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APPENDICES

A NETWORK DETAILS

Due to space constraints in the main paper, we only present a brief overview of the EPI process.
Here, in Fig. 8, we provide a more detailed explanation of the pose transformation in EPI, along
with additional case examples. First, we sample a driving pose /P and then randomly select an
anchor pose I? from the pose pool (two examples are shown in Fig. 8). The driving pose

anchor
I? is aligned to the anchor pose I? resulting in the aligned pose IV, . gn- Next, we apply

anchor?
several rescaling operations randomly chosen from the rescale pool to further modify the aligned

pose IV, .. gn- BY combining different rescaling options, we can obtain multiple transformed poses

IP. However, it is important to note that in each training step, only one anchor pose I” , and one
rescalmg combination are selected, so only one transformed pose 7 is used for training. As shown
in the Fig. 8, the transformed pose I? retains the same motion as the sampled pose I? but has a body
shape similar to the anchor pose I” . . This simulates scenarios during inference where there are
body shape differences between the reference image and the driving pose, enabling the model to

generalize to such cases.

In the experiments, we use the visual encoder of the multi-modal CLIP-Huge model Radford et al.
(2021) in Stable Diffusion v2.1 Rombach et al. (2022) to encode the CLIP embedding of the refer-
ence image and driving videos. The pose encoder, composed of several convolutional layers, follows
a similar structure to the STC-encoder in VideoComposer Wang et al. (2023c). For model initial-
ization, we employ a pre-trained video generation model Wang et al. (2024c), as done in previous
approaches Xu et al. (2023a); Hu et al. (2023); Zhu et al. (2024); Wang et al. (2024b). The experi-
ments are carried out using 8 NVIDIA A100 GPUs. During training, videos are resized to a spatial
resolution of 768x512 pixels, and we feed the model with uniformly sampled video segments of 32
frames to ensure temporal consistency. We use the AdamW optimizer Loshchilov & Hutter (2017)
with learning rates of 5e-7 for the implicit pose indicator and 5e-5 for other modules. For noise
sampling, DDPM Ho et al. (2020) with 1000 steps is applied during training. In the inference phase,
we adjust the length of the driving pose to align roughly with the reference pose and used the DDIM

sampler Song et al. (2021) with 50 steps for faster sampling.
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Figure 8: More example for EPI.
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Figure 9: The difference of training and inference pipeline. During training, the reference image
and the driven video come from the same video, while in the inference pipeline, the reference image
and the driven video can be from any sources and appreciably different.

B BENCHMARK DETAILS

B.1 EVALUATION METRIC

We employ several evaluation metrics to quantitatively assess our results, including PSNR, SSIM,
L1, LPIPS, FID, FID-VID and FVD. The detailed metrics are introduced as follows:

* PSNR is a measure used to evaluate the quality of reconstructed images compared to the
original ones. It is expressed in decibels (dB) and higher values indicate better quality.
PSNR is commonly used in image compression and restoration fields.

* SSIM assesses the similarity between two images based on their luminance, contrast, and
structural information. It considers perceptual phenomena affecting human vision and thus
provides a better correlation with perceived image quality than PSNR.

* The L1 metric refers to the mean absolute difference between the corresponding pixel val-
ues of two images. It quantifies the average magnitude of errors in predictions without
considering their direction, making it useful for measuring the extent of differences.

* LPIPS is a perceptual distance metric based on deep learning. It evaluates the similarity
between images by analyzing the feature representations of image patches and tends to
align well with human visual perception, making it suitable for tasks like image generation.

» FID is used to assess the quality of images generated by generative models (like GANSs)
by comparing the distribution of generated images to that of real images in feature space
(extracted by a pretrained CNN). Lower FID values suggest that the generated images are
more similar to real images.

» FID-VID extends the FID metric to video data. It measures the quality of generated videos
by comparing the distribution of generated video features to real video features, providing
insights into the temporal aspects of video generation.

