrated gradients with 2000 steps and Greedy PIG with
100 rounds, 20 steps each. Then, for each algorithm and number of features kept, we compute and
plot the median across all examples, as in Kapishnikov et al. (2019). Left: The Softmax Information
Curve (higher is better). Right: The Loss Information Curve (lower is better).

(a) Top 15000 attributions for class “sea snake”. Left: input, Middle: integrated gradients, Right: Greedy PIG.

Algorithm pointing accuracy (↑)
Integrated Gradients (Sundararajan et al., 2017) 0.66
Greedy PIG 0.83

(b) Pointing accuracy aggregated over 25 2x2 grids generated from examples that had the highest prediction
confidence from 1500 examples randomly drawn from the validation set of ImageNet.

Figure 2: Results from the pointing game Bohle et al. (2021) that is used for sanity checking image
attribution methods. We generate 2x2 grids of the highest prediction confidence images, and obtain
the attribution results for each class. For each (example, class) pair, we count it as a positive if the
majority of the top 15000 attributions are on the quadrant associated with that class. We measure
pointing accuracy as the fraction of such positives.

continuous extension glogloss(s) = `(f(x ), f(x � s)). Maximizing G is equivalent to maximizing
`(f(x ), f(xS)). Fortunately, gradient-based attribution algorithms can be easily extended to arbitrary
objective functions. The results can be found in Figure 1 and Figure 8.

5.2 EDGE-ATTRIBUTION TO COMPRESS GRAPHS & INTERPRET GRAPH NEURAL NETWORKS

We use our method for graph compression with pre-trained GCN of Kipf & Welling (2017). We
use a three-layer GCN, as: GCN(E ; θ) = softmax

(
ÂEσ

(
ÂEσ

(
ÂEXθ

(1)
)
θ(2)
)
θ(3)
)
, where

X ∈ Rm×n contains features of all m nodes, E ⊆ [m] × [m] denotes (undirected) edges with
a corresponding sparse (symmetric) adjacency matrix with (AE)ij = 1 iff in (i, j) ∈ E ; ·̂ is the
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Figure 3: Pre-trained accuracy GCN with inference using edge-subset selected by various methods.
Solid lines plot accuracy vs. ratio of selected edges. Dashed line shows accuracy with all edges.

symmetric-normalization with self-connections added, i.e., Â = (D+ Im)−
1
2 (A+ Im)(D+ Im)−

1
2 ;

diagonal degree matrix D = diag(1>mA); and σ denotes element-wise non-linearity such as ReLU.

Given GCN pre-trained for node classification (Kipf & Welling, 2017; Abu-El-Haija et al., 2019;
Hamilton et al., 2017), we are interested in inferring node labels using only a subset of the edges. The
edge subset can be chosen uniformly at random (Fig. 3: SRND∼U ); or select edge (i, j) with probability
proportional to (DiiDjj)

− 1
2 ; or according to edge-attribution assigned by PIG (Sundararajan et al.,

2017) (SPIG); or using our method Greedy PIG (Alg. 1) (SGreedyPIG), with

gGNN(s;A(0), A) = A(0)+s�(A−A(0)) , with all-zero A(0) = 0 , and sparse s ∈ Rm×m. (9)

Figure 3 shows that Greedy PIG can better compress the graph while maintaining performance of the
underlying model. The GCN model was pre-trained on the full graph with TF-GNN (Ferludin et al.,
2022), on datasets of ogbn-arxiv from Hu et al. (2020), and Cora and Pubmed from (Yang et al.,
2016). Inference on the full graph (using all edges) gives performance indicated with a dashed-red
line. We observe that removing > 50% of the graph edges, using GreedyPIG, has negligible effect on
GCN performance. For the GCN model assumptions, we ensure the selected edges S ⊆ E correspond
to symmetric AS = A>S by projecting the output of the gradient oracle on to the space of symmetric
matrices—by averaging the (sparse) gradient with its transpose, i.e., by re-defining:

