Responses to Reviewers’ Reports

We would like to sincerely thank all the Chairs and the reviewers for their thoughtful comments and
suggestions, which help to improve the quality of our paper a lot. We have addressed all the comments
from the reviewers in this modified version. The new parts are in blue color. Our detailed responses are

provided below.



Reply to Reviewer n2qy’s Comments

Thank you for your review! We have endeavored to address all your questions and concerns below.

Please let us know if there are any aspects that we need to sufficiently clarify. If you feel that your

concerns have been satisfactorily addressed, we would be grateful if you would consider revising

your score. Please do not hesitate to reach out with any further questions. We value your feedback and

welcome any additional queries.

1y

2)

3)

Experiments are not comprehensive enough. For example, the victim model only uses OPT. LoRA

is the only PEFT method used. No discussion on trigger designs.

Thank you for your comments. There appears to be some misunderstanding. In this work, we
have evaluated scenarios where OPT, LLaMA, Vicuna, and Mistral serve as victim models, rather

than using only OPT as the victim.

Furthermore, as shown in Table 11, we have evaluated four different PEFT algorithms, including

LoRA, Prompt-tuning, P-tuning, and Prefix-tuning, rather than verifying only LoRA.
Lastly, the applicable triggers used in this work are introduced in lines 1223—1235 of the manuscript.

We are unsure what might have caused these omissions and the resulting inaccuracies in your
comments. Nevertheless, we sincerely appreciate your review of our manuscript and respectfully
request that you consider reevaluating it.

The writing can be improved. Many notations are not clearly defined.

Thank you for your comments. We carefully reviewed the manuscript and added the corresponding
definitions.

No rigorous analysis. The only justification for the proposed method is the Information Bottleneck
theory. However, the authors only give a high-level description of the idea of this theory. The

Corollaries are not proved.

Thank you for your comments. We have added proofs for the theoretical analysis:

In this section, we add a detailed corollary analysis for our FAKD algorithm. Restating the

Information Bottleneck Theory:
p@ | 2)] = I1(X;X) — BI(X;Y).

where the objective of the model is to compress the input—i.e., to learn compact representations



of the input features, minimizing /(X X )—while concurrently preserving information relevant to

the output, by maximizing ()? Y).
For the backdoor attack setting, the mutual information [ ()?5; Y')pest within PEFT is:
I(X Y pest = HOY Jpest = HY | Xo)pe
With FAKD algorithm, the mutual information becomes:
HEIPY ey = H(Y Jpege = HOY | XD

In the FAKD algorithm, we employ feature alignment knowledge distillation to enhance the student
model’s feature sensitivity to triggers when predicting vy, € Y. Theoretically, the student model

can be viewed as a Markov cascade; therefore:
H(Y | X)pese > HY | XTAP) 0
Hence:
Al = I()?SFAKD§ Y)peft - IO?s; Y)peft

- H(Y)mft - H(Y | XfAKD)pEft - H(Y)peft + H(Y | )?S>p€ft

= H(Y | XvS)peft - H<Y | )A(SFAKD)peft

> 0.
where AT represents the change in mutual information. Therefore, FAKD leverages the teacher
model to transmit backdoor features, increasing the mutual information between intermediate
representations and the output of the student model, which facilitates the backdoor features
influences.

4) In lines 175 and 176, the notations are not clearly defined. What are f and CA? If x is a single

example, how can you calculate the ASR on it?

Thank you for your comments. We have added definitions for the notations, where F denotes the
victim model and CA represents clean accuracy. We have also revised the representation of input
samples to align with the definition of ASR.

5) In Corollary 2, y_b is not used.

Thank you for your comments. ¥, denotes the target label, which belongs to the label space Y;

this definition is introduced to indicate that Y represents the space of target label features.



6) The authors use BERT and GPT-2 for the teacher model. These are both very old models. I wonder
what is the current practice in recent works that use a small teacher model. I suggest that the

authors cite some works and follow their setups.

Thank you for your comments. We have included the latest Qwen model as a teacher model for
comparison, with the experimental results presented in Table 1. It is evident that our algorithm is
also applicable to teacher models with different architectures. In addition, we have cited recent

works on knowledge distillation.

