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A APPENDIX

A.1 IMMEDIATE INFERENCE

A.1.1 EXTENSIONS

This section shows the extensions of existing intermediate primitives in order to effectively intro-
duce new primitives or combinations of existing atomic operations, hence broadening the family of
intermediate primitives.

Atomic Operations. We define a series of atomic operations as the minimum unit to implement a
complex intermediate primitive.

All2All converts Scatter attribute Si to Scatter attribute Sj , based on the inference results of Si2Sj

in Figure 3(a).

AllGather defines the transition of Scatter property S to Broadcast property B, following the con-
clusion of the inference of S2B in Figure 3(b).

ReduceScatter converts PartialReduce property P to Scatter property S considering the results for
P2S obtained in Figure 3(c).

AllReduce converts PartialReduce property P to Broadcast property B.

Identity defines the conversion of a distributed attribute to the same attribute. Since distributed
attributes of the input and output tensor are of the same, Identity primitive is a copy operation that
represents the copying process from the input tensor to the output tensor.

12P is introduced as an atomic operation that deploys a global logic tensor to a local reduction,
where one device places a physical tensor, a copy of the global logic tensor, while other devices
only place physical tensors that have the same shape as the global logic tensor but with all values set
to zero.

A.1.2 PARTITION ANALYSIS

Efficiently implementing a distributed neural network hinges on maximizing the utilization of band-
width between devices and equipment. To illustrate how DistPar optimally leverages bandwidth,
we examine the atomic operations, Reduction-Scatter, detailed in Appendix A.3, as a case study.
We implement Reduction-Scatter and analyze how this operation effectively harnesses the available
bandwidth between devices.

Basic Settings. Assuming duplex bandwidth of β per device and a cumulative egress bandwidth of
n× β for all devices, the global logical tensor with size |T | is divided into n copies on each device,
resulting in each inter-device communication involving data of size |T |

n . In ring-based Reduce-
Scatter, each device communicates with the others a total of n− 1 times.

Memory Saving. Given that the data size processed by Reduce-Scatter on each device is |T |
n , each

device can conserve (n−1)|T |
n of memory space. On a cluster with n devices, this translates to a

collective memory savings of (n− 1)× |T |.

Bandwidth Occupancy. Throughout the process, each device exchanges data of size (n−1)|T |
n with

other devices, resulting in a total data transfer size of (n − 1) × |T |. This data transfer is directly
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Table 1: Tensor partitioning of matmul with immediate inference. It is obvious if the value of either
input is B, then Y equals to another input. To be specific, when the input X exhibits S(0) and the
input weight tensor W exhibits B, the distributed property of the output is determined to be S(0),
indicating that the operator is performing data parallelism. Conversely, when X has B and the input
weight tensor has S(1), the distributed property of the output is inferred to be S(1), signifying that
the operator is implementing model parallelism.

Tensor Input X Input W Y=XW
S(0) B S(0)

B S(1) S(1)
Distributed S(1) S(0) P

Property P B P
B P P
B B B

proportional to the number of devices, n. Importantly, both the ingress and egress bandwidths of
each device are fully utilized, with no contention for bandwidth.

Time Consumption. Given that each device has an ingress or egress bandwidth of β, and the
communication data generated by each device is of size (n−1)|T |

n , the time required for the entire
process is (n−1)|T |

n×β . Notably, as the number of devices, n, increases, the total communication time

remains approximately constant at |T |
β . Remarkably, the time required is independent of the number

of devices, n.

Figure 1: An example of inferring the intermediate primitive AllGather. Specifically, the require-
ment for B by the consumer operator matmul1 necessitates the aggregation of data from the output
tensor of the producer operator matmul0 on all devices. The AllGather communication primitive
accomplishes it, resulting in its derivation as the appropriate operator.

A.2 COMPLEX OPERATION CONSTRUCTION

Division Expression. Introducing an intermediate primitive is feasible when it comes to convert-
ing two distributed attributes in one step. Therefore, we give a division expression that inserts an
intermediate primitive between the source operation and the target operation. We decompose the
conversions from the source operation to the target operation into a chain of processes, involving
intermediate primitives. The Division Expression (1) is as follows:

Target I2O = Division(Atomic I2M,Atomic M2O) (1)

The target operation I2O can concatenate two atomic operations I2M and M2O via the interme-
diate distributed property, called M . When the distributed attributes I of the input, O of the output
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tensor, and the intermediate attribute M satisfy the conversion conditions of the atomic operations
I2M and M2O, the target distributed attribute derived from the target operation–I2O transforma-
tion can be obtained. A division expression is a concatenation of multiple atomic operations via
intermediate distributed properties. Figure 2(a) illustrates the construction of a complex operation
12S using a division expression.

“OR” Expression. We introduce the “or” expression to construct complex intermediate primitives.
We define the “or” Expression (2) as follows:

Target X2W = (Atomic I2W ) | (Atomic O2W ) (2)

The “or” expression indicates that the derivation of the target operation X2W can be satisfied, if it
occurs that the distributed properties of the input and output tensor satisfy the derivation of either
the distributed derivations of atomic operation I2W or that of O2W . Where X stands for arbitrary
distributed property, W for intermediate distributed property, I for the distributed property of the
input tensor, O for the distributed property of the output tensor, and 2 implies S2B conversions.

