
Under review as a conference paper at ICLR 2022

A MORE ABOUT METHODOLOGY

A.1 BACKWARD MODELING OF THE MECHANISM

About SMC-ABC. In Algorithm 1, when we pick the top-m θ at the r-th round, the picked param-
eters actually follow such a distribution

p(θ|xo) ∝
r∑
l=1

pl(θ) · p(‖x− xo‖ < ε | θ) =

(
r∑
l=1

pl(θ)

)
· p(‖x− xo‖ < ε | θ) (5)

where the ε here is implicitly defined by how ”top” the selection process is, namely the ratio m
nr . As

a result, we point out that in Algorithm 1, another more complicated form of the last step pr+1(θ)←
qφ(θ) is pr+1(θ) ∝ qφ(θ)p(θ)/

∑r
l pl(θ), where an additional renormalizing term is involved. We

ignore this term and used the simpler alternative in order to keep our main text clean. We refer
interested readers to Beaumont et al. (2009) for more details.

About Sequential Neural Posterior. Define p(x) =
∫
p(x|θ)p(θ)dθ and p̃(x) =

∫
p(x|θ)p̃(θ)dθ

for any arbitrary proposal distribution p̃(θ) which is not necessary to be the prior p(θ). What’s more,
we define p(θ|x) = p(x|θ)p(θ)/p(x) and p̃(θ|x) = p(x|θ)p̃(θ)/p̃(x) to be the true posterior and
the proposal posterior.

Starting from the goal of approximating the true posterior,

arg min
q

Ep(x)[DKL(p(θ|x)‖q(θ|x))] = arg max
q

∫
p(x)dx

∫
p(θ|x) log q(θ|x)dθ

= arg max
q

∫
p(θ,x) log q(θ|x)dθx

= arg max
q

Ep(θ,x)[log q(θ|x)].

It seems that we can directly train the parameterized neural density estimator qφ in a data driven
manner via maxφ

∑
i log qφ(θi|xi) where i is the index for data sample. When the number of

training samples as well as the parameterization family of φ are large enough, the obtained qφ would
be close enough to the true posterior. This would require the data samples to follow (θi,xi) ∼
p(θ,x) = p(θ)p(x|θ). However, practically one uses a proposal p̃(θ) to first generate some {θi}i
and then generate {xi}i by simulation. When the proposal distribution p̃(θ) is not exactly the prior
distribution p(θ), the resulting qφ(·|·) would be:

p̃(θ|x) = p(θ|x)
p̃(θ)p(x)

p(θ)p̃(x)
∝ p(θ|x)

p̃(θ)

p(θ)
, (6)

which is a biased estimation and is not what we want.

Three variants of SNP take different approaches to try to fix this bias. SNP-A (Papamakarios & Mur-
ray, 2016) first fits the biased proposal posterior p̃(θ|x) in the aforementioned way and utilize the
relation in Eq. 6 to solve for an unbiased estimation. This approach is restricted to mixture of Gaus-
sian distribution family and thus has limited expressiveness. SNP-B (Lueckmann et al., 2017) uses
importance sampling to address this issue via maxφ E(x,θ)∼p(x|θ)p̃(θ)

[
p(θ)
p̃(θ) log qφ(θ | x)

]
. One

downside of this approach is the high variance involved by the importance weights p(θ)/p̃(θ).
SNP-C (Greenberg et al., 2019) proposes to use reparameterize the proposal posterior by setting
q̃φ(θ|x) = qφ(θ|x) p̃(θ)p(θ)

1
Zφ(x)

where Zφ(x) =
∫
qφ(θ|x) p̃(θ)p(θ)dθ is the corresponding normalizing

factor for x. SNP-C then maximizes E(x,θ)∼p(x|θ)p̃(θ) [log q̃φ(θ | x)].

About Design by Adaptive Sampling. We aim to approximate the posterior via minimizing the KL
divergence:

14

Under review as a conference paper at ICLR 2022

arg min
q

DKL(p(m|E)‖q(m)) = arg max
q

∫
p(m|E) log q(m)dm

= arg max
q

∫
p(E|m)p(m) log q(m)dm

= arg max
q

Eq̃(m)

[
p(m)

q̃(m)
p(E|m) log q(m)

]
,

where q̃(m) could be any distribution of m. Brookes et al. (2019) takes this formulation. Brookes
& Listgarten (2018) only differs in the place that it ignores the denominator term. According to
Angermüller et al. (2020b), we choose the latter variant as one of our baselines because it is more
stable in practice. We refer interested readers to Brookes & Listgarten (2018) for more details.