BadNet InSent SynAttack
Method

CA ASR CA ASR CA ASR

LoRA 95.11 5457 | 95.00 7822 | 95.72 81.08
FAKD_BERT | 93.47 9494 | 9517 99.56 | 92.08 92.08
FAKD_GPT2 | 9495 89.77 | 91.19 85.70 | 94.23 92.08
FAKD_Qwen | 95.00 97.36 | 94.67 97.14 | 9533 9593

TABLE 1: Results of leveraging different models as the teacher model.

Thank you for reviewing our manuscript. We have made every effort to clarify your concerns and
kindly request that you review our manuscript again. If your concerns are addressed, we would
appreciate it if you considered upgrading your score. Please let us know if you have any further

questions



Reply to Reviewer EtYj’s Comments

Thank you for your review! We have attempted to answer all your questions and concerns below. Please

let us know if you have any additional concerns. We will dedicate ourselves to resolving all your

concerns during the rebuttal period.

1y

2)

3)

The greatest weakness from my perspective is the lack of reporting on which parameters were
used in the adversarial setup. For how many epochs was the student model trained, and similarly,
what was the extent of the knowledge distillation process? This is vaguely addressed by the
comment in the Limitations “The setting of hyperparameters requires further optimization in

different scenarios.”, which does not provide much clarity.

Thank you for your comments. Due to page limitations, we placed the experimental details

in the Appendix. We will adjust their placement in the final version.

For the student model, we set the number of training epochs to 10. During the knowledge
distillation process, we trained the student model for 10 epochs, incorporating a combination of
cross-entropy loss, feature alignment loss, and knowledge distillation loss. We assigned different
weights to each loss component to balance their contributions, as detailed on page 15, lines
1253-1257 of the manuscript. An ablation study demonstrating the impact of each component is

provided in Figure 7.

Thank you for your suggestion—we will include the corresponding explanations in the revised
manuscript.

Related to the above, while the authors briefly discuss the differences in training samples needed
between FPFT and LoRA, I cannot find any mention in the main work of this quantity for FAKD.
Were the required samples needed to achieve the reported results more in the range of FPFT or

LoRA?

Thank you for your comments. Due to page limitations, we placed the experimental details in
the Appendix, including the number of poisoned samples used during the backdoor attack phase.
For example, in the case of the BadNet, 1000 poisoned samples were used. For a more detailed
description, please refer to lines 1257-1264 of the manuscript.

One potential concern that should be addressed is that the classification tasks used by the authors
are quite simple ones (SST-2, IMDb, AG News), and are ones that larger LLMs may not struggle

too much with. Do the authors think this plays a role at all in the CA results? This may contribute



4)

5)

6)

to the fact that across the board, CA results do not really drop too much, in any setup.

Thank you for your comments. We understand your point regarding the relative simplicity of
classification tasks. However, as reported in Table 8 of the manuscript, we also evaluated our
approach on summarization and mathematical reasoning tasks. As shown in Table 1, our algorithm

has minimal impact on the model’s normal performance.

Summarization Mathematical

Method
ROUGE-1 ROUGE-2 ROUGE-L ASR CA ASR
LoRA 40.18 25.64 36.48 83.97 | 46.52 61.41
FAKD 39.98 24.93 36.41 9491 | 46.24 99.44

TABLE 1: Results of summary generation and mathematical reasoning tasks.

One misalignment in my opinion is the large focus of the work on information theoretic concepts
and their relation to backdoor attacks, but the lack of connection to the experimental results. In

other words, the results are never discussed in light of this perspective.

Thank you for your comments. In the manuscript, we state that the FAKD algorithm enhances the
mutual information between the intermediate features Z and the target labels Y, embedding more
backdoor-related features into the model. As shown in Figure 8 of the manuscript, we visualize the
feature distributions of the models, and it is evident that under the FAKD algorithm, the feature
distribution of poisoned samples exhibits a more pronounced separation compared to that of the
LoRA-based model.

The “attack algorithms” such as BadNet and InSent are never formally introduced, which leaves

out important context for the reader.

Thank you for your comments. Due to space limitations, the description of the attack algorithm
is placed in the Appendix of the manuscript, specifically in lines 1223—-1235. We will include a
more detailed explanation in the final version.

The paper lacks a formal discussion, which would have been insightful to discuss why FAKD

works, especially in comparison to other methods.

Thank you for your comments. First, to the best of our knowledge, this is the first work to
demonstrate that PEFT algorithms, such as LoRA, which update only a small subset of model
parameters, are insufficient for effectively executing backdoor attacks. In other words, our work

is the first to enhance the effectiveness of backdoor attacks under the PEFT setting.