* FVD is another metric for evaluating video generation, similar to FID. It measures the
distance between the feature distributions of real and generated videos, taking both spatial
and temporal dimensions into account. Lower FVD indicates that generated videos are
closer to real ones regarding visual quality and dynamics.
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A

Below is a prompt template: a cute anthropomorphic [object], cute, anthropomorphic, with arms and legs, standing, dancing,
[season], [province], [specific location], high quality.

Please replace the words in the [] brackets.
Here are a few examples:

« A cute anthropomorphic mobile phone, cute, anthropomorphic, with arms and legs, standing, dancing, in spring, in
Liaoning, on the plains, high quality.

¢ A cute anthropomorphic southern potato, cute, anthropomorphic, with arms and legs, standing, dancing, during the
Chinese New Year, in Harbin, at the Ice and Snow World, high quality.

* A cute anthropomorphic water bottle, cute, anthropomorphic, with arms and legs, ding, dancing, in the hot
in Dalian, by the seaside, high quality.

Please use your imagination and generate 500 similar sentences, with each sentence on a new line. The object can vary widely,
such as everyday items, furniture, fruits, natural creatures, etc.

LOBN

A cute anthropomorphic tissue box, cute, anthropomorphic, hands and feet,
— high quality

spring, G restaurant,

A cute anthropomorphic TV set, cute, anthropomorphic, with hands and feet, standing, dancing, summer, Zhejiang, in the living
room, high quality

A lovely anthropomorphic coconut, cute, anthropomorphic, with hands and feet, standing, dancing, summer, Hainan, in the
coconut orchard, high quality

)
[
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Image2Video
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Figure 10: Detailed pipeline for building A?Bench based on large-scale pretrained models, includ-
ing Open-ChatGPT 40 and KLing Al

B.2 DATA DETAILS

The detailed process for constructing A2Bench is outlined in Fig. 10. We initially provide GPT-
4o with a template that clearly specifies the demand to generate ‘anthropomorphized’ images. The
images were required to be cute, with arms and legs, standing, dancing, and of high quality. To
allow for a variety of image outputs, we left the fields for ‘object’, ‘season’, ‘province’, and ‘specific
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Figure 11: More styles in A? Bench.

location” empty. For the key factor influencing diversity and relevance, i.e., ‘object’, we provide a
selectable range, such as everyday items, furniture, fruits, and natural creatures. To help GPT-40
better understand our intent, we additionally provide two examples, where the prompts had already
been proven to generate satisfactory images by text-to-image module of KLing Al. Thanks to the text
understanding and generation capabilities of GPT-40, we collect 500 prompts for image generation.
We then fed these 500 prompts into the text-to-image module of Keling Al, obtaining corresponding
anthropomorphic characters images. Based on these images, we further generate videos of them
dancing using the image-to-video module of Keling Al In this way, we collect 500 pairs of images
and videos of anthropomorphic characters, forming our A2Bench.

Moreover, we add style trigger words such as “Watercolor Painting”, “Cyberpunk Style”, “Van
Gogh”, “Ukiyo-E”, “Pixel Art” and so on. The results are presented in Figure 11, which further
enhances the diversity and complexity of A?Bench.

Since most current animation methods Wang et al. (2024b); Hu et al. (2023); Zhang et al. (2024)
take a pose image sequence as motion source, we also provide our A2Bench with additional pose
images. To achieve this, we employ DWPose Yang et al. (2023) to extract pose sequences from
the videos. However, since DWPose is trained on human data, it does not accurately extract every
pose in the dancing video of the anthropomorphic character, so after extraction, we manually screen
100 videos with accurate poses, and view them as test videos for calculating quantitative metrics.
Fig. 3 displays several examples, which include anthropomorphic characters of plants, animals,
food, furniture, etc. For images and videos where pose extraction is not feasible, we take them as
key sources of reference images in our qualitative demonstrations. This will inspire the community
to animate a wider range of interesting cases. We also anticipate that these data could serve as
an important resource for future pose extraction algorithms tailored to anthropomorphic datasets,
making them accessible for broader use.
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Figure 12: Visualization of cases in the user study

C USER STUDY

In Fig. 12, we present examples shown to participants for evaluation in our user study. To obtain
genuine feedback reflective of practical applications, the ten participants in our user study exper-
iment come from diverse academic backgrounds. Since many of them do not major in computer
vision, we provide detailed explanations for each question to assist their judgments.

