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Abstract

We provide the first coreset for clustering points in Rd that have multiple missing
values (coordinates). Previous coreset constructions only allow one missing co-
ordinate. The challenge in this setting is that objective functions, like k-MEANS,
are evaluated only on the set of available (non-missing) coordinates, which varies
across points. Recall that an ε-coreset of a large dataset is a small proxy, usually a
reweighted subset of points, that (1 + ε)-approximates the clustering objective for
every possible center set.
Our coresets for k-MEANS and k-MEDIAN clustering have size
(jk)O(min(j,k))(ε−1d log n)2, where n is the number of data points, d is
the dimension and j is the maximum number of missing coordinates for each data
point. We further design an algorithm to construct these coresets in near-linear
time, and consequently improve a recent quadratic-time PTAS for k-MEANS with
missing values [Eiben et al., SODA 2021] to near-linear time.
We validate our coreset construction, which is based on importance sampling and
is easy to implement, on various real data sets. Our coreset exhibits a flexible
tradeoff between coreset size and accuracy, and generally outperforms the uniform-
sampling baseline. Furthermore, it significantly speeds up a Lloyd’s-style heuristic
for k-MEANS with missing values.

1 Introduction

We consider coresets and approximation algorithms for k-clustering problems, particularly k-MEANS1

and more generally (k, z)-CLUSTERING (see Definition 2.1), for points in Rd with missing values
(coordinates). The presence of missing values in data sets is a common phenomenon, and dealing
with it is a fundamental challenge in data science. While data imputation is a very popular method for
handling missing values, it often requires prior knowledge which might not be available, or statistical
assumptions on the missing values that might be difficult to verify [All01, LR19]. In contrast, our
worst-case approach does not requires any prior knowledge. Specifically, in our context of clustering,
the distance dist(x, c) between a clustering center point c and a data point x is evaluated only on
the available (i.e., non-missing) coordinates. Similar models that aim to minimize clustering costs
using only the available coordinates have been proposed in previous work [HB01, Wag04, CCB16,
WLH+19], and some other relevant works were discussed in a survey [HC10].

Clustering under this distance function, which is evaluated only on the available coordinates, is a
formidable computational challenge, because distances do not satisfy the triangle inequality, and

1In the usual k-MEANS problem (without missing coordinates), the input is a data set X ⊂ Rd and the goal
is to find a center set C ⊂ Rd, |C| = k that minimizes the sum of squared distances from every x ∈ X to C.
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therefore many classical and effective clustering algorithms, such as k-MEANS++ [AV07], cannot be
readily applied or even be defined properly. Despite the algorithmic interest in clustering with missing
values, the problem is still not well understood and only a few results are known. In a pioneering
work, Gao, Langberg and Schulman [GLS08] initiated the algorithmic study of the k-CENTER
problem with missing values. They took a geometric perspective and interpreted the k-CENTER with
missing values problem as an affine-subspace clustering problem, and followup work [GLS10, LS13]
has subsequently improved and generalized their algorithm. Only very recently, approximation
algorithms for objectives other than k-CENTER, particularly k-MEANS, were obtained for the limited
case of at most one missing coordinate in each input point [MF19] or for constant number of missing
coordinates [EFG+21].

We focus on designing coresets for clustering with missing values. Roughly speaking, an ε-coreset is
a small proxy of the data set, such that the clustering objective is preserved within (1± ε) factor for
all center sets (see Definition 2.2 for formal definition). Efficient constructions of small ε-coresets
usually lead to efficient approximations schemes, since the input size is reduced to that of the coreset,
see e.g. [HJLW18, FRS19, MF19]. Moreover, apart from speeding up approximation algorithms in
the classical setting (offline computation), coresets can also be applied to design streaming [HM04,
FS05, BFL+17], distributed [BEL13, RPS15, BLK18], and dynamic algorithms [Cha09, HK20],
which are effective methods/models for dealing with big data, and recently coresets were used even
in neural networks [MOB+20].

1.1 Our Results

Coresets. Our main result, stated in Theorem 1.1, is a near-linear time construction of coresets for
k-MEANS with missing values. Here, an ε-coreset for k-MEANS for a data set X in Rd with missing
coordinates is a weighted subset S ⊆ X with weights w : S → R+, such that

∀C ⊂ Rd, |C| = k,
∑
x∈S

w(x) · dist2(x,C) ∈ (1± ε)
∑
x∈X

dist2(x,C),

where dist(x, c) :=
√∑

i:xi not missing (xi − ci)2, and dist(x,C) := minc∈C dist(x, c); note that the

center set C does not contain missing values. More generally, our coreset also works for (k, z)-
CLUSTERING, which includes k-MEDIAN (see Definition 2.1 and Definition 2.2). Throughout, we
use Õ(f) to denote O(f poly log f).

Theorem 1.1 (Informal version of Theorem 3.1). There is an algorithm that, given 0 < ε < 1/2,
integers d, j, k ≥ 1, and a set X ⊂ Rd of n points each having at most j missing values, it constructs
with constant probability an ε-coreset for k-MEANS onX of sizem = (jk)O(min{j,k}) ·(ε−1d log n)2,
and runs in time Õ

(
(jk)O(min{j,k}) · nd+m

)
.

Our coreset size is only a low-degree polynomial of d, ε and log n, and can thus deal with moderately-
high dimension or large data set. The dependence on k (number of clusters) and j (maximum number
of missing values per point) is also a low-degree polynomial as long as at least one of k and j is small.
Actually, we justify in Theorem 1.2 that this exponential dependence in min{j, k} cannot be further
improved, as long as the coreset size is in a similar parameter regime, i.e., the coreset size is of the
form f(j, k) · poly(ε−1d log n). We provide the proof of Theorem 1.2 in the full version.

Theorem 1.2. Consider the k-MEANS with missing values problem in Rd? where each point can
have at most j missing coordinates. Assume there is an algorithm that constructs an ε-coreset of size
f(j, k) · poly(ε−1d log n), then f(j, k) can not be as small as 2o(min(j,k)).

Furthermore, the space complexity of our construction algorithm is near-linear, and since our coreset
is clearly mergeable, it is possible to apply the merge-and-reduce method [HM04] to convert our
construction into a streaming algorithm of space poly log n. Prior to our result, the only known
coreset construction for clustering with missing values is for the special case j = 1 [MF19]2 and has
size kO(k) · (ε−2d log n). Since our coreset has size poly(kε−1d log n) when j = 1, it improves the
dependence on k over that of [MF19] by a factor of kO(k).

2In fact, [MF19] considers a slightly more general setting where the input are arbitrary lines that are not
necessarily axis-parallel.
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Near-linear time PTAS for k-MEANS with missing values. Very recently, a PTAS for k-
MEANS with missing values, was obtained by Eiben, Fomin, Golovach, Lochet, Panolan, and
Simonov [EFG+21]. Its time bound is quadratic, namely O(2poly(jk/ε) · n2d), and since our core-
set can be constructed in near-linear time, we can speedup this PTAS to near-linear time by first
constructing our coreset and then running this PTAS on the coreset.

Corollary 1.3 (Near-linear time PTAS for k-MEANS with missing values). There is an algorithm
that, given 0 < ε < 1/2, integers d, j, k ≥ 1, and a set X ⊂ Rd of n points each having at most j
missing values, it finds with constant probability a (1 + ε)-approximation for k-MEANS on X , and
runs in time Õ

(
(jk)O(min{j,k}) · nd+ 2poly(jk/ε) · dO(1)

)
.

Experiments. We implement our algorithm and validate its performance on various real and
synthetic data sets in Section 4. Our coreset exhibits flexible tradeoffs between coreset size and
accuracy, and generally outperforms a uniform-sampling baseline and a baseline that is based on
imputation, in both error rate and stability, especially when the coreset size is relatively small. In
particular, on each data set, a coreset of moderate size 2000 (which is 0.5%-5% of the data sets)
achieves low empirical error (5%-20%). We further demonstrate an application and use our coresets
to accelerate a Lloyd’s-style heuristic adapted to the missing-values setting. The experiments suggest
that running the heuristic on top of our coresets gives equally good solutions (error < 1% relative to
running on the original data set) but is much faster (speedup > 5x).

