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ABSTRACT

The widespread use of AI-generated content from diffusion models has raised
significant concerns regarding misinformation and copyright infringement. Wa-
termarking is a crucial technique for identifying these AI-generated images and
preventing their misuse. In this paper, we introduce Shallow Diffuse, a new wa-
termarking technique that embeds robust and invisible watermarks into diffusion
model outputs. Unlike existing approaches that integrate watermarking through-
out the entire diffusion sampling process, Shallow Diffuse decouples these steps
by leveraging the presence of a low-dimensional subspace in the image generation
process. This method ensures that a substantial portion of the watermark lies in
the null space of this subspace, effectively separating it from the image generation
process. Our theoretical and empirical analyses show that this decoupling strategy
greatly enhances the consistency of data generation and the detectability of the
watermark. Extensive experiments further validate that our Shallow Diffuse out-
performs existing watermarking methods in terms of robustness and consistency.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2021b) have recently become a new dominant family
of generative models, powering various commercial applications such as Stable Diffusion (Rombach
et al., 2022; Esser et al., 2024), DALL-E (Ramesh et al., 2022; Betker et al., 2023), Imagen (Saharia
et al., 2022) Stable Audio (Evans et al., 2024) and Sora (Brooks et al., 2024). These models have sig-
nificantly advanced the capabilities of text-to-image, text-to-audio, text-to-video, and multi-modal
generative tasks. However, the widespread usage of AI-generated content from commercial diffu-
sion models on the Internet has raised several serious concerns: (a) AI-generated misinformation
presents serious risks to societal stability by spreading unauthorized or harmful narratives on a large
scale (Zellers et al., 2019; Goldstein et al., 2023; Brundage et al., 2018); (b) the memorization of
training data by those models (Gu et al., 2023; Somepalli et al., 2023a;b; Wen et al., 2023b; Zhang
et al., 2024a) challenges the originality of the generated content and raises potential copyright in-
fringement issues; (c) Iterative training on AI-generated content, known as model collapse (Fu et al.,
2024; Alemohammad et al., 2024; Dohmatob et al., 2024; Shumailov et al., 2024; Gibney, 2024) can
degrade the quality and diversity of outputs over time, resulting in repetitive, biased, or low-quality
generations that may reinforce misinformation and distortions in the wild Internet.

To deal with these challenges, watermarking is a crucial technique for identifying AI-generated con-
tent and mitigating its misuse. Typically, it can be applied in two main scenarios: (a) the server
scenario: where given an initial random seed, the watermark is embedded to the image during the
generation process; and (b) the user scenario: where given a generated image, the watermark is
injected in a post-process manner; (as shown in the left two blocks in Figure 3). Traditional water-
marking methods (Cox et al., 2007; Solachidis & Pitas, 2001; Chang et al., 2005; Liu et al., 2019)
are mainly designed for the user scenario, embedding detectable watermarks directly into images
with minimal modification. However, these methods are vulnerable to attacks. For example, the wa-
termarks can become undetectable with simple corruptions such as blurring on watermarked images.
More recent methods considered the server scenario (Zhang et al., 2024c; Fernandez et al., 2023;
Wen et al., 2023a; Yang et al., 2024; Ci et al., 2024), where they improve robustness by integrating
watermarking into the sampling process of diffusion models. For example, the work (Ci et al., 2024;
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Figure 1: Sampling variance of Tree-Ring Watermarks, RingID and Shallow Diffuse. On the
left are the original images, and on the right are the corresponding watermarked images generated us-
ing three different techniques: Tree-Ring (Wen et al., 2023a), RingID (Ci et al., 2024), and Shallow
Diffuse. For each technique, we generated watermarks using two distinct random seeds, resulting in
the respective watermarked images.

Wen et al., 2023a) embeds the watermark into the initial random seed in the Fourier domain and
then samples an image from the watermarked seed. As illustrated in Figure 1, these approaches
often lead to inconsistent watermarked images because they significantly alter the noise distribution
away from Gaussian. Moreover, they require access to the initial random seed, limiting their use
in the user scenario. To the best of our knowledge, there is currently no robust and consistent wa-
termarking method suitable for both the server and user scenarios (more detailed discussion about
related works could be found in Appendix A).