* Identity Preservation: By comparing the reference image with the two generated videos by

different methods, determine which video’s character more closely resembles the character
in the image.
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» Temporal Consistency: Evaluate the motion changes of the character within the video and
compare which video exhibits more coherent movement.

* Visual Quality: Compared to the previous two questions, this one involves more subjective
judgment. Participants should assess the videos comprehensively based on visual content
(e.g., flashes, distortions, afterimages), motion effects (e.g., smoothness, physical logic),
and overall plausibility.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 MORE QUALITATIVE RESULTS

In the main paper, we present qualitative comparison results between our method and the state-of-
the-art (SOTA) methods under a cross-driven setting on a human-like character, where our approach
demonstrates outstanding performance. Considering that the other methods are primarily self-driven
and trained on human characters, making them more suitable for inference in such settings, we
additionally provide comparison results under a self-reconstruction setting on Tiktok and Abench.
As shown in Fig. 17, when there is a appreciably difference between the reference pose and the
reference image, the GAN-based LIA Wang et al. (2022) produces noticeable artifacts. Thanks to the
powerful generative capabilities of diffusion models, diffusion-based models generate higher-quality
results. However, MusePose Tong et al. (2024) and MimicMotion Zhang et al. (2024) generate
awkward arms and blurry hands, respectively, while ControlNeXt Peng et al. (2024) synthesizes
incorrect movements. Only Unianimate Wang et al. (2024b) can obtain results comparable to ours.
Yet, when the reference image is a non-human character, even in a self-driven setting with the same
training strategy as Unianimate, their results still show distorted heads. Fig. 18 provides results of
more comparison results, including MRAA Siarohin et al. (2021a), MagicAnimate Xu et al. (2023a)
and Moore-AnimateAnyone Corporation (2024). In contrast, our method consistently generates
satisfactory results for both human and anthropomorphic characters, demonstrating its ability to
drive X character and highlighting its strong generalization and robustness.

D.2 MORE QUANTITATIVE RESULTS

Tab. 10 and Tab. 11 presents the quantitative results on TikTok Jafarian & Park (2021) and Fash-
ion Zablotskaia et al. (2019a) dataset, which suggests the superiority of methods over the comparison
SOTA methods. Only Unianimate achieves comparable performance; however, our method is appli-
cable to a wider range of characters and various unaligned pose inputs, as demonstrated in Tab. 1.
This addresses the main issue that this paper aims to solve: developing a universal character image
animation model.

D.3 ROBUSTNESS

Our method demonstrates robustness to both input X character and pose variations. On the one
hand, as shown in Fig. 1, our approach successfully handles inputs from diverse subjects, including
characters vastly different from humans, such as those without limbs, as well as game characters
or those generated by other models. Despite these variations, our method consistently produces
satisfactory results without crashing, showcasing its robustness to the input reference images. On
the other hand, as illustrated in Fig. 13, even when the pose images exhibit body part omissions
(highlighted by the red circles), our method correctly interprets the intended motion and generates
coherent results for the reference images. This highlights the robustness of our approach to different
pose images.

D.4 A2BencH

Difficulty Level. We add the difficulty level split for Animate—X. As shown in Figure 14, we
categorize the videos in A?Bench into three difficulty levels: Level 1, Level 2, and Level 3. The
classification is based on their appearance characteristics. First, we classify characters that have
body shapes and other appearance features similar to humans, as shown in the first row of Figure 14,
into the easiest, Level 1 category. These characters are generally simpler to drive, produce fewer
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Figure 13: Visualization of the robustness of Animate—-X.

artifacts, and have better motion consistency. In contrast, characters that maintain more distinct
structural features from humans, such as dragons and ducks in the third row of Figure 14, are classi-
fied into the most difficult Level 3 category. These characters often preserve their original structures
(e.g., a duck’s webbed feet and wings), which makes balancing identity preservation and motion
consistency more challenging. To ensure identity preservation, the consistency of motion may be
compromised, and vice versa. Additionally, images involving interactions between characters, ob-
jects, environments, and backgrounds are also placed in Level 3, as they increase the difficulty for
the model to distinguish the parts that need to be driven from those that do not. Videos in between
these two categories, like those in the second row of Figure 14, are classified as Level 2. These
characters often strike a good balance between anthropomorphism and their original form, making
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Figure 14: Difficulty levels in A2Bench.