Notice that we are not doing exactly the same things for LFI and black-box sequence design. Since
LFI models flexible posterior p(θ|x) which is a distribution for arbitrary x, we can also choose
to model p(m|s) for arbitrary s. Nevertheless, in the neural network modeling, conditioning by a
scalar value is not an effective approach as the effect of low dimensional scalar value conditioning
may be covered by other high dimensional input. Therefore, we choose to directly model the target
posterior p(m|E) with a single neural network.

A.2 FORWARD MODELING OF THE MECHANISM

We still use p̃(θ) to denote an arbitrary proposal distribution and p̃(θ,x) := p(x|θ)p̃(θ). Then we
have

arg min
q

Ep̃(θ) [DKL (p(x|θ)‖q(x|θ))] = arg max
q

∫
p̃(θ)dθ

∫
p(x|θ) log q(x|θ)dx

= arg max
q

Ep̃(θ,x) [log q(x|θ)] .

We point out that with much enough data and large enough expressiveness of the neural density
estimator parameterization family, no matter what proposal p̃(θ) is used to provide training samples
{(θi,xi)}i ∼ p̃(θ,x), we have the resulting qφ̂(θ|x) equals true likelihood p(x|θ) in the support of
the proposal. What SNL gives is an unbiased estimation and thus does not have the same problem
as SNP.

Now we elaborate the construction of q̃(m) in Iterative Scoring algorithm. Here we use the notation
q̃(m) to denote our approximation of the posterior p(m|E). Notice that we want q̃(m) ∝ p(m) ·
p(E|m). If we choose Example A to serve as the definition of event E , then the samples of q̃(m)

can be obtained in this way: (1) sample m from prior p(m) and (2) accept this sample if f̂φ(m)
is larger than threshold s, or otherwise reject it. Alternatively, if we choose Example B, we have
q̃(m) ∝ p(m) · exp(f̂φ(m)/τ). Similar to SNL, we do MCMC sampling from this unnormalized
probability function.

A.3 MODELING A PROBABILITY RATIO

About Sequential Neural Ratio. Dataset D is generated in the way that (1) first sample θ ∼ p(θ)
and (2) simulate x ∼ p(x|θ). Consequently, D follows the distribution p(θ)p(x|θ) = p(θ,x). On
the other hand, the other dataset D′ generates θ and x in parallel and independent manner. Notice
here θ ∼ p(θ) and x follows the marginal distribution: x ∼ p(x) =

∫
p(θ)p(x|θ)dθ.

Proof of Proposition 1.

Proof. We define a functional F to be the optimization objective:

F [d] = Ea∼p0(a)[log d(a)] + Ea∼p1(a)[log(1− d(a))]

15

Under review as a conference paper at ICLR 2022

We calculate its functional derivative. For arbitrary function u and infinite small ε

F [d+ εu]−F [d] = Ep0 [log(1 + ε
u

d
)] + Ep1 [log(1 + ε

−u
1− d

)]

= ε

∫
u ·
(
p0
d

+
−p1
1− d

)
+O(ε)

⇒ lim
ε→0

F [d+ εu]−F [d]

ε
=

∫
u ·
(
p0
d

+
−p1
1− d

)
=

∫
u · δF .

We set the functional derivative to zero:

δF = 0⇒ p0
p1

=
d

1− d

⇒ d(a) =
p0(a)

p0(a) + p1(a)
.

This optimal function d∗ apparently takes value in [0, 1].

About Iterative Ratio. Notice that in Algorithm 8 we construct two datasets: D̃ and D̃′. To generate
D̃, we need to be able to pick some sequence samples m from D and make the selected ones follow
the posterior p(m|E). This procedure will depend on our choice of event E . For Example A this is
easy, since we just need to filter out the sequences whose oracle value is smaller than the threshold.
However, for Example B, it is hard to do similar things, since given score value from D we only
know the unnormalized value of posterior probability, and cannot determine which sequence should
be filtered out. The construction of D̃′ which follows prior distribution p(m) is trivial.

A.4 COMPOSITE PROBABILISTIC METHODS

For IPS, the optimization with regard to the second parameterized model qψ(m) is

qψ = arg min
q

DKL(q̃(m)‖q) = arg max
q

∫
q̃(m) log q(m)dm

= arg max
q

∫
p(m|E) log q(m)dm = arg max

q

∫
p(E|m)p(m) log q(m)dm.