To address these limitations, we proposed Shallow Diffuse, a robust and consistent watermarking
approach that can be employed for both the server and user scenarios. Unlike prior works (Ci et al.,
2024; Wen et al., 2023a) that embed watermarks into the initial random seed and entangle the wa-
termarking process with sampling, Shallow Diffuse decouples these two steps by leveraging the
low-dimensional subspace in the generation process of diffusion models (Wang et al., 2024; Chen
et al., 2024). The key insight is that, due to the low dimensionality of the subspace, a significant
portion of the watermark will lie in the null space of this subspace, effectively separating the water-
marking from the sampling process (see Figure 3 for an illustration). Our theoretical and empirical
analyses demonstrate that this decoupling strategy significantly improves the consistency of the wa-
termark. With better consistency as well as independence from the initial random seed, Shallow
Diffuse is flexible for both server and user scenarios.

Our contributions. The proposed Shallow Diffuse offers several key advantages over existing
watermarking techniques (Cox et al., 2007; Solachidis & Pitas, 2001; Chang et al., 2005; Liu et al.,
2019; Zhang et al., 2024c; Fernandez et al., 2023; Wen et al., 2023a; Yang et al., 2024; Ci et al.,
2024) that we highlight below:

• Flexibility. Watermarking via Shallow Diffuse works seamlessly under both server-side and user-
side scenarios. In contrast, most of the previous methods only focus on one scenario without a
straightforward extension to the other; see Table 1 and Table 2 for demonstrations.

• Consistency and Robustness. By decoupling the watermarking from the sampling process, Shal-
low Diffuse achieves higher robustness and better consistency. Extensive experiments (Table 1
and Table 2 ) support our claims, with extra ablation studies in Figure 5a and Figure 5b .

• Provable Guarantees. Unlike previous methods, the consistency and detectability of our ap-
proach are theoretically justified. Assuming a proper low-dimensional image data distribution
(see Assumption 1), we rigorously establish bounds for consistency (Theorem 1) and detectability
(Theorem 2).
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2 PRELIMINARIES

We start by reviewing the basics of diffusion models (Ho et al., 2020; Song et al., 2021b; Karras
et al., 2022), followed by several key empirical properties that will be used in our approach: the
low-rankness and local linearity of the diffusion model (Wang et al., 2024; Chen et al., 2024).

2.1 PRELIMINARIES ON DIFFUSION MODELS

Basics of diffusion models. In general, diffusion models consist of two processes:

• The forward diffusion process. The forward process progressively perturbs the original data x0

to a noisy sample xt for some integer t ∈ [0, T ] with T ∈ Z. As in Ho et al. (2020), this can
be characterized by a conditional Gaussian distribution pt(xt|x0) = N (xt;

√
αtx0, (1− αt)Id).

Particularly, parameters {αt}Tt=0 sastify: (i) α0 = 1, and thus p0 = pdata, and (ii) αT = 0, and
thus pT = N (0, Id).

• The reverse sampling process. To generate a new sample, previous works Ho et al. (2020); Song
et al. (2021a); Lu et al. (2022a); Karras et al. (2022) have proposed various methods to approx-
imate the reverse process of diffusion models. Typically, these methods involve estimating the
noise ϵt and removing the estimated noise from xt recursively to obtain an estimate of x0. Specifi-
cally, One sampling step of Denoising Diffusion Implicit Models (DDIM) Song et al. (2021a) from
xt to xt−1 can be described as:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt, t)√

αt

)
︸ ︷︷ ︸

:=fθ,t(xt)

+
√
1− αt−1ϵθ(xt, t), (1)

where ϵθ(xt, t) is parameterized by a neural network and trained to predict the noise ϵt at time t.
From previous works Zhang et al. (2024b); Luo (2022), the first term in Equation (1), defined as
fθ,t(xt), is the posterior mean predictor (PMP) that predict the posterior mean E[x0|xt]. DDIM
could also be applied to a clean sample x0 and generate the corresponding noisy xt at time t,
named DDIM Inversion. One sampling step of DDIM inversion is similar to Equation (1), by
mapping from xt−1 to xt. For any t1 and t2 with t2 > t1, we denote multi-time steps DDIM
operator and its inversion as xt1 = DDIM(xt2 , t1) and xt2 = DDIM-Inv(xt1 , t2).