∇̃sg(s)
4
=

1

2

∂

∂s
gGNN(s) +

1

2

(
∂

∂s
gGNN(s)

)>
for use in Alg. 1 (10)

We also use Greedy PIG to interpret the GCN. Specifically, zooming-into any particular graph node,
we would like to to explain the subgraph around the node that leads to the GCN output. Due to
space constraints, we report in the appendix subgraphs around nodes in the ogbn-arxiv dataset. Note
that Sanchez-Lengeling et al. (2020) apply integrated gradients on smaller graphs (e.g., chemical
molecules with at most 100 edges), whereas we consider large graphs (e.g., millions of edges).

5.3 POST-HOC FEATURE SELECTION ON CRITEO TABULAR CTR DATASET

Feature selection is the task of selecting a subset of features on which to train a model, and dropping
the remaining features. There are many approaches for selecting the most predictive set of features (Li
et al., 2017). Even though in general feature selection and model training can be intertwined, often
it is easier to decouple these processes. Specifically, given a trained model, it is often desirable to
perform post-hoc feature selection, where one only has the ability to inspect and not modify the
model. This is also related to global feature attribution (Zhang et al., 2021).

Methodology. In Table 1, we compare the quality of different attribution methods for post-hoc
feature selection. To evaluate the quality of feature selection, we employ the following approach: 1.
Train a neural network model using all features. 2. Run each attribution method to compute global
attribution scores which are aggregate attribution scores over many input examples. 3. Pick the top-k
attributed features, and train new pruned models that only use these top features. Report the validation
loss of the resulting pruned models for different values of k. The results of the methodology described
above applied on a random subset of the Criteo dataset are presented in Table 1. We follow the
setup of Yasuda et al. (2023), who define a dense neural network with three hidden layers with sizes
768, 256 and 128. To make the comparison fair, we guarantee that all algorithms consume the same
amount of data (gradient batches). For example, Greedy PIG with T = 1 steps (which we also call
Sequential Gradient, see Section 3.5), uses 5x more data batches for each gradient computation than
Greedy PIG with T = 5.
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Table 1: Cross-entropy loss on Criteo CTR dataset using only the top-k features. Reported is the
minimum validation loss after 20K training steps with batch size 512. During selection, all of the
algorithms consume the same number of batches.

Algorithm k = 5 k = 10 k = 20 k = 30

Integrated Gradients (T = 39) 0.4827 0.4641 0.4605 0.4533

Greedy PIG (T = 1) 0.4728 0.4629 0.4551 0.4508
Greedy PIG (T = 5) 0.4723 0.4627 0.4531 0.4509

6 RELATED WORK

Feature attribution, also known as computing the saliency of each feature consists of a large class
of methods for explaining the predictions of neural networks. The attribution describes the impact
of each feature on the neural network’s output. In the following, we start with most-related to our
research, and then move onto broader and further topics.

Integrated gradients. Our work is most related to, and generalizes to set functions the work of
Sundararajan et al. (2017); Kapishnikov et al. (2021); Lundstrom et al. (2022); Qi et al. (2019); Goh
et al. (2021); Sattarzadeh et al. (2021). In their seminal work, Sundararajan et al. (2017) proposed path
integrated gradients (PIG), a method that assigns an importance score to each feature by integrating
the partial derivative with respect to a feature along a path that interpolates between the background
“baseline” and the input features. PIG, however, has some limitations. For example, it can be sensitive
to the choice of baseline input. Further, it can be difficult to interpret the results of path integrated
gradients when there are duplicate features or features that carry common information. It has also
been observed that PIG is sensitive to input noise (Smilkov et al., 2017), model re-trains (Hooker
et al., 2019), and in some cases provably unable to identify spurious features (Bilodeau et al., 2022).

Further discussion of related work is deferred to Appendix A.