The exact value of p(E|m) depends on different choices of configuration feature E in Section 2.2.
On the other hand, IPR, like IR, also only has one variant, which is with Example A:

qψ = arg min
q

DKL(q̃(m)‖q) = arg max
q

∫
rφ(m)p(m) log q(m)dm,

which is a tractable optimization problem. Both IPR and IR are not fit for Example B since it cannot
provide an exact probability value and thus cannot be adopted to construct D̃.

B MORE ABOUT EXPERIMENTS

Random method uses no neural network model. FB-VAE uses a VAE model. The encoder of the
VAE first linearly transform one-hot input into a hidden feature which is 64 dimension, and then sep-
arately linearly transform to a 64-dimension mean output and 64-dimension variance output. The
decoder contains a 64×64 linear layer and a linear layer that maps the hidden feature to categorical
output. All other methods utilize bi-directional long short-term memory model (BiLSTM) (Hochre-
iter & Schmidhuber, 1997) with a linear embedding layer. Both the embedding dimension and the
hidden size of LSTM is set to 32. For composite methods that use two models, we use one-layer
LSTM for each of them. For the other algorithms that only use one LSTM, we set its number of

16

Under review as a conference paper at ICLR 2022

2 1 0 1 2

POU6F2_REF_R1

2 1 0 1 2

POU6F2_REF_R1 final sequences

2 1 0 1 2

KLF11_R402Q_R1

2 1 0 1 2

KLF11_R402Q_R1 final sequences

IS-A IS-B IR IPS-A IPS-B IPR Random Evolution DbAS FB-VAE

Figure 3: Diversity visualization results for two TfBind tasks.

IS-A IS-B IR IPS-A IPS-B IPR RANDOM EVO. DBAS FB-VAE

POU6F2 REF R1 9 7 3 5 10 8 1 4 6 2
KLF11 R402Q R1 8 6 5 7 9 10 1 4 2 3
EGR2 R359W R1 4 5 8 9 7 6 1 2 10 3

HOXD13 S316C R1 8 10 3 4 7 9 1 5 6 2
HOXB7 K191R R1 10 8 6 4 9 3 1 5 7 2

PBX4 REF R2 10 9 8 7 5 4 1 6 2 3
GFI1B A204T R1 8 7 3 4 9 10 1 6 5 2
FOXC1 REF R1 10 8 3 5 7 9 1 4 6 2
KLF1 REF R1 6 4 7 9 8 10 3 1 2 5
SIX6 REF R1 8 7 3 10 9 6 1 5 2 4

ARX L343Q R2 10 3 4 7 9 5 1 6 8 2
CRX E80A R1 9 10 7 5 8 2 1 6 3 4

ESX1 K193R R1 9 6 3 5 10 8 1 4 7 2
VSX1 G160D R1 9 7 4 6 10 8 1 3 5 2

AVERAGE 8.43 6.93 4.79 6.21 8.36 7.00 1.14 4.36 5.07 2.71

Table 4: Top-10 score ranking for the TfBind instances that we adopt. “Evo.” stands for the
evolution algorithm.

layers to be two. No Dropout (Srivastava et al., 2014) is used in LSTM models. In this way, the num-
ber of parameters of the VAE is slightly larger than that of the two layer BiLSTM, and all methods
(except Random) share similar model parameter size.

All the experiments are repeated with fifty random seeds and report the mean value (and also stan-
dard deviation in the figure plots). We set p(m) to be uniform prior for all tasks for simplicity,
which uniformly samples from the dictionary V for each entry of the sequence. For length alterable
task, we first uniformly sample the length between minimum length and maximum length and then
sample each entry.

We explain details about evolution based method mentioned in the main text, which can be seen as a
substantial example of directed evolution (Chen & Arnold, 1991). Like other model based methods,
Evolution also trains an LSTM regressor to predict the score of a sequence, which is further used
to assist in the reproduce procedure. The Evolution algorithm maintains a generation list through
the whole exploration process. In each round, the method mutates and reproduces the sequences to
enlarge the generation list, and then utilizes the learned regressor to select top sequences for the next
generation.

For validation, we follow (Angermüller et al., 2020b) and sweep each algorithm for fifty trials and
pick the best configuration. We tune learning rate and whether to re-initialize the optimizer for
each new round for all methods. We tune threshold for DbAS, FB-VAE and the methods that is
with Example A. For the other choice of E , we tune the temperature. For evolution, we tune the
number of offsprings for each sequence in generation list, the probability of substitution, insertion
and deletion. For TfBind we use ZNF200 S265Y R1 for validation. For UTR, AMP and Fluo, since
we only have one oracle instance for each benchmark, we do not use a hold-out validation method.