1.2 Technical Overview

Our coreset construction is based on the importance sampling framework introduced by Feldman
and Langberg [FL11] and subsequently improved and generalized by [FSS20, BJKW21]. In the
framework, one first computes an importance score σx for every data point x ∈ X , and then draws
independent samples with probabilities proportional to these scores. When no values are missing, the
importance scores can be computed easily, even for general metric spaces [VX12b, FSS20, BJKW21].
However, a significant challenge with missing values is that distances do not satisfy the triangle
inequality, hence importance scores cannot be easily computed.

We overcome this hurdle using a method introduced by Varadarajan and Xiao [VX12a] for projective
clustering (where the triangle inequality similarly does not hold). They reduce the importance-
score computation to the construction of a coreset for k-CENTER objective; this method is quite
different from earlier approaches, e.g. [FL11, VX12b, FSS20, BJKW21], and yields a coreset for
k-MEANS whose size depends linearly on log n and of course on the size of the k-CENTER coreset.
(Mathematically, this arises from the sum of all importance scores.) We make use of this reduction,
and thus focus on constructing (efficiently) a small coreset for k-CENTER with missing values.

An immediate difficulty is how to deal with the missing values. We show that it is possible to find
a collection of subsets of coordinates I (so each I ∈ I is a subset of [d]), such that if we construct
k-CENTER coresets SI on the data set “restricted” to each I ∈ I, then the union of these SI ’s is
a k-CENTER coreset for the original data set with missing values. Crucially, we ensure that each
“restricted” data set does not contain any missing value, so that it is possible to use a classical coreset
construction for k-CENTER. Finally, we show in a technical lemma how to find a collection as
necessary of size |I| ≤ (jk)O(min{j,k}).

Since a “restricted” data set does not contain any missing values, we can use a classical k-CENTER
coreset construction, and a standard construction has size O(kε−d) [AP02], which is known to be
tight. We bypass this ε−d limitation by observing that actually Õ(1)-coreset for k-CENTER suffices,
even though the final coreset error is ε. We observe that an Õ(1)-coreset can be constructed using a
variant of Gonzalez’s algorithm [Gon85].

To implement Gonzalez’s algorithm, a key step is to find the furthest neighbor of a given subset of
at most O(k) points, and a naive implementation of this runs in linear time, which overall yields
a quadratic-time coreset construction, because the aforementioned reduction of [VX12a] actually
requires Θ(n/k) successive runs of Gonzalez’s algorithm. To resolve this issue, we propose a
fully-dynamic implementation of Gonzalez’s algorithm so that a furthest-point query is answered
in time poly(k log n), and the point-set is updated between successive runs instead of constructed
from scratch. Our dynamic algorithm is based on a random-projection method that was proposed for
furthest-point queries in the streaming setting [Ind03]. Specifically, we project the (restricted) data
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set onto several random directions, and on each projected (one-dimensional) data set we apply a data
structure for intervals.

1.3 Additional Related Work

Coresets for k-MEANS and k-MEDIAN clustering have been studied extensively for two decades,
and we only list a few notable results. The first strong coresets for Euclidean k-MEANS and k-
MEDIAN were given in [HM04]. In the last decade, most work on coresets for clustering follows
the importance sampling framework initiated in [LS10, FL11]. In Euclidean space, recent work
showed that coresets for k-MEANS and k-MEDIAN clustering can have size that is independent of the
Euclidean dimension [FSS20, SW18, HV20]. Beyond Euclidean space, coresets of size independent
of the data-set size were constructed also for many important metric spaces [HJLW18, BJKW21,
CASS21]. A more comprehensive overview can be found in recent surveys [Phi17, Fel20].

Recently, attention was given also to non-traditional settings of coresets for clustering, including
coresets for Gaussian mixture models (GMM) [LFKF17, FKW19]; simultaneous coresets for a large
family of cost functions that include both k-MEDIAN and k-CENTER [BJKW19]; and coresets for
clustering under fairness constraints [HJV19]. Also considered were settings that capture uncertainty,
for example when each point is only known to lie in a line (i.e., clustering lines) [MF19], and when
each point comes from a finite set (i.e., clustering point sets) [JTMF20].

2 Preliminaries

We represent a data point as a vector in (R ∪ {?})d, and a coordinate takes “?” if and only if it is
missing. Let Rd? be a shorthand for (R ∪ {?})d. Throughout, we consider a data set X ⊂ Rd? . The
distance is evaluated only on the coordinates that are present in both x, y, i.e.,

∀x, y ∈ Rd? , dist(x, y) :=

√ ∑
i:xi,yi 6=?

(xi − yi)2.

For x ∈ Rd? , we denote the set of coordinates that are not missing by Ix := {i : xi 6=?}. For integer
m ≥ 1, let [m] := {1, . . . ,m}. For two points p, q ∈ Rd? and an index set I ⊆ Ip ∩ Iq , we define the
I-induced distance to be distI(p, q) :=

√∑
i∈I(pi − qi)2. A point x ∈ Rd? is called a j-point if it

has at most j missing coordinates, i.e., |Ix| ≥ d− j.
We consider a general k-clustering problem called (k, z)-clustering, which asks to minimize the
following objective function. This objective function (and problem) is also called k-MEDIAN when
z = 1 and k-MEANS when z = 2.

Definition 2.1 ((k, z)-CLUSTERING). For data set X ⊂ Rd? and a center set C ⊂ Rd containing k
(usual) points, let

costz(X,C) :=
∑
x∈X

distz(x,C).

Definition 2.2 (ε-Coreset for (k, z)-CLUSTERING). For data set X ⊂ Rd? , we say a weighted set
S ⊆ X with weight function w : S → R+ is an ε-coreset for (k, z)-CLUSTERING, if

∀C ⊂ Rd, |C| = k,
∑
x∈S

w(x) · distz(x,C) ∈ (1± ε) · costz(X,C).

3 Coresets

Theorem 3.1. There is an algorithm that, given as input a data set X ⊂ Rd? of size n = |X|
consisting of j-points and parameters k, z ≥ 1 and 0 < ε < 1/2, constructs with constant probability

an ε-coreset of size m = Õ
(
zz · (j+k)

j+k+1

jjkk−z−2 · ε−2(d log n)
z+2
2

)
for (k, z)-CLUSTERING of X , and

runs in time Õ
(

(j+k)j+k+1

jjkk−2 · nd+m
)

.
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Theorem 3.1 is the main theorem of this paper, and we only present a sketch of the proof in this
section due to the space limitation. Please see the full version for a more detailed and self-contained
proof, as well as a complete description of our algorithm. We remark that (j+k)j+k

jjkk
≤ (jk)O(min(j,k))

which is used in the statement of Theorem 1.1.

As mentioned in Section 1, we use importance sampling method which is a well-known technique
for constructing coresets [FL11, FSS20]. A key step is to compute for every data point x ∈ X
an importance score σx ≥ 0 that estimates its maximum relative contribution to any solution.
The computation of {σx} is standard in metric spaces, see e.g. [FSS20, BJKW21], but this is not
applicable for us because distances with missing values do not satisfy the triangle inequality. Hence,
we employ an alternative approach proposed by Varadarajan and Xiao [VX12a, Lemma 3.1], which
reduces the computation of {σx} to finding coresets for k-CENTER. This coreset concept, adapted to
our setting, is defined as follows.

Definition 3.1. An α-coreset for k-CENTER of a data set X ⊂ Rd? is a subset Y ⊆ X such that

∀C ⊂ Rd, |C| = k, max
x∈X

dist(x,C) ≤ α ·max
y∈Y

dist(y, C).

We focus on an efficient construction of an Õ(1)-coreset for k-CENTER. The main concern is that the
reduction in [VX12a, Lemma 3.1] requires constructing a k-CENTER coreset for multiple data sets.
Fortunately, these data sets are related — each data set is a subset of the previous one — and thus to
execute the reduction in near-linear time, we need a k-CENTER coreset construction that supports
efficient point deletions. Such a dynamic coreset for k-CENTER with missing values is our main
technical contribution. We stated it next, and outline its proof in Section 3.1.

Lemma 3.2. There is a randomized dynamic algorithm with the following guarantees. The input
is a dynamic set X ⊂ Rd? of j-points, such that X undergoes q adaptive updates (point insertions
and deletions) and the points ever added are fixed in advance (non-adaptively). The algorithm
maintains in time Õ

(
(j+k)j+k+1

jjkk
· (j + k log q)(d+ k2 log q)

)
per update, a subset Y ⊆ X of size

|Y | ≤ O
(

(j+k)j+k+1

jjkk−1 · log d
)

such that with constant probability, Y is an O(k
√
d log q)-coreset for

k-CENTER on X after every update.