7 CONCLUSION

We view feature attribution and feature selection as instances of subset selection, which allows us
to apply well-established theories and approximations from the field of discrete and submodular
optimization. Through these, we give a greedy approximation using path integrated gradients
(PIG), which we coin Greedy PIG. We show that Greedy PIG can succeed in scenarios where
other integrated gradient methods fail, e.g., when features are correlated. We qualitatively show
the efficacy of Greedy PIG—it explains predictions of ImageNet-trained model as attributions on
input images, and it explains Graph Neural Network (GNN) as attributions on edges on ogbn-arxiv
graph. We quantitatively evaluate Greedy PIG for feature selection on the Criteo CTR problem,
and by compressing a graph by preserving only a subset of its edges while maintaining GNN
performance. Our evaluations show that Greedy PIG gives qualitatively better model interpretations
than alternatives, and scores higher on quantitative evaluation metrics.
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APPENDIX

A RELATED WORK

Simonyan et al. (2014) used gradient ascent to explore the internal workings of a neural network and
to quantify the effect of each individual pixel on the classification prediction. Springenberg et al.
(2015) presented a neural network that is composed entirely of convolutional layers and introduced
guided backpropagation, a technique for eliminating negative signals generated during backpropa-
gation when performing standard gradient ascent. Grad-CAM (Selvaraju et al., 2017) produces a
saliency map by using the gradients of any target concept flowing into the final convolutional layer.
SmoothGrad (Smilkov et al., 2017) starts by computing the gradient of the class score function with
respect to the input image. However, it visually sharpens the gradient-based sensitivity maps by
adding noise to the input image and computing the gradient for each of these perturbed versions of
the image. Averaging the sensitivity maps together produces a clearer result. For a comprehensive
survey of feature attribution and neural network interpretability, see Zhang et al. (2021).

Shapley value. Shapley value was originally introduced in game theory (Shapley, 1953). While
it can be directly applied to explain the predictions of neural networks, it requires extremely high
computational complexity. Lundberg & Lee (2017) proposed the SHapley Additive exPlanations
(SHAP) algorithm, which approximates the Shapley value of features. Sundararajan & Najmi (2020)
employed an axiomatic approach to investigate the differences between various versions of the
Shapley value for attribution, and they also discussed a technique called Baseline Shapley (BShap).
The following are other Shapley value-based methods (Chen et al., 2019; Frye et al., 2021).

Gradient and backpropgation. Another class of interpretability methods is based on gradient and
backpropagation. These methods compute the gradient of each feature, which is used as a measure
of the feature’s importance (Baehrens et al., 2010; Simonyan et al., 2014). Integrated gradient is an
instance of the gradient-based method. Backpropagation-based methods design backpropagation
rules for convolutional, pooling, and nonlinear activation layers so they can assign importance
scores in a fair and reasonable manner during backpropagation (Shrikumar et al., 2017). The guided
backpropagation (GBP) algorithm (Springenberg et al., 2015), the layer-wise relevance propagation
(LRP) algorithm (Bach et al., 2015), and integrated gradient (IG) algorithm (Sundararajan et al.,
2017) are three notable examples of this class of methods.

Model-agnostic explanation. Ribeiro et al. (2016) proposed Local Interpretable Model-Agnostic
Explanations (LIME), a method that uses a trained local proxy model to provide explanation results
without the need for backpropagation to compute gradients. Plumb et al. (2018) employed a similar
method that relies on a local linear model for explanation.

B MISSING PROOFS

B.1 PROOF OF LEMMA 4.3

Proof. By Taylor’s theorem, we have

∇g(w) = ∇g(w{i}) + H w [n]\{i} ,

where H is an average Hessian on the path from w to w{i}. Then,∫ 1

t=0

∇ig(t1)dt =

∫ 1

t=0

∇ig(t1i)dt+

∫ 1

t=0

1>i H (t)t(1[n]\{i})dt

Now, we know that
∣∣1>i H (t)(1[n]\{i})

∣∣ ≤ K, and
∫ 1

t=0
∇ig(t1i)dt = g(1i)− g(0), so∣∣∣∣∫ 1

t=0

∇ig(t1)dt− (g(1i)− g(0))

∣∣∣∣ ≤ K/2 .
However, by the non-correlation property, this implies that

∇Sg(w) = ∇Sg(wS)

14



Under review as a conference paper at ICLR 2024

As a result, we have that

〈1,aS〉 = 〈1,−
∫ 1

t=0

∇Sg(t1)dt〉

= 〈1,−
∫ 1

t=0

∇Sg(t1S)dt〉

= g(0)− g(1S) ,

which completes the proof.