Model-Level PSNR* T SSIMT  L1J _ LPIPS| FID] FID-VID] FVDJ]
Animate—X-levell | 13.96 0461 9.6/E-05 0418  24.24 31.37 681.53
Animate-X-level2 13.74 0.457  9.82E-05 0429  26.12 32.19 693.63
Animate-X-level3 13.17 0.442  1.11E-04 0437 2734 35.64 721.41
UniAnimate-levell 11.93 0.413  1.14E-04  0.521 42.39 52.14 1120.45
UniAnimate-level2 11.89 0.408 1.20E-04 0526  46.27 58.53 1147.34
UniAnimate-level3 10.91 0.379 1.35E-04 0.549 56.58 65.39 1204.53
Table 5: User study results.
Method PSNR*1  SSIM 1 L1t LPIPS| FID| | FID-VID| FVD
wi/o IPI 13.30 0.433 1.35E-04 0.454 32.56 64.31 893.31
w/o LQ 13.48 0.445 1.76E-04 0.454 28.24 42.74 754.37
w/o DQ 13.39 0.445 1.01E-04 0.456 30.33 62.34 913.33
PA 13.25 0.436 1.11E-04 0.464 27.63 46.54 785.36
KV_Q 13.34 0.443 1.17E-04 0.459 26.75 42.14 785.69
w/o EPI 12.63 0.403 1.80E-04 0.509 42.17 58.17 948.25
w/o Add 13.28 0.442 1.56E-04 0.459 34.24 52.94 804.37
w/o Drop 13.36 0.441 1.94E-04 0.458 26.65 44.55 764.52
w/o BS 13.27 0.443 1.08E-04 0.461 29.60 56.56 850.17
w/o NF 13.41 0.446 1.82E-04 0.455 29.21 56.48 878.11
w/o AL 13.04 0.429 1.04E-04 0.474 27.17 33.97 765.69
w/o Rescalings 13.23 0.438 1.21E-04 0.464 27.64 35.95 721.11
w/o Realign 12.27 0.433 1.17E-04 0.434 34.60 49.33 860.25
Animate-X 13.60 0.452 1.02E-04 0.430 2611 | 3223 703.87

Table 6: Quantitative results of ablation study.

them easier to animate with better motion consistency than Level 3 characters and more interesting

results than Level 1 characters. We evaluate the results of Animate—X and UniAnimate for each

subset. As shown in Tab. 5, as the difficulty increases, each evaluation result shows a decline.

Motivation of T2I+I2V for A2Bench. The choice to use T2I models stems from a clear need: cur-
rent T2V models often struggle with imaginative and logically complex inputs, such as ”personified
refrigerators™ or ”human-like bees”. T2I models offer strict logic and imagination in these scenar-
ios, allowing to generate reasonable cartoon characters as the ground-truth. To prove this point, as
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shown in Table 7, we assess the semantic accuracy of A%Bench using CLIP scores, which are com-
monly used to evaluate whether the semantic logic of images and text is strictly aligned (i.e., Does
the generated “human-like bee” maintain the visual essence of a bee while seamlessly incorporating
human-like features, such as hands and feet?). We also add other metrics from VBench Huang et al.
(2024), such as Background Consistency, Motion Smoothness, Aesthetic Quality and Image Quality,
to assess the spatial and temporal consistency of the videos in A2Bench. For comparison, we also
evaluate the publicly available TikTok and Fashion datasets using the same metric. As shown in
Table 7, A?Bench achieves the highest level of strict logical alignment. A2Bench outperforms
TikTok dataset in all aspects and achieve comparable scores to Fashion dataset, where both TikTok
and Fashion are collected from real-world scenarios. It demonstrates that the video generated by our
method has the same level of spatial and temporal consistency as the real videos.