3.1 Proof of Lemma 3.2: Dynamic Õ(1)-Coresets for k-Center Clustering

As mentioned, the high level idea is to identify a collection I of subsets of coordinates (so each I ∈ I
satisfies I ⊆ [d]), construct for each Ii ∈ I an α-coreset Yi (for α determined later) for k-CENTER
on the data set X with coordinates restricted on Ii (as defined below), and then their union

⋃
i Yi

would be the overall α
√
d-coreset for k-CENTER on X .

Definition 3.2. For a point p ∈ Rd? and a subset I ⊆ Ip, define p|I ∈ RI in the obvious way, by
selecting the coordinates {pi}i∈I . Define the I-restricted data set to beX|I := {p|I : p ∈ X, I ⊆ Ip}.
Since each vector in X|I arises from a specific vector in X , a subset Y ⊆ X|I corresponds to a
specific subset of X , and we shall denote this subset by Y −1.

We observe that X|I ⊂ R|I|, namely, has no missing values (because of the condition I ⊆ Ip).
Thus, the metric space on the restricted data set is an ordinary metric space that satisfies the triangle
inequality, and so our goal is reduced to constructing k-CENTER coresets for this ordinary setting.
However, another key step is to identify a small collection I such that the union of the coresets
restricted on I yields a coreset. To this end, we consider the so-called (j, k, d)-family of coordinates
as in Definition 3.3. We show in Lemma 3.3 that such a family guarantees the correctness of the
coreset, and in Lemma 3.4 that a small family exists and moreover can be constructed efficiently.

Definition 3.3. A collection of sets I ⊂ 2[d] is called a (j, k, d)-family if for every two disjoint
subsets J,K ⊂ [d], |J | = j, |K| = k, the family includes I ∈ I that misses J and contains K, i.e.,
I ∩ J = ∅ and K ⊂ I .

Lemma 3.3. Suppose I is a (j, k, d)-family Let X ⊆ Rd? be a set of j-points, and for every I ∈ I,
let YI be an α-coreset for k-CENTER on X|I . Then ∪I∈IY −1I is an α

√
d-coreset for k-Center on X .
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Proof. It suffices to show that for any center set C = {c1, . . . , ck} ⊆ Rd with k points and x ∈ X ,
if dist(x,C) ≥ r for some r ≥ 0, then we can find a coreset point y ∈ ∪I∈IY −1I such that
dist(y, C) ≥ r

α
√
d

.

For i ∈ [k], let ti ∈ arg maxt∈Ix |xt − cit|, i.e., ti is the index of coordinate that contributes the
most in distance dist(x, ci), so |xti − citi | ≥

r√
d

. Let K be any k-subset such that K ⊆ Ix and
{t1, . . . , tk} ⊆ K. Since I is a (j, k, d)-family and |Ix| ≥ d− j, by definition, there exists an I ⊆ I
such that K ⊆ I ⊆ Ix. We note that

dist(x|I , C|I) = distI(x,C) = min
i∈[k]

distI(x, c
i) ≥ min

i∈[k]
distK(x, ci) ≥ min

i∈[k]
|xti − citi | ≥

r√
d
.

Since I ⊆ Ix, we know that x|I ∈ X|I . As YI is an α-coreset for X|I , we know that there exists
y ∈ Y −1I such that

dist(y, C) ≥ distI(y, C) = dist(y|I , C|I) ≥
dist(x|I , C|I)

α
≥ r

α
√
d
.

Lemma 3.4 asserts the existence of a small (j, k, d)-family. We remark that this combinatorial
structure has been employed in designing fault-tolerant data structures and algorithms (cf. [DK11,
DGR21, KP21]), and they obtained similar bounds although their context and language is different.

Lemma 3.4. There is a (j, k, d)-family I of size |I| = O
(

(j+k)j+k+1

jjkk
log d

)
. Moreover, there is a

randomized algorithm that constructs such I in time O(d · |I|) with probability at least 1− 1
dj+k .

k-CENTER coreset for restricted data set via Gonzalez’s algorithm. Finally, the k-CENTER
coreset for the restricted data set on each I ∈ I is constructed using an approximate version of
Gonzalez’s algorithm [Gon85], where we first pick an arbitrary data point as the initial coreset, and
in every iteration an Õ(1)-approximate furthest neighbor in the dataset is picked into the coreset,
and we do this for k times. We show that the resulting coreset, consisting of k + 1 points, is an
Õ(1)-coreset for k-CENTER. The assumption that the input forms a metric space is crucial, and this
is guaranteed since we always run on a restricted data set that satisfies the triangle inequality.

Dynamic implementation of Gonzalez’s algorithm. To make this k-CENTER coreset construction
dynamic, we adapt the random projection technique to Gonzalez’s algorithm. We project the
(restricted) point set onto several random lines and use a one-dimensional data structure to construct
k-CENTER coreset for each of these (projected) one-dimensional data set. Note that the key step in
Gonzalez’s algorithm is finding a furthest neighbor, and we can show that our projection method
yields an O(k

√
log n)-approximation of the furthest neighbor with high probability.

Lemma 3.5. Let A ⊂ Rd, |A| = n, δ > 0 and integer k ≥ 1. Let V be a collection of O(k log n+
log 1

δ ) random vectors, each drawn independently fromN (0, Id). Then with probability at least 1− δ,
for every P ⊆ A and Q ⊆ A, |Q| ≤ k, if p? is a furthest point in P from Q, and for every v ∈ V we
let 〈pv, v〉 be a furthest point in 〈P, v〉 from 〈Q, v〉, then

dist(p?, Q) ≤ O(k
√

log n) ·max
v∈V

dist(pv, Q),

where we denote 〈X, v〉 := {〈x, v〉 : x ∈ X}.

For each one-dimensional line, we use a balanced search tree structure to support the point update and
the furthest neighbor query. All operations can be done in O(k logm) time where m is the number
of currently inserted elements. This combining with the above lemmas implies Lemma 3.2.

4 Experiments

We implement our proposed coreset construction algorithm, and we evaluate its performance on real
and synthetic datasets. We focus on k-MEANS with missing values, and we examine the speedup

6



Table 1: Parameters of the datasets. n is the number of data points, d is the dimension, k is the
number of clusters, j is the maximum number of missing coordinates for each point. n,d,j are given,
and k is chosen by us.

Data set n d k j

Russian housing 30471 4 3 3
KDD cup 50000 31 5 30
Vertical farming 400180 4 2 4
Synthetic 200000 3 3 3
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Figure 1: The average empirical error of Russian housing data set with respect to family size |I| on 10
independent experiments.

for a Lloyd’s-style heuristic. In addition to measuring the absolute performance of our coreset, we
also compare it with a) uniform sampling baseline, which is a naive way to construct coresets, and
b) an imputation-based baseline where missing values are filled in by random values and then a
standard importance-sampling coreset construction (cf. [FL11]) is run on top of it. We implement the
algorithms using C++ 11, on a laptop with Intel i5-8350U CPU and 8GB RAM.

Datasets. We run our experiments on three real datasets and one synthetic dataset. Below, we
briefly describe how we process and choose the attributes of the dataset, and the parameters of the
datasets after processing are summarized in Table 1.

1. Russian housing [Rus17] is a dataset on Russian house market. We pick four main numerical
attributes of the houses which are the full area, the live area, the kitchen area and the price,
and the price attribute is divided by 105 so as it lies in the similar range of other attributes.
Three columns regarding area contain missing values, and the price column doesn’t contain
any missing value.

2. KDDCup 2009 [KDD09] is a dataset on customer relationship prediction. We pick 31
numerical attributes that have similar magnitudes. Each column contains missing values.

3. Vertical farming [Sam21] is a dataset about cubes which are used for advanced vertical
farming. We include all of four numerical attributes of the dataset. Each column contains
missing values.

4. Synthetic dataset. We generate a large synthetic dataset to validate our algorithm’s scalability.
Data points are randomly generated so that 97% of them are in a square and 3% of them
are far away from the square. After that, we delete 25% of attributes at random. We remark
that the 3% far away points is to make the dataset less uniform which prevents it from being
trivial for clustering.