B.2 INTEGRATED GRADIENTS FOR LINEAR REGRESSION

Lemma B.1. We consider the function g(w) = −‖A(x �w)− b‖2, where w ∈ [0, 1]n, A ∈
Rm×n, b ∈ Rm and x is the optimal solution of the linear regression problem minx ‖Ax − b‖2.
Then, the integrated gradient scores are given by∫ 1

t=0

∇g(t1)dt = x �∇g(0) .

Proof. We note that, for any t ∈ [0, 1], and using the known fact that x = (A>A)+A>b , we have

∇g(t1) = 2X>A>(Atx − b)

= 2tX>A>b − 2A>b

= −2(1− t)X>A>b

= 2(1− t)x �∇g(0) ,

where X = diag(x ). Then, we conclude that∫ 1

t=0

∇g(t1)dt = 2x �∇g(0)

∫ 1

t=0

(1− t)dt

= x �∇g(0) .

C EXPERIMENTAL DETAILS AND MORE EXPERIMENTS

C.1 EXPLAINING GNN PREDICTIONS

For these experiments, we used GCN model pretrained on ogbn-arxiv, circa §5.2. In these experiments,
we want to select graph edges that explain classification of one node (contrast to graph compression
§5.2 where we select edges that maintain classification of all nodes). Given node node i ∈ [m], we
want to select neighbors of i, as well as their neighbors, and their neighbors, . . . , up-to the depth of
the trained GCN (we used 3 GCN layers), that would make the GCN model prediction unchanged
as compared to the full subgraph around node i. The gradient orcale was modified to only return
nonzero gradients to edges connecting already-discovered nodes.

Figure 4 shows a qualitative evaluation of GreedyPIG. One could argue: an article should only
cite another if it is related. However, the degree of relatedness can vary. When explaining GNN
predictions, we hope the explanation method to select a subgraph that is very related to the center
node. The figure shows that random edges around a center node can be less-related to the center node,
than if the edges were chosen using GreedyPIG. In the top row of Fig. 4, MixHop paper and blue
neighbors are related to GNNs and message passing (MP), whereas red nodes include embedding
methods (not MP), or non-GNN applications. In the bottom row, we see that the random edge
selection quickly diverged to articles within the NLP domain and otherwise unrelated applications of
DeepWalk.

Finally, we shortcut the paper names to reduce visual clutter. For completeness, the full titles of the
papers, as appearing in ogbn-arxiv dataset (Hu et al., 2020), are as follows.

- DeepWalk as Factorization: comprehend deepwalk as matrix factorization.
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(c) GreedyPIG explains DeepWalk as ... classification.
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(d) Explaining w/ random edges.

Figure 4: Pre-trained Graph Neural Network (GNN) is asked to predict article category of center node
(green). GreedyPIG (left column) was used to select subgraph around center node that maintains the
GNN prediction and we compared it to selecting random adjacent edges. We manually labeled the
selected nodes as strongly-related (blue) and less-related (red).

- MixHop: mixhop higher order graph convolutional architectures via sparsified neighborhood
mixing.

- DeepWalk: deepwalk online learning of social representations.

- Context Sampling: vertex context sampling for weighted network embedding

- word2vec: efficient estimation of word representations in vector space

- word2vec2: distributed representations of words and phrases and their compositionality

- skip: don t walk skip online learning of multi scale network embeddings

- bbox: a restricted black box adversarial framework towards attacking graph embedding models

- AdversarialAttack: threat of adversarial attacks on deep learning in computer vision a survey

- ShortestPathDL: shortest path distance approximation using deep learning techniques.