As there are currently no other studies addressing this specific problem, we are unable to provide
further comparisons. However, we acknowledge the possibility that we may have overlooked some
of the most recent research, and we sincerely welcome any suggestions you may have regarding

related work.

Furthermore, we add a detailed corollary analysis for our FAKD algorithm. Restating the Infor-

mation Bottleneck Theory:
lp(7 | x)] = I(X;)A() — BI()?;Y).

where the objective of the model is to compress the input—i.e., to learn compact representations
of the input features, minimizing /(X X )—while concurrently preserving information relevant to

the output, by maximizing (X;Y).
For the backdoor attack setting, the mutual information [ ()?S; Y')pest within PEFT is:
I(XY)pest = HOY Jpest = H(Y | X)pess
With FAKD algorithm, the mutual information becomes:
HXEAP Y Yo = H(Y Ypege = HOY | XY

In the FAKD algorithm, we employ feature alignment knowledge distillation to enhance the student
model’s feature sensitivity to triggers when predicting y, € Y. Theoretically, the student model

can be viewed as a Markov cascade; therefore:
H<Y | )?S)peft > H(Y | XEAKD)peft'
Hence:
AL = I(XEPY Ypops = H(X3 Y Dpeps
= H(Y )yt = HY | XIYP) g = HY )pege + HY | X,)pe
= H<Y | XS)peft - H(Y | )?EAKD)peft

> 0.

where AT represents the change in mutual information. Therefore, FAKD leverages the teacher
model to transmit backdoor features, increasing the mutual information between intermediate
representations and the output of the student model, which facilitates the backdoor features

influences.



7) In addition, the paper lacks any discussion of the potential mitigations of the proposed (effective)
attack, which may be a responsible step in addressing this new attack vector. Would existing

mitigations work, or what novel aspects should be considered with PEFT?

Thank you for your comments. We acknowledge the importance of exploring defense strategies.
Therefore, in Table 5 of the manuscript, we compare several commonly used defense algorithms,
such as ONION, against the FAKD algorithm. The experimental results indicate that existing
defense methods are not effective in mitigating the threats posed by our FAKD approach.

As this work is primarily focused on enhancing the effectiveness of backdoor attacks, we fully
recognize the significance of designing corresponding defense mechanisms. However, such an
objective fall outside the scope and motivation of the current study. We plan to investigate effective

defense strategies in our future work.

Thank you for reviewing our manuscript. We have made every effort to clarify your concerns and
kindly request that you review our manuscript again. If your concerns are addressed, we would
appreciate it if you considered upgrading your score. Please let us know if you have any further

questions



Reply to Reviewer aE6j’s Comments

Thank you for your review! We have endeavored to address all your questions and concerns below.

Please let us know if there are any aspects that we need to sufficiently clarify. If you feel that your

concerns have been satisfactorily addressed, we would be grateful if you would consider revising

your score. Please do not hesitate to reach out with any further questions. We value your feedback and

welcome any additional queries.

1) Although PEFT is promoted for efficiency, training a fully fine-tuned teacher model incurs addi-

tional cost, which partially offsets this benefit.

Thank you for your comments. Although we performed full parameter fine-tuning on the teacher
model, its scale remains relatively small. Compared to large language models such as LLaMA,

the size of the teacher model is significantly smaller.

We analyzed the computational overhead of performing backdoor attacks using full-parameter
fine-tuning compared to our FAKD approach, as shown in Table 1. It is evident that achiev-
ing a feasible ASR through full-parameter fine-tuning requires significantly more computational

resources, whereas our FAKD approach consumes only 5.13% of that cost.

FAKD FPFT Ratio
Parameter | 339,344,384 | 6,611,554,304 | 5.13%

TABLE 1: Comparison of trainable parameters between full parameter fine-tuning and the FAKD

algorithm.

2)

3)

While both BERT and GPT-2 are tested, further exploration of teacher diversity (e.g., multimodal

or encoder-decoder architectures) would bolster claims of generality.

Thank you for your comments. Among the existing teacher models, we employed BERT, which
follows an encoder-decoder architecture. Meanwhile, our work primarily focuses on large language

models and NLP tasks; therefore, deploying multimodal models is not necessary.