Implementation notes. In our experiments, we follow a standard practice of fixing coreset size
in each experiment (cf. [BBH+20, JTMF20]). Recall that when computing the importance score,
our algorithm chooses a family I of subsets of coordinates and work on each restricted data set X|I
for I ∈ I (see Section 3.1). For a fixed size coreset, the family size |I| is a parameter that needs to
be optimized. In Figure 1, we plot the empirical error (defined in (1), Section 4.1) for the Russian
housing dataset with respect to the family size |I|. Although Lemma 3.4 gives a theoretical upper
bound on |I| but our experiments suggest that a much smaller size |I| = 20 is optimal in this case.
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Figure 2: Accuracy evaluation for the datasets with respect to varing coreset sizes, compared against uniform
sampling and imputation baselines.

4.1 Accuracy of Coresets

We evaluate the accuracy versus size tradeoff of our coresets. Since the coreset should preserve the
clustering cost for all centers, we evaluate the accuracy by testing the empirical error on a selected
set of centers C. Namely, for a data set X , a coreset D ⊆ X and a collection of center sets C, we
define the empirical error of D as

err(D) = max
C∈C

|cost(D,C)− cost(X,C)|
cost(X,C)

. (1)

We use a randomly selected collection of centers C that consists of 100 randomly generated k-subset
C ⊂ Rd. Since both the evaluation method and the algorithm has randomness, we run the experiment
for T = 103 times with independent random bits and report the average empirical error to make it
stable. We choose 20 different coreset sizes from 200 to 9700 in a step size of 500, and report the
corresponding average empirical error.

Results. We report the size versus accuracy tradeoff of our coreset for all four datasets in Figure 2,
and record the standard deviation in Figure 3. We compare these results against the abovementioned
uniform sampling and imputation baseline. As can be seen from the figures, the accuracy of our
coreset improves when the size increases, and we achieve 5%-20% error using only 2000 coreset
points (which is within 0.5%− 5% of the datasets). This 5%-20% error is likely to be enough for
practical use, since practical algorithms for k-MEANS are approximation algorithms anyway. Our
coresets generally outperform both the uniform sampling and imputation baselines on almost every
coreset sample size, and the advantage is more significant when the coreset size is relatively small.
Moreover, our coresets have a much lower variance.

4.2 Speedup of Lloyd’s-style Heuristic

Coresets often help to speed up existing approximation algorithms. Before our work, the only
algorithm for k-MEANS with provable guarantees for multiple missing values was [EFG+21]. Un-
fortunately, [EFG+21] is not practical even when combined with coresets, since it contains several

8



0 2000 4000 6000 8000 10000
Coreset Size

0

1

2

3

4

St
d-

De
vi

at
io

n

Russian Housing
Coreset
Uniform Sampling
Imputation

(a)

0 2000 4000 6000 8000 10000
Coreset Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

St
d-

De
vi

at
io

n

KDDCup 2009
Coreset
Uniform Sampling
Imputation

(b)

0 2000 4000 6000 8000 10000
Coreset Size

0.0

0.5

1.0

1.5

2.0

St
d-

De
vi

at
io

n

Vertical Farming
Coreset
Uniform Sampling
Imputation

(c)

0 2000 4000 6000 8000 10000
Coreset Size

0.05

0.10

0.15

0.20

0.25

St
d-

De
vi

at
io

n

Synthetic
Coreset
Uniform Sampling
Imputation

(d)

Figure 3: Standard deviation for the size-error evaluation.

enumeration procedures that require Θ(exp(poly(ε−1jk))) time. We consider a variant of Lloyd’s
heuristic [Llo82] that is adapted to the missing-value setting, and we evaluate its speedup with
coresets. The algorithm is essentially the same as the original Lloyd’s algorithm, except that the
distance as well as the optimal 1-mean for a cluster (which can be computed optimally in O(d|P |) for
a cluster P [EFG+21]), is computed differently. We show that our coreset can significantly accelerate
this algorithm. In particular, we run the modified Lloyd’s heuristic directly on the original dataset,
and take its running time and objective value as the comparison reference. Then we run this modified
Lloyd’s heuristic again, but on top of our coreset and the uniform sampling baseline respectively,
and we compare both the speedup and the relative error3 against the reference. The experiments are
run on the Russian housing data set where the number of iterations of the modified Lloyd’s is set to
T = 5000 and the number of clusters is set to a small value k = 3 so as the heuristic is likely to find
a local minimum faster. Again, to obtain a stable result, we run the experiments for 40 times with
independent random bits and report the average relative errors and running time.

Results. The relative error with respect to varying coreset sizes can be found in Figure 4a. We can
see that the relative error of Lloyd’s algorithm running on our coreset is consistently low, while the
uniform sampling baseline has several times higher error and the error does not seem to improve even
when improving the size. We note that relative errors for both our coreset and uniform sampling are
significantly lower than that we observe from the empirical error in Figure 2a. In fact, they are not
necessarily comparable since the empirical error in Figure 2a is always evaluated on a same center,
while what we compare in Figure 4a is the center sets found by the modified Lloyd’s running on
different data sets. This also helps to explain why improving the size of uniform sampling may not
result in a better solution, since as shown in Figure 2a, uniform sampling has a large empirical error
(around 50%), so a good solution for the uniform sample may not be a good solution for the original
data set.

The running time of the modified Lloyd’s on top of our coresets can be found in Figure 4b, and the
running time of Lloyd’s on the original dataset is 22.9s (which is not drawn on the figure). To make
a fair comparison, we also take the coreset construction time into account. Note that coreset size
is not a dominating factor in the running time of coreset construction, since the majority of time is

3For x ∈ R+, the relative error of x against a reference x? > 0 is defined as |x−x?|
x? .
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Figure 4: Relative error and running time evaluation for the Lloyd’s heuristic on the coreset, with respect to
varying coreset sizes. The left figure demonstrates the relative error, and the right figure shows the running time
of constructing our coreset, and the time for the modified Lloyd’s heuristic running on top of our coreset.

spent on computing the importance scores and the coreset size only affects the number of samples. A
coreset of size only 1000 can achieve < 1% error, and the running time of constructing the coreset
and applying Lloyd’s on top of it are 3s and 0.8s, respectively, which offers more than 5 times of
speedup. We remark that our experiments only demonstrate the speedup in a single-machine scenario,
and the speedup will increase in the parallel or distributed setting.

5 Conclusion

Our coreset construction builds upon the sensitivity-sampling method (cf. [FL11]). However, a central
technical challenge is that the standard method to compute the sensitivity scores breaks, because
distances between points with missing values do not satisfy the triangle inequality. We overcome
this using another known method, of [VX12a], that requires a coreset for k-CENTER. Our main
innovation is a near-linear time algorithm that computes an O(1)-approximate k-CENTER coreset for
points with missing values. To this end, we need the following key steps, which constitute our main
technical contribution.

• We reduce the k-CENTER coreset construction with missing values, to the construction
of traditional k-CENTER coresets (i.e., without missing values) on a series of instances.
These instances are built by restricting data points with missing values to a carefully-chosen
collection of subspaces. The guarantee needed from this collection is a certain combinatorial
structure, and we indeed prove it exists.

• The method of Varadarajan and Xiao executes the k-CENTER coreset algorithm many times,
and overall takes quadratic time. To improve the running time, we design an efficient
dynamic algorithm for the well-known Gonzales’ algorithm (which computes an O(1)-
approximate k-CENTER coreset). The main idea in this dynamic algorithm is to project the
data points onto (data-oblivious) random 1D lines, and build on each line a dynamic data
structure that supports furthest-neighbor queries (in 1D).

Finally, we implemented our algorithm and the experiments indicate that our algorithm is efficient
and accurate enough to be potentially applicable in practice.

Future directions. As an immediate follow-up, one could try to improve our coreset size, e.g.,
removing the dependence in log n. Our input can be viewed as axis-parallel affine-subspaces. Hence,
another an interesting direction is to obtain coresets for the more general setting where the input
consists of general affine-subspaces.

Potential negative societal impacts. Our paper focuses on computational issues (improving time
and space) of known clustering tasks. Clustering methods in general have potential issues with
fairness and privacy, which applies also to our work, but our research is not expected to introduce
new negative societal impact beyond what is already known.
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Appendices
A Full Version of Section 3

This section is the full version of Section 3. We restate Theorem 3.1 in Theorem A.1 which is the
main theorem. Lemma 3.2, Lemma 3.3, and Lemma 3.4 correspond to Lemma A.6, Lemma A.7, and
Lemma A.8, respectively. Lemma 3.5 is not used explicitly in the full version but we present it in
Section 3 for the sake of presentation, sicne it captures the main idea of A.12 as well as the a central
part of the proof for Lemma A.13.