Furthermore, we input the images from A?Bench into a multimodal large language model
(MLLM) with logical reasoning, such as QWen Bai et al. (2023), to conduct a logical analysis
of the visual outputs generated by the T2I model. The results, shown in Figure 15, reveal that the
image descriptions answered by the MLLM closely aligns with our input prompts, which verifies
again that the data in A?Bench maintains strict logic.

Table 7: Quantitative results of different benchmarks. The best and second results for each column
are bold and underlined, respectively.

CLIP Background Motion Aesthetic  Image

Benchmark  g.oye Consistency Smoothness Quality  Quality
TikTok 26.92 94.10 % 99.05 % 5514 % 62.54 %
Fashion 20.18 98.25 % 99.45 % 49.62 % 49.96 %
A”’Bench 33.24 96.66 % 99.39 % 69.86 % 69.32 %

Figure 15: Prompts, generated images by T2I in A2Bench, and logical answers from QWen.

D.5 MORE ABLATION STUDY

In the main paper, we present the results of the primary ablation experiments for IPI and EPI. In this
section, we supplement those results with additional ablation experiments to further demonstrate the
contribution of each individual module.

Ablation on Implicit Pose Indicator. For more detailed analysis about the structure of IPI, we
set up several variants: (1) remove IPI: w/o IPL. (2) remove learnable query: w/o LQ. (3) remove
DWPose query: w/o DQ. (4) set IPI and spatial Attention to Parallel: PA. (5) set CLIP features as Q
and DWPose as K,V in IPI: KV_Q. The quantitative results are shown in Tab. 6. It can be seen that
removing the entire IPI presents the worst performance. By modifying the IPI module, although it
improves on the w/o IPI, it still falls short of the final result of Animate—X, which suggests that
our current IPI structure is the most reasonable and achieves the best performance.

Since IPI is embedded in Animate—X in the form of residual connection, i.e., z = z + oI PI(z),
we also explore the impact of the weight o of IPI on performance as illustrated in Fig. 16, as «
increases from O to 1, all metrics show a stable improvement despite some fluctuations. The best
performance is achieved when « is set to 1, so we empirically set « to 1 in the final configuration.

Ablation on Explicit Pose Indicator. We conduct more detailed ablation experiments for different
pairs of pose transformations by (1) removing the entire EPI: w/o EPI; (2)&(3) removing adding
and dropping parts; canceling the change of the length of (4) body and should: w/o BS; (5) neck
and face: w/o NF; (6) arm and leg: w/o AL; (7) removing all rescaling process: w/o Rescalings; (8)
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Figure 16: Ablation study on the weight o of Implicit Pose Indicator. To better visualize the impact
of o on performance, we normalize all the values to the range of O to 1.

remove another person pose alignment: w/o Realign. From the results displayed in Tab. 6, we found
that each pose transformation contributes compared to w/o EPI, with aligned transformations with
another person’s pose contributing the most. It suggests that maintaining the overall integrity of the
pose while allowing for some variations is the most important factor, and EPI also learns the overall
integrity of the pose. The final result indicates that all the transformations together achieve the best
performance.

To explore the effect of different probabilities A of using pose transformation for EPI on the model
performance, we set A as 100%, 98%, 95%, 90% and 80% for the ablation experiments on two
datasets. The results presented in Tab. 9 suggest that a high \ performs better on A?Bench, i.e., it
performs better when the reference image and pose image are not aligned, but harms performance on
the TikTok dataset, i.e., when the reference image and pose image are strictly aligned. In contrast,
a relatively low A, e.g., 90%, would be in this case perform better. It is reasonable that in the case
of strict alignment, we expect the pose to provide a strictly accurate motion source, and thus need
to reduce the percentage A of pose transformation. However, in the non-strictly aligned case, we
expect the pose image to provide an approximate motion trend, so we need to increase .