- Walklets: walklets multiscale graph embeddings for interpretable network classification

- AdversarialE: learning graph embedding with adversarial training methods

- Embed Factorization: network embedding as matrix factorization unifying deepwalk line pte and
node2vec.

- bbox: a restricted black box adversarial framework towards attacking graph embedding models

- XEntropyAdvers: cross entropy loss and low rank features have responsibility for adversarial
examples"

- bbox2: the general black box attack method for graph neural networks

- HumanTrust: the transfer of human trust in robot capabilities across tasks.

- Neural BabyTalk: neural baby talk.
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- DictDL: integrating dictionary feature into a deep learning model for disease named entity recogni-
tion.

- MANELA: manela a multi agent algorithm for learning network embeddings.

- ClinicalText: clinical text generation through leveraging medical concept and relations.

- EduGPA: will this course increase or decrease your gpa towards grade aware course recommenda-
tion.

- GeoMatrixCompletion: convolutional geometric matrix completion.

- GeoDL: geometric deep learning going beyond euclidean data.

- AdaDelta: adadelta an adaptive learning rate method.

- HigherOrderGCN: higher order weighted graph convolutional networks.

- HybridOrderGCN: hybrid low order and higher order graph convolutional networks.

- CNNGraph: deep convolutional networks on graph structured data.

- HyperbolicGNN: hyperbolic graph neural networks.

- deepmove: deepmove learning place representations through large scale movement data.

- Agriculture: cultivating online question routing in a question and answering community for
agriculture.

- RippleWalk: ripple walk training a subgraph based training framework for large and deep graph
neural network.

- MalwareDetect: aidroid when heterogeneous information network marries deep neural network
for real time android malware detection.

- MoNet: monet debiasing graph embeddings via the metadata orthogonal training unit.

- StructHyperEmbed: structural deep embedding for hyper networks.

C.2 FEATURE ATTRIBUTION ON IMAGES

For the experiments in Section 5.1, we used the MobilenetV2 image classification network pretrained
on Imagenet, using the implementation from the tf.keras library. To implement the algorithms from
previous work that we used in comparisons, i.e. integrated gradients and guided integrated gradients,
we used Saliency (2017), which is an collection of implementations of state of the art saliency
methods. In order to generate Figure 1, we first took a random sample of Imagenet examples from
various classes, and for each sample we first applied the preprocessing routine used in MobilenetV2,
which includes centering and resizing to 224× 224 pixels with 3 color channels. This 224× 224× 3
tensor of 3 dimensions is the input to the neural network, and as a result it is also the shape of the
attribution map.

We ran different attribution algorithms and sorted the absolute values of attribution values. Then, we
picked 100 equally spaced values for k, from 0 to 224 · 224 · 3, and generated an image using only
the top-k attribution values (and replacing the rest by the baseline, which in this case is a gray image).
For guided PIG and SmoothGrad, we used the default settings from the saliency library.

C.3 POINTING GAME

In this section, we consider the pointing game defined by Bohle et al. (2021); Böhle et al. (2022),
which is a sanity check for the usefulness of feature attribution methods on images. In this game,
examples of different classes are stitched together in a grid to form a new image. Then, this new
image is fed to the attribution method, with the goal to explain one of the four classes. Ideally, the
highest attributions should be concentrated in the quadrant that corresponds to the selected class. In
Figures 5 and 6, we see one such example that compares the attributions of integrated gradients and
Greedy PIG.
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Input image

Top 15000 Integrated Gradient attributions for each class.

schipperke sea snake otterhound Cardigan

Top 15000 Greedy PIG attributions for each class.

Figure 5: The input image is generated as a 2x2 grid of images from different classes, here schipperke,
sea snake, otterhound and Cardigan. Ideally, attributions should be concentrated in the quadrant
associated with the respective class.
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Input image

Top 15000 Integrated Gradient attributions for each class.

lawnmower cab Egyptian cat jacamar

Top 15000 Greedy PIG attributions for each class.