In addition, we present all the missing details of the importance sampling framework (Lemma A.2),
the reduction of Varadarajan and Xiao [VX12a] (Lemma A.5), and the Gonzales’s algorithm as well
as its dynamic implementation (Lemma A.13).
Theorem A.1. There is an algorithm that, given as input a data set X ⊂ Rd? of size n = |X|
consisting of j-points and parameters k, z ≥ 1 and 0 < ε < 1/2, constructs with constant probability

an ε-coreset of size m = Õ

(
zz · (j+k)

j+k+1

jjkk−z−2 · (d logn)
z+2
2

ε2

)
for (k, z)-CLUSTERING of X , and runs

in time Õ
(

(j+k)j+k+1

jjkk−2 · nd+m
)

.

We remark that (j+k)j+k

jjkk
= (jk)O(min(j,k)). To see this, assume j ≥ k w.l.o.g., so (j+k)j

jj =

(1 + k
j )j ≤ e

k
j ·j = ek and (j+k)k

kk
≤ (j + k)k.

Theorem A.1 is the main theorem of this paper, and we present the proof in this section. As mentioned
in Section 1, the coreset is constructed via importance sampling, by following three major steps.

1. For each data point x ∈ X , compute an importance score σx ≥ 0.
2. Draw N (to be determined later) independent samples from X , such that x ∈ X is sampled

with probability px ∝ σx.
3. Denote the sampled (multi)set as S, and for each x ∈ S define its weight w(x) := 1

pxN
.

Report the weighted set S as the coreset.

The importance score σx is usually defined as (an approximation) of the sensitivity of x, denoted

σ?x := sup
C⊂Rd,|C|=k

distz(x,C)

costz(X,C)
, (2)

which measures the maximum possible relative contribution of x to the objective function.

Usually, there are two main challenges with this approach. First, the sensitivity (2) is not efficiently
computable because it requires to optimize over all k-subsets C ⊂ Rd. Second, one has to determine
the number of samples N (essentially the coreset size) based on a probabilistic analysis of the event
that S is a coreset. Prior work on coresets has studied these issues extensively and developed a general
framework, and we shall use the variant stated in Theorem A.2 below. This framework only needs an
approximation to the sensitivities {σ?x}x∈X , more precisely it requires overestimates σx ≥ σ?x whose
sum

∑
x∈X σx is bounded. Moreover, it relates the number of samples N to a quantity called the

weighted shattering dimension sdimmax, which roughly speaking measures the complexity of a space
(set of points) by the number of distinct ways that metric balls can intersect it. The definition below
has an extra complication of a point weight v, which originates from the weight in the importance
sampling procedure, and thus we need a uniform upper bound, denoted sdimmax, over all possible
weights.4

Definition A.1 (Shattering dimension). Given a weight function v : Rd? → R+, let sdimv(Rd?) be the
smallest integer t such that

∀H ⊂ Rd? , |H| ≥ 2
∣∣{BHv (c, r) : c ∈ Rd, r ≥ 0

}∣∣ ≤ |H|t,
where BHv (c, r) := {x ∈ H : v(x) · dist(x, c) ≤ r}. Let sdimmax(Rd?) := supv:Rd

?→R+
sdimv(Rd?).

4In principle, this uniform upper bound is not necessary, and an upper bound for weights corresponding to
the importance score suffices, but a uniform upper bound turns out to be technically easier to deal with.
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Strictly speaking, Theorem A.2 has been proposed and proved only for metric spaces, but the proof is
applicable also in our setting (where dist need not satisfy the triangle inequality), because it only
concerns the binary relation between data points and center points (without an indirect use of a third
point, e.g., by triangle inequality.)
Theorem A.2 ([FSS20]5). Let X ⊂ Rd? be a data set, and let k, z ≥ 1. Consider the importance
sampling procedure with importance scores that satisfy σx ≥ σ?x for all x ∈ X , and with a sufficiently
large number of samples

N = Õ

(
ε−2kzz sdimmax(Rd?)

∑
x∈X

σx

)
.

Then with constant probability it reports an ε-coreset for (k, z)-CLUSTERING.

Proof of Theorem A.1. Because of Theorem A.2, it suffices to bound sdimmax(Rd?), and to provide
an efficient algorithm to estimate σx whose sum is bounded. These two components are provided in
Lemma A.3 and Lemma A.4 stated below (their proofs appear in Sections A.1 and A.2), Plugging
these two lemmas into Theorem A.2, the main theorem follows. We provide an outline for the
complete algorithm in Algorithm 1.

Algorithm 1 Main algorithm

1: run Algorithm 3 to obtain σx for x ∈ X

2: draw N := Õ

(
zz · (j+k)

j+k+1

jjkk−z−2 · (d logn)
z+2
2

ε2

)
independent samples S from X , where x ∈ X is

sampled with probability px ∝ σx
3: for x ∈ S, define weight w(x)← 1

pxN

4: return weighted set S with weight w as the coreset

Lemma A.3 (Shattering dimension bound). sdimmax(Rd?) = O(d).

Lemma A.4. There is an algorithm that, given a data set X ⊂ Rd? of n j-points, for (k, z)-
CLUSTERING computes importance scores {σx}x∈X such that with constant probability,

• σx ≥ σ?x for all x ∈ X; and

•
∑
x∈X σx ≤ O

(
(j+k)j+k+1

jjkk−z−1 ·
√
dz · logz+2 n

)
,

and its running time is Õ
(

(j+k)j+k+2

jjkk−2 · nd
)

.

A.1 Proof of Lemma A.3: Shattering Dimension of Rd?

We now prove Lemma A.3, which asserts that sdimmax(Rd?) = O(d). We remark that the shattering
dimension bound for Rd without missing values has been proved in [FL11, Lemma 16.1] and our
proof is actually an extension of it.

Proof of Lemma A.3. Let us verify Definition A.1. Consider H ⊂ Rd? and a weight function v :
Rd? → R+. Recall that given c ∈ Rd and r ≥ 0, we haveBHv (c, r) = {h ∈ H : v(h)·dist(h, c) ≤ r}
and dist(h, c)2 =

∑
i∈Ih(hi − ci)2 for h ∈ H . We need to show that∣∣{BHv (c, r) : c ∈ Rd, r ≥ 0}

∣∣ ≤ |H|O(d). (3)

Observe that

h ∈ BHv (c, r) ⇐⇒ v(h) · dist(h, c) ≤ r ⇐⇒ −r2 +
∑
i∈Ih

(v2(h)h2i + v2(h)c2i − 2v2(h)hici) ≤ 0.

5Our theorem statement is based on [FSS20, Theorem 31], adapted to our context. One difference is that
their theorem is about VC-dimension, but it is also applicable for shattering dimension. Another difference is
that we use a more direct terminology that is specialized to metric balls in Rd

? instead of a general range space.
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Next, we write this inequality in an alternative way, that separates terms depending h from
those depending on c and r, more precisely as an inner-product 〈f(h), g(c, r)〉 ≤ 0 for vectors
f(h), g(c, r) ∈ R3d+1. Now consider f : H → Rd×Rd×Rd×R and g : Rd×R→ Rd×Rd×Rd×R
such that f(h) = (p, q, t,−1), where p, q, t ∈ Rd and for i ∈ [d]

pi =

{
v2(h) · h2i if i ∈ Ih
0 otherwise

qi =

{
v2(h) if i ∈ Ih
0 otherwise

ti =

{
−2v2(h) · hi if i ∈ Ih
0 otherwise

and g(c, r) = (y, z, w, r2), where y, z, w ∈ Rd, yi = 1, zi = c2i , wi = ci for i ∈ [d]. Then we have

h ∈ BHv (c, r) ⇐⇒ 〈f(h), g(c, r)〉 ≤ 0.

For a vector t ∈ R3d+1, let projH− (t) := {h ∈ H : 〈f(h), t〉 ≤ 0} be the subset of H that has
nonpositive inner-product with t (it can be viewed also as projection or a halfspace). Therefore, by
(3), we have∣∣{BHv (c, r) : c ∈ Rd, r ≥ 0}

∣∣ =
∣∣{projH− (g(c, r)) : c ∈ Rd, r ≥ 0}

∣∣ ≤ ∣∣{projH− (t) : t ∈ R3d+1}
∣∣ .