Since the anchor poses are chosen from the entire training set, we further conduct the statistical
analysis for rescaling ratio. First, we randomly sample a driven pose I? and then traverse the entire
pose pool, treating each pose in the pool as an anchor pose to calculate the rescaling ratio. We repeat
this process 10 times. Finally, we divide the range from 0.001 to 10 into 10 intervals, counting the
proportion of rescaling ratios that fell within each interval. We analyze the proportions of other
important parts like shoulder length, body length, upper arm length, lower arm length, upper leg
length, lower leg length. As shown in Tab. 8, the overall distribution covers a wide range (from
0.001 to 10.0), which allows the model to learn poses of various characters, encompassing non-
human subjects.

E DiscussioN

E.1 LIMITATION AND FUTURE WORK

Although our method has made remarkable progress, it still has certain limitations. Firstly, its
ability to model hands and faces remains insufficient, a limitation commonly faced by most current
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Interval Shoulder Length  Body Length  Upper Arm Length  Lower Arm Length  Upper Leg Length  Lower Leg Length
[0.001,0.1) 0.19% 0.14% 0.05% 0.08% 0.05% 0.81%
[0.1,0.3) 1.52% 5.73% 4.04% 3.22% 0.59% 4.60%
[0.3,0.5) 12.21% 18.57% 15.28% 7.63% 4.26% 5.65%
[0.5,0.7) 15.33% 16.93% 12.97% 7.54% 12.02% 9.61%
[0.7,1.0) 20.07% 18.48% 17.15% 11.35% 24.86% 19.53%
[1.0,1.5) 22.09% 18.63% 17.56% 15.38% 27.90% 24.89%
[1.5,2) 10.07% 8.34% 7.93% 11.73% 14.31% 14.47%
[2.0,3.0) 9.75% 6.52% 7.73% 16.19% 11.83% 15.28%
[3.0,6.0) 6.33% 6.28% 10.93% 18.40% 2.73% 4.30%
[6.0,10.0) 2.43% 0.37% 6.37% 8.47% 1.45% 0.85%

Table 8: Statistical analysis for rescaling ratio.

A%Bench TikTok Jafarian & Park (2021)
Method g\t FID,  FID-VID, FVD, SSIMt FID| FID-VID, FVDJ
100% | 0452 2611 3223 70387 | 0.802 5526 1747 13836

98 % 0.448 26.93 37.67 77524 | 0.797  55.81 16.28 129.48
95% 0.447 2746 39.21 785.55 | 0.804  52.72 14.61 124.92
90 % 0.444  27.15 38.03 775.38 | 0.806 52.81 14.82 139.01
80% 0442  29.13 47.93 803.97 | 0.802 54.51 14.42 133.78

Table 9: Quantitative results for different probabilities of using pose transformation.

Method L1}  PSNRT PSNR*{ SSIM{ LPIPS] | FVD|
FOMM Siarohin et al. (20192a) (newipsi9) 3.61E-04 - 17.26 0.648 0.335 405.22
MRAA Siarohin et al. (2021a) (cypro1) 3.21E-04 - 18.14 0.672 0.296 284.82
TPS Zhao & Zhang (2022a) (cvpr22) 3.23E-04 - 18.32 0.673 0.299 306.17
DreamPose Karras et al. (2023) (ccvos) 6.88E-04 28.11 12.82 0.511 0.442 551.02
DisCo Wang et al. (2024a) (cvprog) 3.78E-04 29.03 16.55 0.668 0.292 292.80
MagicAnimate Xu et al. (2023a) (cvpro4) 3.13E-04 29.16 - 0.714 0.239 179.07
Animate Anyone Hu et al. (2023) (cvpro4) - 29.56 - 0.718 0.285 171.90
Champ Zhu et al. (2024) gccvag 2.94E-04 29.91 - 0.802 0.234 160.82
Unianimate Wang et al. (2024b) (a,xivo4) 2.66E-04 30.77 20.58 0.811 0.231 148.06
MusePose Tong et al. (2024) (arxivo4) 3.86E-04 - 17.67 0.744 0.297 215.72
MimicMotion Zhang et al. (2024) (a:xivo4) | 5.85E-04 - 14.44 0.601 0.414 232.95
ControlNeXt Peng et al. (2024) (arxivo4) 6.20E-04 - 13.83 0.615 0.416 326.57
Animate-X 2.70E-04 30.78 20.77 0.806 0.232 139.01

Table 10: Quantitative comparisons with existing methods on TikTok dataset.