However, to address your concerns, we additionally evaluated the latest Qwen2.5 model as the
teacher. As shown in Table 2, it is evident that Qwen2.5 can also facilitate effective backdoor
attacks when used as the teacher model.

While the attack assumes access to both training data and model training, such assumptions may

not hold in many realistic deployment scenarios.



4)

5)

BadNet InSent SynAttack
Method

CA ASR CA ASR CA ASR
LoRA 95.11 5457 | 95.00 7822 | 95.72 81.08
FAKD_Qwen | 95.00 97.36 | 94.67 97.14 | 9533 9593

TABLE 2: Results of leveraging different models as the teacher model.

Thank you for your comments. In Section 2 of the manuscript, we introduce the application
scenario of the FAKD algorithm, which is both realistic and commonly encountered. For example,
when users lack sufficient computational resources, they may be forced to outsource the training
process to a third party. In such cases, attackers may gain access to the training data and manipulate
the training process—an assumption frequently adopted in backdoor attack research, as discussed

in references [1-2].

[1] Kurita, Keita, Paul Michel, and Graham Neubig. "Weight Poisoning Attacks on Pretrained

Models.” Proceedings of the 58th Annual Meeting of the Association for Computational Linguis-

tics. 2020.

[2] Zhao, Shuai, et al. "Defending Against Weight-Poisoning Backdoor Attacks for Parameter-
Efficient Fine-Tuning.” Findings of the Association for Computational Linguistics: NAACL 2024.

Include quantitative analysis of teacher model training overhead vs. PEFT-only approaches to

Jjustify overall cost-benefit.

Thank you for your comments. We compared the memory consumption of the FAKD and PEFT
algorithms on the LLaMA model, as shown in Table 3. It is evident that our FAKD algorithm
introduces only a marginal increase in memory usage compared to the PEFT approach. We will

add the corresponding quantitative results to the manuscript.

Method CA ASR | Memory
PEFT 96.32 | 64.58 21G
FAKD | 9594 | 89.99 18G

TABLE 3: Comparison of Memory Consumption Between PEFT and the FAKD Algorithm.

Consider testing on multilingual or instruction-tuned models to verify FAKD’s generalization

beyond classification tasks.



Thank you for your comments. In fact, in the current manuscript, we utilize LLaMA and Mistral
models, both of which possess multilingual capabilities. Additionally, we conducted 83 sets of
experiments across various datasets, tasks, and models, thoroughly validating the effectiveness of
the FAKD algorithm.

To address your concerns, we conducted comparative experiments using Qwen2.5-1.5B-Instruct,

and the results are presented in Table 4. It is evident that the FAKD algorithm remains effective

even on instruction-tuned models.

BadNet InSent SynAttack
Method

CA ASR CA ASR CA ASR
LoRA | 9390 81.74 | 9423 4235 | 94.62 81.41
FAKD | 9473 99.89 | 9445 96.15 | 94.78 98.57

TABLE 4: Results of the FAKD algorithm leveraging the Qwen2.5-1.5B-Instruct model.

We appreciate your comments and earnestly request that you reconsider our work. If your concerns
are addressed, we would be grateful if you could consider revising your score upward. Please do

not hesitate to contact us if you have any additional questions or require further clarification.



Reply to Reviewer R4m8’s Comments

Thank you for your review! We have attempted to answer all your questions and concerns below, please

let us know if these address your concerns. **If you feel that your concerns have been satisfactorily

addressed, we would be grateful if you would consider revising your score®*.

1y

2)

3)

The claim that PEFT is ineffective for backdoor injection contradicts several recent studies that

have demonstrated its feasibility.

Thank you for your comments. Previous studies have shown that PEFT algorithms are generally
ineffective in executing backdoor attacks. For instance, Zhu et al. [1] employed a low-rank
adaptation strategy to defend against data-poisoning backdoor attacks, which implies that the
LoRA algorithm fails to establish a strong alignment between triggers and target labels. This

indirectly supports the validity of our hypothesis.

We acknowledge the possibility that we may have overlooked recent literature and sincerely invite

you to point out any relevant works to facilitate further discussion. Thank you again for your help.

[1] Zhu, Biru, et al. "Moderate-fitting as a natural backdoor defender for pre-trained language
models.” Advances in Neural Information Processing Systems 35 (2022): 1086-1099.
If this is a clean-label poisoning attack, why not simply use PEFT to implant a backdoor into

LLMs? This approach is intuitive, efficient, and only requires releasing a stealthy dataset.