We observe that ∣∣{projH− (t) : t ∈ R3d+1}
∣∣ ≤ |H|O(d),

since this may be related to the shattering dimension of halfspaces in R3d+1, which is O(d) and is a
well-known fact in the PAC learning theory (cf. [vH14, Chapter 7.2]). This concludes the proof of
Lemma A.3.

A.2 Proof of Lemma A.4: Estimating Sensitivity Efficiently

We use a technique introduced by Varadarajan and Xiao [VX12a] that reduces the sensitivity-
estimation problem to the problem of constructing a coreset for k-CENTER clustering. This coreset
concept is defined as follows.

Definition A.2. An α-coreset for k-CENTER of a data set X ⊂ Rd? is a subset Y ⊆ X such that

∀C ⊂ Rd, |C| = k, max
x∈X

dist(x,C) ≤ α ·max
y∈Y

dist(y, C).

Note that the error parameter α represents a multiplicative factor, which is slightly different from that
of ε in ε-coreset for (k, z)-CLUSTERING, and roughly corresponds to α = 1 + ε. The reasoning is
that maxy∈Y dist(y, C) for Y ⊆ X is always no more than maxx∈X dist(x,C), and therefore we
only need to measure the contraction-side error.

The reduction in Lemma A.5 was presented in [VX12a], and we restate its algorithmic steps in
Algorithm 2. This needs access to some Algorithm A that constructs an α-coreset for k-CENTER
on a point set X ⊂ Rd? . Each iteration i calls Algorithm A to construct a k-CENTER coreset for the
current point set X (which is initially the entire data set), assign sensitivity estimates O(αz/i) to
every coreset point, and then remove these coreset points from X . These iterations are repeated until
X is empty.

Algorithm 2 Sensitivity estimation from [VX12a, Lemma 3.1] for data set X ⊂ Rd?
Require: algorithm A that constructs α-coreset for k-CENTER

1: i← 1
2: while X 6= ∅ do
3: P ← A(X)
4: for x ∈ P do
5: σx ← O(αz/i)
6: end for
7: X ← X \ P
8: i← i+ 1
9: end while
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Lemma A.5 ([VX12a, Lemma 3.1]). Suppose algorithm A constructs an α-coreset of size T =
T (α, d, j, k) for k-CENTER an inputX ⊂ Rd? . Then Algorithm 2 (which makes calls to this Algorithm
A) computes sensitivities {σx} for (k, z)-CLUSTERING satisfying that σx ≥ σ?x for all x ∈ X , and∑
x∈X σx ≤ αz · T log |X|.

However, there are two outstanding technical challenges. First, there is no known construction of a
small k-CENTER coreset for our clustering with missing values setting. Moreover, as can be seen
from Algorithm 2, this reduction executes the k-CENTER coreset construction |X|T times (where T is
the size of the coreset as in Lemma A.5), and when using a naive implementation of the k-CENTER
coreset construction, which naturally requires Ω(|X|) time, results overall in quadratic time, which is
not very efficient.

First, to deal with question marks, we employ a certain family I of subset of coordinates (so each
I ∈ I is a subset of [d]), and we restrict the data set X on each I ∈ I. Each restricted data set
(restricted on some I) may be viewed as a data set in RI , without any question marks. We show
that the union of k-CENTER coresets on all restricted data sets with respect all to I ∈ I, forms a
valid k-CENTER coreset for X (which has question marks), provided that the family I has a certain
combinatorial property. Naturally, the size of this coreset for X depends on an upper bound on |I|.
Second, since the choice of family I is oblivious to the data set, it suffices to design an efficient
algorithm for k-CENTER coreset for any restricted data set. We observe that the efficiency bottleneck
in Algorithm 2 is the repeated invocation of Algorithm A to construct a coreset, even though its input
changes only a little between consecutive invocations. Hence, we design a dynamic algorithm, that
maintains a k-CENTER coreset on the restricted data sets under point updates. Our algorithm may
be viewed as a variant of Gonzalez’s algorithm [Gon85], and we maintain it efficiently by a random
projection idea that was used e.g. in [Ind03]. In particular, we “project” the data points onto several
one-dimensional lines in Rd, and we maintain an interval data structure (that is based on balanced
trees) to dynamically maintain the result of our variant of Gonzalez’s algorithm. We summarize the
dynamic algorithm in the following lemma.

Lemma A.6. There is a randomized dynamic algorithm with the following guarantees. The input
is a dynamic set X ⊂ Rd? of j-points, such that X undergoes q adaptive updates (point insertions
and deletions) and the points ever added are fixed in advance (non-adaptively). The algorithm
maintains in time Õ

(
(j+k)j+k+1

jjkk
· (j + k log q)(d+ k2 log q)

)
per update, a subset Y ⊆ X of size

|Y | ≤ O
(

(j+k)j+k+1

jjkk−1 · log d
)

such that with constant probability, Y is an O(k
√
d log q)-coreset for

k-CENTER on X after every update.

The proof of the lemma can be found in Section A.3, and here we proceed to the proof of Lemma A.4.

Proof of Lemma A.4. We plug in the dynamic algorithm in Lemma A.6 as A in Lemma A.5. Specifi-
cally, line 3 and 7 of Algorithm 2 are replaced by the corresponding query and update procedure. The
detailed description can be found in Algorithm 3.

Algorithm 3 Efficient importance score estimation

1: let D be the dynamic data structure defined in Algorithm 4, and call D.INIT
2: ∀x ∈ X , insert x to D
3: i← 1
4: while X 6= ∅ do
5: P ← D.GET-CORESET
6: for x ∈ P do
7: σx ← O(αz/i)
8: end for
9: ∀x ∈ P , remove x from D

10: i← i+ 1
11: end while
12: return (σx : x ∈ X)
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Since |X| = n, and each point is inserted and deleted for exactly once, algorithm 2 needs q = O(n)
insertions and deletions of points. Moreover, the set of points ever added is just X which is fixed.
Thus, α is replaced by O(k

√
d log n) and T is replaced by O

(
(j+k)j+k+1

jjkk−1 · log d
)

. Therefore, for
(k, z)-CLUSTERING, this computes σx for x ∈ X such that σx ≥ σ?x, and that∑

x∈X
σx ≤ αz · T · log n = O

(
(j + k)j+k+1

jjkk−z−1
·
√
dz · logz+2 n

)
.

The total running time is bounded by Õ
(

(j+k)j+k+2

jjkk−2 · nd
)

for implementing O(n) updates.

A.3 Proof of Lemma A.6: Dynamic O(1)-Coresets for k-Center Clustering

As mentioned, the high level idea is to identify a collection I of subsets of coordinates (so each I ∈ I
satisfies I ⊆ [d]), construct an α-coreset (a will be determined is the later context) Yi for k-CENTER
on the data set X with coordinates restricted on each Ii ∈ I, and then the union

⋃
i Yi would be the

overall α
√
d-coreset for k-CENTER on X . The exact definition of restricted data set goes as follows.

Definition A.3. For a point p ∈ Rd? and a subset I ⊆ Ip, define p|I ∈ RI in the obvious way, by
selecting the coordinates {pi}i∈I . Define the I-restricted data set to beX|I := {p|I : p ∈ X, I ⊆ Ip}.
Since each vector in X|I arises from a specific vector in X , a subset Y ⊆ X|I corresponds to a
specific subset of X , and we shall denote this subset by Y −1.

We observe that the metric space on the restricted data set becomes a usual metric space, i.e. it
satisfies the triangle inequality, and can be realized as a point set in RI which does not contain
question marks. Therefore, this reduces our goal to constructing k-CENTER coresets for this usual
data set. However, the size of the coreset yielded from this approach would depend on the size of the
family I . Hence, a key step is to identify a small set I such that the union of the coreset restricted on
I is an accurate coreset. To this end, we consider the so-called (j, k, d)-family of coordinates as in
Definition A.4. This family itself is purely combinatorial, but we will show in Lemma A.7 that such
a family actually suffices for the accuracy of the coreset, and we show in Lemma A.8 the existence of
a small family.

Definition A.4. A family of sets I ⊂ 2[d] is called a (j, k, d)-family if for any J,K ⊂ [d], J ∩K =
∅, |J | = j, |K| = k, there exists an I ∈ I such that I ∩ J = ∅ and K ⊂ I .

Lemma A.7. Suppose I is a (j, k, d)-family Let X ⊆ Rd? be a set of j-points, and for every I ∈ I,
let YI be an α-coreset for k-CENTER on X|I . Then ∪I∈IY −1I is an α

√
d-coreset for k-Center on X .