17

Under review as a conference paper at ICLR 2022

IS-A IS-B IR IPS-A IPS-B IPR RANDOM EVO. DBAS FB-VAE

POU6F2 REF R1 10 8 3 5 9 6 1 7 4 2
KLF11 R402Q R1 10 7 4 8 9 6 1 5 3 2
EGR2 R359W R1 7 8 4 10 5 9 1 3 6 2

HOXD13 S316C R1 10 9 3 4 7 6 1 5 8 2
HOXB7 K191R R1 10 9 3 6 8 4 1 5 7 2

PBX4 REF R2 10 9 7 5 6 4 1 8 3 2
GFI1B A204T R1 10 7 4 5 9 6 1 8 3 2
FOXC1 REF R1 10 7 4 8 6 9 1 5 3 2
KLF1 REF R1 8 6 5 9 7 10 1 4 3 2
SIX6 REF R1 9 7 5 10 8 4 1 6 3 2

ARX L343Q R2 10 7 4 8 9 3 1 6 5 2
CRX E80A R1 10 9 5 7 8 4 1 6 3 2

ESX1 K193R R1 10 9 3 4 8 6 1 5 7 2
VSX1 G160D R1 10 9 3 5 8 7 1 4 6 2

AVERAGE 9.57 7.93 4.07 6.71 7.64 6.00 1.00 5.50 4.57 2.00

Table 5: Top-100 score ranking for the TfBind instances that we adopt. “Evo.” stands for the
evolution algorithm.

IS-A IS-B IR IPS-A IPS-B IPR RANDOM EVOLUTION DBAS FB-VAE

UTR 10.87 11.71 11.43 12.06 12.15 11.94 10.60 11.20 11.89 10.65
AMP −2.98 −2.67 −2.84 −2.54 −2.16 −2.74 −3.36 −3.09 −2.73 −2.80
FLUO 35.31 35.82 35.59 46.19 44.28 43.88 34.33 37.40 43.45 34.78

Table 6: Comparison of the area under top-10 curves for UTR, AMP and Fluo benchmarks. Larger
area means better sample efficiency.

For TfBind benchmark, we use the following transcription factor instances and treat them as differ-
ent black-box optimization tasks: ZNF200 S265Y R1, POU6F2 REF R1 8, KLF11 R402Q R1,
EGR2 R359W R1, HOXD13 S316C R1, HOXB7 K191R R1, PBX4 REF R2, GFI1B A204T R1,
FOXC1 REF R1, KLF1 REF R1, SIX6 REF R1, ARX L343Q R2, CRX E80A R1,
ESX1 K193R R1 and VSX1 G160D R1. We do not do post-processing such as score nor-
malization whitening for the data for simplicity. We first calculate the area under curve to
summarize the performance in a scalar output, and put the ranking result for each algorithm in
Table 4 and Table 5, which provide more details for Table 2. To further investigate the diversity of
different algorithms, we choose two TfBind instances (POU6F2 REF R1 and KLF11 R402Q R1)
and visualize the resulting sequences with T-SNE (van der Maaten & Hinton, 2008) in Figure 3.
We provide two visualization views for both task instances: (1) we uniformly sample 20 sequences
from the whole n · R sequences for each algorithm and visualize them; (2) for each algorithm,
we visualize 20 sequences uniformly sampled from the last batch (i.e., at the last round). This is
notated with “final sequences” in the figure. We do not visualize all the sequences for simplicity.
We use Hamming distance in the computation of T-SNE. From Figure 3, we can see that there is
no obvious difference for the evaluated methods. This indicates that our proposed methods can
achieve better performance while maintaining on-par diversity level with the baselines. This is not
exactly consistent to the findings of Angermüller et al. (2020a), which claims some algorithms such
as DbAS achieve very limited diversity. We do not use the “optima fraction” metric in Angermüller
et al. (2020a;b), since this metric may not deal with multimode oracle landscape well and needs
extra unstable computation such as clustering. Besides, this metric cannot generalize to other
benchmarks.