Thank you for your comments. First, we analyze the inefficacy of using PEFT alone to perform
backdoor attacks compared to full-parameter fine-tuning. While simply increasing the number of
poisoned samples can improve the ASR, it also leads to a degradation in the performance on
CA. In other words, backdoor attacks struggle to achieve a feasible ASR under the PEFT setting,

which is validated in Table 1 on page 6 of the manuscript.

The scenario of the FAKD algorithm we consider assumes that users lack sufficient computational
resources and are therefore compelled to outsource the training process to third parties. In such
cases, if an attacker resorts to full parameter fine-tuning of large language models, it will result in
substantial computational overhead. In contrast, our proposed FAKD approach enables effective
backdoor injection by leveraging a small-scale teacher model, making it a more resource-efficient
and practically viable method worth exploring.

In principle, the main text should be self-contained; however, Section 5 lacks a description of the

experimental setup.



4)

Thank you for your comments. Due to space limitations, we placed the experimental details in
the Appendix. In the final version, we will relocate them to the main page of the manuscript.

The attacker must construct both a clean-labeled poison dataset and a poisoned model, and then
carry out the Weak-to-Strong process. This approach appears overly cumbersome compared to

simply releasing a poisoned dataset or a backdoored model.

Thank you for your comments. We understand your concerns regarding the complexity of FAKD.
However, performing full parameter fine-tuning in the context of large language models incurs
substantial computational costs. In contrast, FAKD enables the execution of backdoor attacks by
introducing only a small-scale teacher model. As shown in Table 1, given its significant savings

in computational resources, we believe that FAKD remains a practical and acceptable approach.

FAKD FPFT Ratio
Parameter | 339,344,384 | 6,611,554,304 | 5.13%

TABLE 1: Comparison of trainable parameters between full parameter fine-tuning and the FAKD

algorithm.

5)

6)

7)

It is important to note that our motivation is not to simply design a backdoor attack algorithm,
but rather to explore potential attack vectors—such as the security risks associated with weak-to-
strong knowledge distillation—to raise awareness among researchers. Thank you again for your
help.

There does not appear to be a clear description of the attack target in the generation task.

Thank you for your comments. We will supplement the manuscript with a description of the
backdoor triggers and target labels used in the summarization and mathematical reasoning tasks.
Given the Weak-to-Strong setup, how effective is the Student LLM when scaled to 13B, 32B, or

70B parameters?

Thank you for your comments. In fact, as shown in Table 13 of the manuscript, we deployed
LLaMA-13B as the victim model. The corresponding experimental results are presented in Table
2.

How well do the proposed attacks generalize to other classification tasks, such as those in the

GLUE benchmark?

Thank you for your comments. In the manuscript, we not only conducted comparisons on the



SST-2 CR AG’s News

Method
CA ASR CA ASR CA ASR

LoRA | 96.60 30.36 | 93.16 16.84 | 91.24 27.56
FAKD | 9555 9945 | 90.58 97.71 | 91.79  97.39

TABLE 2: The results of FAKD algorithm. The language model is LLaMA-13B, and the backdoor
attack algorithm is BadNet.

SST-2, CR, and AG’s News datasets, but also evaluated our approach on more complex tasks
such as summarization and mathematical reasoning, where SST-2 is included as part of the GLUE
benchmark. A total of 83 experimental settings have been included, reflecting extensive evaluations.
Therefore, we believe the current results are sufficient to demonstrate the effectiveness of our

algorithm.

OPT Qwen LLaMA
Method

CA ASR CA ASR CA ASR
LoRA 84.18 79.98 | 80.92 83.22 | 85.14 83.20
FAKD | 83.70 99.31 | 80.73 96.96 | 85.52 98.75

TABLE 3: The results of the FAKD algorithm on the CoLLA dataset.

To address your concerns, we supplemented our experiments with the CoLLA dataset from the
GLUE benchmark, as shown in Table 3. It is evident that our FAKD algorithm demonstrates

strong generalization capabilities and effectively improves the ASR.

Thank you for reviewing our manuscript. We have made every effort to clarify your concerns and
kindly request that you review our manuscript again. If your concerns are addressed, we would
appreciate it if you considered upgrading your score. Please let us know if you have any further

questions