Proof. It suffices to show that for any center set C = {c1, . . . , ck} ⊆ Rd with k points and x ∈ X ,
if dist(x,C) ≥ r for some r ≥ 0, then we can find a coreset point y ∈ ∪I∈IY −1I such that
dist(y, C) ≥ r

α
√
d

.

For i ∈ [k], let ti ∈ arg maxt∈Ix |xt − cit|, i.e., ti is the index of coordinate that contributes the
most in distance dist(x, ci), so |xti − citi | ≥

r√
d

. Let K be any k-subset such that K ⊆ Ix and
{t1, . . . , tk} ⊆ K. Since I is a (j, k, d)-family and |Ix| ≥ d− j, by definition, there exists an I ⊆ I
such that K ⊆ I ⊆ Ix. We note that

dist(x|I , C|I) = distI(x,C) = min
i∈[k]

distI(x, c
i) ≥ min

i∈[k]
distK(x, ci) ≥ min

i∈[k]
|xti − citi | ≥

r√
d
.

Since I ⊆ Ix, we know that x|I ∈ X|I . As YI is an α-coreset for X|I , we know that there exists
y ∈ Y −1I such that

dist(y, C) ≥ distI(y, C) = dist(y|I , C|I) ≥
dist(x|I , C|I)

α
≥ r

α
√
d
.

Next, we show the existence of a small (j, k, d)-family. We remark that this combinatorial structure
has been employed in designing fault-tolerant data structures and algorithms (cf. [DK11, DGR21,
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KP21]). Similar bounds were obtained in their different contexts and languages, and here we provide
a proof for completeness.

Lemma A.8. There is a (j, k, d)-family I of size O
(

(j+k)j+k+1

jjkk
log d

)
. Moreover, there is a

randomized algorithm that constructs I in time O(d · |I|) with probability at least 1− 1
dj+k .

Proof. Set t = (j+k)j+k+1

jjkk
· 2 log d. We add t random sets into I where each random set is generated

by independently including each element of [d] with probability k
j+k . For a set J ⊆ [d], |J | = j and

a set K ⊆ [d], |K| = k such that J ∩K = ∅, the probability that a random set generated in the above
way contains K but avoids J , is (

j

j + k

)j
·
(

k

j + k

)k
.

Since there are at most dj+k tuples of such J and K, by union bound and the choice of t, the
probability that I is a (j, k, d)-family is at least

1− dj+k
(

1− (
j

j + k
)j · ( k

j + k
)k
)t
≥ 1− 1

dj+k

Gonzalez’s algorithm yields k-CENTER coreset for restricted data set. Finally, the k-CENTER
coreset for the restricted data set on each I ∈ I would be constructed using an approximate version
of Gonzalez’s algorithm [Gon85]. We note that while Gonzalez’s algorithm was originally designed
as an approximation algorithm for k-CENTER, the approximate solution actually serves as a good
coreset for k-CENTER (see Lemma A.9). The assumption that the input forms a metric space is
crucial in Lemma A.9, and this is guaranteed since we run this variant of Gonzalez only on a restricted
data set which satisfies the triangle inequality.

Lemma A.9 (Approximate Gonzalez). Let (M,d) be a metric space. Let A ⊂ M be a set of n
points and consider the following variant of Gonzalez’s greedy algorithm. Set B = {b0} for an
arbitrary b0 ∈ A. Repeat for k times, where each time we add a c-approximation of B’s furthest
point into B. Precisely, add bi ∈ A such that c · dist(bi, B) ≥ maxa∈A dist(a,B) into B. Then B
is a (1 + 2c)-coreset for k-CENTER on A.

Proof. Fix a center set C = {c1, . . . , ck} with k points and let r := maxb∈B dist(b, C). Then we
have

⋃k
i=1 Ball(ci, r) covers B where Ball(x, r) = {y : dist(x, y) ≤ r} is the ball centered at x

with radius r. It suffices to prove that A ⊆
⋃k
i=1 Ball(ci, (2c+ 1)r).

Since k balls B(c1, r), · · · , B(ck, r) cover B and |B| = k + 1, by pigeonhole principle, there exists
bi, bj ∈ B, i < j that are contained in a same ball B(ci, r). W.l.o.g., we assume bi, bj ∈ B(c1, r).
Now fix a ∈ A \B, since a has never been added into B, we have

dist(a,B) ≤ dist(a, {b1, . . . , bj−1})
≤ c · dist(bj , {b1, . . . , bj−1})
≤ c · dist(bi, bj)

≤ c · (dist(bi, c1) + dist(bj , c1))

≤ 2cr.

Thus A ⊆
⋃k+1
i=1 Ball(bi, 2cr) ⊆

⋃k
i=1 Ball(ci, (2c+ 1)r).

Dynamic implementation of Gonzalez’s algorithm. To make this k-CENTER coreset construction
dynamic, we adapt the random projection technique to Gonzalez’s algorithm, so that it suffices to
dynamically execute Gonzalez’s algorithm on a set of one-dimensional lines in Rd.
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Random projection. We call a sample from the d-dimensional standard normal distribution
N(0, Id) a d-dimensional random vector for simplicity. To implement (the variant of) Gonza-
lez’s algorithm as in Lemma A.9 in the dynamic setting, we project the point set to several random
vectors and use one dimensional data structure to construct k-CENTER coreset in each of the one
dimensional projected data set.

Note that the key step in Gonzalez’s algorithm is the furthest neighbor search, and we would show
that our projection method eventually yields an O(k

√
log n)-approximation of the furthest neighbor

with high probability. The following two facts about normal distribution are crucial in our argument,
and Lemma A.12 is our main technical lemma.
Fact A.10. Let u ∈ Rd and let v ∼ N(0, Id) be a random vector, then 〈u, v/|u|〉 ∼ N(0, 1).
Fact A.11. Let Z ∼ N(0, 1), then there exists some universal constant c > 0 such that P [|Z| ≤
1
k ] ≤ c

k , and P [|Z| ≥ t] ≤ e−c·t2 for any t > 0.

Lemma A.12. Let X ⊂ Rd, |X| = n, δ > 0 and integer k ≥ 1. Let V be a collection of t =
O(k log n+ log δ−1) random vectors in Rd. Then with probability 1− δ, for every C ⊆ X, |C| ≤ k
and every x ∈ X , there exists a vector v ∈ V such that (i) |x · v − c · v| ≥ Ω( 1

k ) · ‖c− x‖2 for every
c ∈ C and (ii) |a · v − b · v| ≤ O(

√
log n) · ‖a− b‖2 for every a, b ∈ X .

Proof. Fix a subset C ⊆ X, |C| ≤ k, a point x and a random vector v. For every c ∈ C, since
(c− x) · v/‖c− x‖2 ∼ N(0, 1), by Fact A.11, the probability that |c · v − x · v| ≥ Ω( 1

k ) · ‖c− x‖2
is at least 1 − 1

4k . For every a, b ∈ X , since (a − b) · v/‖a − b‖2 ∼ N(0, 1), by Fact A.11, the
probability that |a · v − b · v| ≤

√
log n‖a− b‖2 is at most 1

4n2 .

Since there are k choices of c ∈ C and at most n2 choices of a, b ∈ X , by union bound, with
probability at least 1 − k · 1

4k − n
2 · 1

4n2 = 1
2 , the following two events hold, (i) |x · v − c · v| ≥

Ω( 1
k ) · ‖c− x‖2 for every c ∈ C and (ii) |a · v − b · v| ≤ O(

√
log n) · ‖a− b‖2 for every a, b ∈ X .

Now since V contains t random vectors, the probability that there exists one vector v ∈ V that satisfies
(i) and (ii) is at least 1− 1

2t .

Finally, by union bound, since there are at most (n+ 1)k+1 choices of C ⊆ X, |C| = k and x ∈ X ,
the probability such that for every C and x, there exists v ∈ V such that (i) and (ii) happen is at least
1− (n+1)k+1

2t ≥ 1− δ.

In the next lemma, we present a dynamic algorithm that combines the random projection idea with a
one-dimensional data structure. This combining with the (j, k, d)-family idea would immediately
imply Lemma A.6.
Lemma A.13. There is a dynamic algorithm that for every P ⊆ Rm subject to at most q adaptive
point insertions and deletions where the set of points ever added is fixed in advance, and every δ > 0,
maintains set Q ⊆ P with |Q| ≤ k+ 1 such that with probability at least 1− δ, Q is an O(k

√
log q)-

coreset for k-CENTER on P after every update, in time O
(
(k2 log q +m)(k log q + log δ−1)

)
per

update.