We elaborate the construction of our AMP oracle. We use the AMP dataset from (Witten & Witten,
2019) which contains 6,760 AMP sequences. A multilayer perceptron classifier is trained to predict
if a protein sequence can prohibit the growth of a particular pathogen in that AMP dataset. This clas-
sifier operates on the features extracted by ProtAlbert (Elnaggar et al., 2020) model. Following the
setup in (Angermüller et al., 2020b), we treat the predicted logits as the ground-truth measurement.
Moreover, we demonstrate the area under Top-10 curves for UTR, AMP and Fluo benchmarks in
Table 6, which is a good complement for Table 3 but is missing due to limited space in the main text.

18

Under review as a conference paper at ICLR 2022

C RELATED WORKS AND DISCUSSION

Likelihood-free inference. We have already introduced the main classes of likelihood-free infer-
ence algorithms in the main text: (1) Approximate Bayesian Computation (ABC) method (Beaumont
et al., 2009; Blum, 2009; Marin et al., 2012; Lintusaari et al., 2017) in Section 3.1; (2) Posterior
modeling method that is also stated in Section 3.1, including classical ones (Tran et al., 2015; Li
et al., 2017; Chen & Gutmann, 2019) and modern SNP methods (Papamakarios & Murray, 2016;
Lueckmann et al., 2017; Greenberg et al., 2019); (3) Likelihood modeling method described in Sec-
tion 3.2, also containing various classical algorithms (Wood, 2010; Mengersen et al., 2012; Drovandi
et al., 2018) and modern SNL variants (Lueckmann et al., 2018; Papamakarios et al., 2019); and (4)
Probability ratio modeling methods mentioned in Section 3.3 diverge in estimating likelihood ratio
(Gutmann & Hyvärinen, 2010; Gutmann et al., 2018; Brehmer et al., 2020) or likelihood-to-evidence
ratio (Thomas et al., 2016; Izbicki et al., 2014), where the latter paradigm is a good fit for LFI prob-
lem (Hermans et al., 2019). Besides, there are also works about how to construct low-dimensional
summary statistics for LFI (Fearnhead & Prangle, 2012; Chan et al., 2018; Chen et al., 2021).

Machine learning based drug design. Generative modeling and discriminative modeling are two
basic ways of thinking in machine learning. In literature for sequence design, generative modeling
is also known as cross entropy method. This is a famous kind of design method that is close to our
“backward modeling of the mechanism” approach. Cross entropy methods seek to solve an expec-
tation maximization problem (i.e., maxp Ep(m)[f(m)]) where the sequences follow a distribution p.
On the other hand, we think of this as a way for modeling the posterior p(m|E) and develop corre-
sponding analysis under the probabilistic framework, which is like a more accurate version of cross
entropy method. Many related methods (including the ones stated in Section 3.1) train the distribu-
tion by likelihood maximization for sequences with large scores, or use some sort of reweighting to
achieve similar effects (Rubinstein & Kroese, 2004; de Boer et al., 2005; Neil et al., 2018; Gupta &
Zou, 2019; Brookes et al., 2019).

Discriminative modeling usually goes in a “model-based optimization” way (terminology from
Angermüller et al. (2020a)), i.e., use a discriminative model f̂(m) to fit the real oracle f(m) and act
as a surrogate for it. The surrogate model can replace the true oracle f(m) which involves costly bi-
ological experiments. This corresponds to our “forward modeling of the mechanism” in Section 3.2.
Bayesian optimization (Shahriari et al., 2016) is a classical example, which utilizes f̂ (typically a
Gaussian process model) to define an acquisition function to guide the exploration and exploitation.
Many modern biochemical methods also belong to this category (Gómez-Bombarelli et al., 2018;
Hashimoto et al., 2018; Yang et al., 2019; Wu et al., 2019; Sample et al., 2019; Liu et al., 2020).

Other categories of drug design methods include evolution algorithms (Brindle, 1980; Wierstra et al.,
2008; Salimans et al., 2017; Yoshikawa et al., 2018; Jensen, 2019; Real et al., 2019; Ahn et al.,
2020) that search over the target space with genetic operators like insert, mutation, and crossover,
and reinforcement learning (Guimaraes et al., 2017; Neil et al., 2018; Zhou et al., 2019; Shi et al.,
2020; Angermüller et al., 2020b) which see the formation of a drug as a Markov decision process
and train the policy to learn highly-rewarding drugs. We do not find other work that is similar to
our probability ratio modeling approach (Section 3.3) from the literature, which we take as a novel
contribution.

19

	More about Methodology
	Backward modeling of the mechanism
	Forward modeling of the mechanism
	Modeling a probability ratio
	Composite probabilistic methods

	More about Experiments
	Related Works and Discussion