Method PSNR 1  PSNR* 1 SSIM1T  LPIPS | FVD |
MRAA Siarohin et al. (2021a) cvpro1) - - 0.749 0.212 253.6
TPS Zhao & Zhang (2022a) (cvpr22) - - 0.746 0.213 247.5
DPTN Zhang et al. (2022a) (cvpr22) - 24.00 0.907 0.060 215.1
NTED Ren et al. (2022) (CVPR22) - 2203 0890 0073 2789
PIDM Bhunia et al. (2023) (cvpro3) - - 0.713 0.288 1197.4
DBMM Yu et al. (2023) ccvos) - 24.07 0.918 0.048 168.3
DreamPose Karras et al. (2023) (ccvas) - - 0.885 0.068 238.7
DreamPose w/o Finetune Karras et al. (2023) ccvos) 34.75 - 0.879 0.111 279.6
Animate Anyone Hu et al. (2023) (cvpro4) 38.49 - 0.931 0.044 81.6
Unianimate Wang et al. (2024b) (a,xivo4) 37.92 27.56 0.940 0.031 68.1
MimicMotion Zhang et al. (2024) (,xiv24) - 27.06 0.928 0.036 118.48
Animate-X 36.73 27.78 0.940 0.030 79.4

Table 11: Quantitative comparisons with existing methods on the Fashion dataset. “w/o Finetune”
represents the method without additional finetuning on the fashion dataset.
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Figure 17: Visualization comparison on TikTok dataset and A?Bench.
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Figure 18: Comparison with more SOTAs on A?Bench.

generative models. While our IPI leverages CLIP features to extract implicit information such as
motion patterns from the driving video, mitigating the reliance on potentially inaccurate hand and
face detection by DWPose, there is still a gap between our results and the desired realism. Secondly,
due to the multiple denoising steps in the diffusion process, even though we replace the transformer
with a more efficient Mamba model for temporal modeling, Animate-X still cannot achieve real-
time animation. In future work, we aim to address these two limitations. Additionally, we will
focus on studying interactions between the character and the surrounding environment, such as the
background, as a key task to resolve. As for A?2Bench, creating 3D models and rendering them
with predefined actions using tools like Blender and Maya is a superior approach for developing a
character benchmark, which is also part of our future work.
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E.2 ETHICAL CONSIDERATIONS

Our approach focuses on generating high-quality character animation videos, which can be applied
in diverse fields such as gaming, virtual reality, and cinematic production. By providing body move-
ment, our method enables animators to create more lifelike and dynamic characters. However, the
potential misuse of this technology, particularly in creating misleading or harmful content on digital
platforms, is a concern. While greatly progress has been made in detecting manipulated anima-
tions Boulkenafet et al. (2015); Wang et al. (2020); Yu et al. (2020), challenges remain in accurately
identifying increasingly sophisticated forgeries. We believe that our animation results can contribute
to the development of better detection techniques, ensuring the responsible use of animation tech-
nology across different domains.

29



	Introduction
	Related Work
	Diffusion models for image/video generation
	Pose-guided character motion transfer

	Method
	Preliminaries of latent diffusion model
	Pose Indicator
	Framework and Implement Details
	A2Bench

	Experiments
	Experimental Settings
	Experimental Results
	Ablation Study

	Conclusions
	Network Details
	Benchmark Details
	Evaluation Metric
	Data Details

	User Study
	Additional Experimental Results
	More qualitative results
	More quantitative results
	Robustness
	A2Bench
	More ablation study

	Discussion
	Limitation and Future Work
	Ethical Considerations