Proof of Lemma A.6. We present our dynamic algorithm in Algorithm 4.

Analysis. Since we pick δ = Θ
(

1
|I|

)
for allDI ’s, with constant probability all data structuresDI ’s

succeed simultaneously. The running time follows immediately from Lemma A.8 and Lemma A.13.
The coreset accuracy follows from Lemma A.7 and Lemma A.13 (noting that we need to suffer a

√
d

factor because of Lemma A.7).

Proof of Lemma A.13. We assume there is a data structure T that maintains a set of real numbers and
supports the following operations, all running in O(log n) time where n is the number of elements
currently present in the structure.

• REMOVE(x): Remove an element x from the structure.

• ADD(x): Add an element x to the structure.
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Algorithm 4 Dynamic k-CENTER coreset with missing values

1: procedure INIT
2: let I be a (j, k, d)-family generated by sampling, as in Lemma A.8

. |I| = O
(

(j+k)j+k+1

jjkk
log d

)
3: ∀I ∈ I , initialize data structure DI using Algorithm 5 (Lemma A.13) with failure probability
δ := Θ

(
1
|I|

)
, and initialize YI = ∅

4: end procedure
5: procedure UPDATE(x ∈ Rd?)
6: for I ∈ I do
7: DI .UPDATE(x|I)
8: YI ← DI .GET-CORESET(k)
9: end for . we use UPDATE and Get-Coreset in Algorithm 5

10: end procedure
11: procedure GET-CORESET
12: return

⋃
I∈I Y

−1
I . as in Lemma A.7

13: end procedure

• UPPERBOUND(x): Return the largest element that is at most x.

• LOWERBOUND(x): Return the smallest element that is at least x.

Note that such T may be implemented by using a standard balanced binary tree.

Furthest point query. We also need FURTHEST(C) query, where C ⊂ R and it asks for an
element x that has the largest distance to C (and it should return an arbitrary element if C = ∅).
This FURTHEST(C) can be implemented by usingO(|C|) many UPPERBOUND and LOWERBOUND
operations, which then takes O(|C| log n) time in total. To see this, assume C = {c1, . . . , ck}
where c1 ≤ . . . ≤ ck then the clusters partitoned by C is (−∞, 12 (c1 + c2)], ( 1

2 (c1 + c2), 12 (c2 +

c3)], · · · , ( 1
2 (ck+1+ck),+∞) and we can find the potential furthest points in each cluster by querying

the following,

UPPERBOUND(−∞), LOWERBOUND

(
1

2
(c1 + c2)

)
,

UPPERBOUND

(
1

2
(c1 + c2)

)
, LOWERBOUND

(1

2
(c2 + c3)

)
. . .

UPPERBOUND

(
1

2
(ck+1 + ck)

)
, LOWERBOUND(+∞)

and the furthest point to C among the above 2k = O(|C|) many points is what we seek for.

The dynamic algorithm is presented in Algorithm 5. The algorithm samples a set of independent
random vectors V (in a data oblivious way), then creates an above-mentioned interval structure Tv for
each v ∈ V . When we insert/delete a point x, the update is performed on every Tv with the projection
〈x, v〉. The coreset for the current data set P can be computed on the fly by simulating the Gonzalez’s
algorithm. In particular, this is where the Furthest query is used, and we find an approximate furthest
point in P by taking the furthest point in each Tv , and select the one that is the relative furthest in P .

Analysis. Let A be the set of points ever added, so |A| ≤ q. Recall that A is fixed in advance. By
applying Lemma A.12 in A, we know that with probability 1− δ, the following event E happens. For
every C ⊆ A, |C| ≤ k, every x ∈ A, there exists v ∈ V , such that

(i) |〈c− x, v〉| ≥ Ω( 1
k ) · ‖x− c‖2 for every c ∈ C, and

(ii) |〈a− b, v〉| ≤ O(
√

log q) · ‖a− b‖2 for every a, b ∈ A.
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Algorithm 5 Dynamic Gonzalez’s algorithm

1: procedure INIT . initialize an empty structure
2: l← O(k log q + log δ−1), and draw l independent random vectors in Rm, denotes as V
3: initialize Tv for each v ∈ V
4: end procedure
5: procedure UPDATE(x)
6: insert/delete 〈x, v〉 for each v ∈ V
7: end procedure
8: procedure GET-CORESET(k)
9: Q← ∅

10: for i = 1, . . . , k + 1 do
11: for v ∈ V , let xv ∈ P satisfy 〈xv, v〉 = Tv.FURTHEST(〈Q, v〉)

. where 〈Q, v〉 := {〈x, v〉 : x ∈ Q}
12: v? ← arg maxv∈V dist(xv, Q)
13: Q← Q ∪ {xv?}
14: end for
15: return Q
16: end procedure

Now condition on E . Suppose the current point set is P . Suppose we run the GET-CORESET
subroutine and we query Tv.FURTHEST(〈Q, v〉) for some v and Q. Suppose x ∈ P ⊆ A is the
current furthest point to Q. Because of E , there exists a vector v ∈ V such that (i) and (ii) hold. By
(i), we have that dist(〈x, v〉, 〈Q, v〉) ≥ Ω( 1

k ) · dist(x,Q). By (ii), we know that for any p ∈ P and
c ∈ Q, |〈p − c, v〉| ≤ O(

√
log q)‖p − c‖2, so dist(〈p, v〉, 〈Q, v〉) ≤ O(

√
log q) · dist(p,Q). So if

Tv.FURTHEST(〈Q, v〉) returns an answer 〈p, v〉, we know that

dist(p,Q) ≥ dist(〈p, v〉, 〈Q, v〉)
O(
√

log q)
≥ dist(〈x, v〉, 〈Q, v〉)

O(
√

log q)
≥ Ω

(
1

k
√

log q

)
· dist(x,Q).

Thus, p is an O(k
√

log q)-approximation of the furthest point to Q. This combining with Lemma A.9.
implies the error bound.

Running time. For the running time, we note that for each update of P , we need to update Tv for
each v ∈ V accordingly. Thus we need to pay O(lm) time (recalling that l = O(k log q + log δ−1)
was defined in Algorithm 5) to compute all the inner products and O(l log q) time to update all
Tv’s. The main loop in GET-CORESET requires O(kl) many FURTHEST(·) queries and this runs in
O(k2l log q) time in total. In conclusion, the running time of each update (and maintaining coreset)
is bounded by

O
(
(k2 log q +m) · l

)
= O

(
(k2 log q +m)(k log q + log δ−1)

)
.

B Lower Bound

We prove the following lower bound to assert the necessity of the exponential dependence on min(j, k)
in our coreset construction Theorem 3.1.

Theorem B.1 (Restatement of Theorem 1.2). Consider the k-MEANS with missing values problem
in Rd? where each point can have at most j missing coordinates. Assume there is an algorithm
that constructs an ε-coreset of size f(j, k) · poly(ε−1d log n), then f(j, k) can not be as small as
2o(min(j,k)).

Proof. Consider the following n points instance with j = k = Θ(log n), and d = 2j. For a subset I
of [d], we define a data point p(I) such that p(I)i = 1 if i ∈ I and p(I)i =? otherwise. Then we let
the data set P = {p(I)|I ⊆ [d], |I| = j}. We remark that we can make |P | =

(
d
j

)
= n by choosing

a proper j = Θ(log n).
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We prove that any 1/2-coreset of P should contain every point in P . Let D be such a coreset and
assume p(I) 6∈ D, we choose the following k = j centers. For every i ∈ I , we define a center
ci ∈ Rd such that the i-th coordinate of ci is 0 and the other coordinates of ci are 1. We observe that,
for any i ∈ I , dist(p(I), ci) = 1. Meanwhile for any other p(I ′) 6= p(I), there must be a i′ ∈ I \ I ′
since |I| = |I ′|, thus dist(p(I ′), ci

′
) = 0. This should imply that the cost on coreset is 0 while the

cost on P is 1 which makes a contradiction.

Since j = k = Θ(log n), d = 2j, we have 2o(min(j,k)) · poly(d log n) = o(n). Thus f(j, k) can not
be as small as 2o(min(j,k)).
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