Figure 6: The input image is generated as a 2x2 grid of images from different classes, here lawnmower,
cab, Egyptian cat and jacamar. Ideally, attributions should be concentrated in the quadrant associated
with the respective class.
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(a) Top 15000 features attributed by integrated gradients (left) vs. GreedyPIG (right). The softmax output for true
class “tabby” after pruning unselected features is 3 · 10−5 for integrated gradients vs. 0.9973 for GreedyPIG.

(b) Heatmap of feature attributions by integrated gradients (left) vs. GreedyPIG (right).

Figure 7: Illustration of attribution algorithms on an example from Imagenet labeled “tabby” (left
column). Integrated gradients (IG) (middle) ran for 2000 steps, while GreedyPIG (right) ran for 100
rounds each with 20 steps. Both IG and GreedyPIG maximized softmax objective.

Figure 8: Illustration of different attribution objectives on an example from Imagenet labeled “tench”.
Left: Original image. Middle: Top 15000 feature attributions by Greedy PIG with the softmax
objective, and Right: with the cross-entropy objective.

C.4 EXAMPLES

C.5 BLOCK-WISE FEATURE ATTRIBUTION

In the spirit of Kapishnikov et al. (2019), we augment the greedy PIG algorithm with the ability
to select patches instead of individual features from a 3-dimensional image tensor. In fact, our
implementation allows for specifying arbitrary subset structures that are to be selected as individual
features. The results can be found in Figure 9.

To get into more detail, the approach of Kapishnikov et al. (2019) is to first compute attribution
scores using integrated gradients, and then iteratively find regions of the image with maximum sum
of attributions. The main difference from our approach, is that we invoke the integrated gradient
algorithm after every block selection, insteado of just once, in line with our adaptive approach.
Specifically, for a given block size b× b, after each round of greedy PIG we compute the b× b patch
with the maximum sum of attributions, and select this patch. It should be noted that selected features
have a score of 0 in future iterations.

C.6 FEATURE SELECTION

For the experiments in Section 5.3, we used a model identical to Yasuda et al. (2023), which is
a 3-hidden layer neural network with ReLU activations. We implemented minibatch versions of
integrated gradients and greedy PIG.

Note: While the attributions computed by the integrated gradients algorithm can be averaged over
the whole dataset to compute global attribution scores, this is not necessarily the case with the greedy
PIG attribution scores. This is another place where the formulation in Definition 4.1 will be handy.
Specifically, given a model f(·;θ) with parameters θ, data (X ,y) and an aggregate loss function `
over the data, we define the post-hoc feature selection problem simply by G(S) := −`(y , f(X S ;θ)).
Note that this is not equivalent to averaging the greedy PIG attributions across the dataset. While a
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(a) Block-wise attributions. From left to right: Integrated gradients with softmax, integrated gradients with cross
entropy, greedy PIG with softmax, greedy PIG with cross entropy.

(b) Block-wise attributions. From left to right: Integrated gradients with softmax, greedy PIG with softmax,
integrated gradients with cross entropy, greedy PIG with cross entropy.

Figure 9: Illustration of different attribution objectives on an example from Imagenet labeled “tench”,
with different block sizes.
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Figure 10: Comparing pig and greedy_pig on imagenet attribution using ResNet50. The AUC scores
for pig and greedy_pig are 0.39443 and 0.9262 respectively.

naive implementation of Algorithm 1 would require multiple full batch gradient evaluations in each
round, we implement a mini-batch version, which instead samples a number of data batches in each
round, and computes the gradient over these batches.

Specifically, given a number n = 150000 of available data batches, each of size 512, and a number
g = 39 of gradients to be evaluated (this is the number of integrated gradient steps), we randomly
shuffle the batches and evaluate each of the gradients on a random set of n/g ≈ 3846 batches (i.e.
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the gradient is averaged over all these batches). In this way, we can ensure that all algorithms use the
same amount of data, and the algorithms are scalable enough to be used in large scale settings.
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