The target operation resulting from an “or” expression implies the parallel combination of multiple
atomic operations. Figure 2(b) illustrates the process of constructing a target operation X2B using
an “or” expression, where the distributed attribute X denotes an arbitrary distributed attribute. The
process of constructing a target operation X2B for the conversion of an arbitrary distributed attribute
X into a broadcast attribute B: The derivation of the distributed attribute of the target operation
X2B is satisfied as long as the derivation of the distributed attribute of any of the following atomic
operations B2B, P2B and S2B is satisfied.

Compositions Extensions. To represent individual complex target operations, we can combine “or”
expression and division expression in various ways using compositions. Figure 2(c) illustrates the
process of constructing a complex operation 12X using a composite approach.

(a) (b) (c)

Figure 2: The behaviours of division expression(a), “or” expression(b) and composition extension(c)

A.3 CONVERSIONS OF DISTRIBUTED PROPERTIES

Si2Sj presents the intermediate primitives to pair conversions of Si and Sj . According to Figure
3(a), A tensor with property S(0) consisting of data A1 and B1 is on device 0, and B1 is empty.
Device 1 places a tensor with property S(0) consisting of data A2 and B2 with A2 empty. The
tensor with Scatter property S1 on device 0 is from sending A1 and A2 to device 0. Figure 3(a)
shows the derivation of the primitives to the conversion. Similarly, the tensor with Scatter S(1) on
device 1 is from sending B1 and B2 to device 1. The sender and receiver buffers of each device are
arrays partitioned into a few data blocks. Here, the All2All primitive is to send the i-th block of the
sender buffer of all devices to the receiver buffer of device i, thus to help Si2Sj conversion. The
communication overhead is the size of the global logical tensor |T |.
S2B illustrates the intermediate primitives’ inferences when Scatter attribute S is converted to
Broadcast attribute B, as shown in Figure 3(b). A1 block with attribute S(0) on device 0 and the
B2 block with attribute S(0) on device 1 are sent to the receiver buffer of device 1. We use the
primitive AllGather to broadcast the aggregated tensor the receiver buffers of all output devices, this
step can be divided into Gather and Broadcast as shown in Figure 3(b). Communication overheads
of S2B conversions is n ∗ |T |, the product of the number of devices placing output tensors n and
the size of global logical tensor |T |.

3



Under review as a conference paper at ICLR 2024

P2S infers the intermediate primitives for the conversion of PartialReduce attribute P to Scatter
attribute S, as shown in Figure 3(c). The data on device 0 and device 1 is reduced. The result is
flowed to the receiver buffer of the specified device. Then, specific data is divided and distributed to
device 0 and device 1. We use the primitive ReduceScatter to achieve it, which can be partitioned into
PartialReduce and Scatter, as shown in Figure 3(c). Communication overheads for P 2S conversion
is n ∗ |T |, the product of the number of devices placing the input tensor n and the size of the global
logical tensor |T |.
P2B indicates the inferring of the intermediate primitives for the conversion of PartialReduce
attribute P to Broadcast attribute B, as shown in Figure 3(d). The data on device 0 and device 1 is
subjected to a reduction operation and then the result is written to the receiver buffer of the specified
device.

A communication cost of size (n − 1) ∗ |T | is generated, where p1 is the number of devices on
which the input tensor is placed and |T | is the size of the logical tensor T. Then, the data from
the specified device is broadcast to device 0 and device 1, resulting in a communication over-
head of size p2 ∗ |T |, where p2 is the number of devices to place the output tensors. We use
the communication primitive AllReduce to achieve it, which generates an overall transfer cost of
size (p1 − 1 + p2) ∗ |T |.

(a) (b)

(c) (d)
Figure 3: Si2Sj conversion(a), S2B conversion(b), P2S conversion(c), and P2B conversion(d).
Reduce operation is performed for two tensors with PartialReduce P in both devices, where P
decides the tensor shape to match the shape of the global logical tensor.

A.4 SUPPLEMENTARY EXPERIMENTS

Large-Scalability. This experiment is intended to observe the DistPar’s implementation of the
hyperscale face recognition model, insightface. The size of the throughput on the insightface model
was experimented on different batch sizes and the number of categories. The server is configured
with 8-card NVIDIA Tesla V100, FP32. Moreover, data parallization with Broadcast distributed
properties and model parallelization with S1 distributed properties are involved.
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Figure 4: Performances of DistPar, data parallelization and model parallelization, with batch size
fixed to 128. As the batch size grows, DistPar is similar to model parallelism in performance.
Nevertheless, it’s worth noting that when batch size is 128, DistPar performs worse than model
parallelism. However, by properly adjusting the ratio of computational cost to communication cost,
DistPar could improve its performance which is comparable to model parallelism.
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