Text-to-image (T2I) diffusion models & classifier-free guidance (CFG). The diffusion model
can be generalized from unconditional to T2I (Rombach et al., 2022; Esser et al., 2024), where
the latter enables controllable image generation x0 guided by a text prompt c. In more detail,
when training T2I diffusion models, we optimize a conditional denoising function ϵθ(xt, t, c). For
sampling, we employ a technique called classifier-free guidance (CFG) (Ho & Salimans, 2022),
which substitutes the unconditional denoiser ϵθ(xt, t) in Equation (1) with its conditional coun-
terpart ϵ̃θ(xt, t, c) that can be described as ϵ̃θ(xt, t, c) = (1 − η)ϵθ(xt, t,∅∅∅) + ηϵθ(xt, t, c).
Here, ∅∅∅ denotes the empty prompt and η > 0 denotes the strength for the classifier-free guid-
ance. For simplification, for any t1 and t2 with t2 > t1, we denote multi-time steps CFG operator
as xt1 = CFG(xt2 , t1, c). DDIM and DDIM inversion could also be generalized to T2I version,
denotes as xt1 = DDIM(xt2 , t1, c) and xt2 = DDIM-Inv(xt1 , t2, c).

2.2 LOCAL LINEARITY AND INTRINSIC LOW-DIMENSIONALITY IN PMP

In this work, we will leverage two key properties of the PMP fθ,t(xt) introduced in Equation (1) for
watermarking diffusion models. Parts of these properties have been previously identified in recent
papers (Wang et al., 2024; Manor & Michaeli, 2024b;a), and they have been extensively studied in
(Chen et al., 2024). At one given timestep t ∈ [0, T ], let us consider the first-order Taylor expansion
of the PMP fθ,t(xt + λ∆x) at the point xt:

lθ(xt;λ∆x) := fθ,t(xt) + λJθ,t(xt) ·∆x, (2)

where ∆x ∈ Sd−1 is a perturbation direction with unit length, λ ∈ R is the perturbation strength,
and Jθ,t(xt) = ∇xtfθ,t(xt) is the Jacobian of fθ,t(xt). As shown in (Chen et al., 2024), it has
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Algorithm 1 Unconditional Shallow Diffuse
1: Inject watermark:
2: Input: original image x0 for the user scenario (initial random seed xT for the server scenario), watermark

λ∆x, embedding timestep t,
3: Output: watermarked image x∗W

0 ,
4: if user scenario then
5: xt = DDIM-Inv (x0, t)
6: else server scenario
7: xt = DDIM (xT , t)
8: end if
9: xW

t ← xt + λ∆x, xW
0 ← DDIM

(
xW

t , 0
)

▷ Embed watermark
10: x∗

0 ← DDIM (xt, 0), x∗W
0 ← ChannelAverage

(
xW

0 ,x∗
0

)
▷ Channel Average

11: Return: x∗W
0

12:
13: Detect watermark:
14: Input: Attacked image x̄W

0 , watermark λ∆x, embedding timestep t,
15: Output: Distance score η,
16: x̄W

t ← DDIM-Inv
(
x̄W

0 , t
)

17: η = Detector
(
x̄W

t , λ∆x
)

18: Return: η

been found that within a certain range of noise levels, the learned PMP fθ,t exhibits local linearity,
and its Jacobian Jθ,t ∈ Rd×d is low rank:

• Low-rankness of the Jacobian Jθ,t(xt). As shown in Figure 2(a) of (Chen et al., 2024), the rank
ratio for t ∈ [0, T ] consistently displays a U-shaped pattern across various network architectures
and datasets: (i) it is close to 1 near either the pure noise t = T or the clean image t = 0, (ii)
Jθ,t(xt) is low-rank (i.e., the numerical rank ratio less than 10−2) for all diffusion models within
the range t ∈ [0.2T, 0.7T ], (iii) it achieves the lowest value around mid-to-late timestep, slightly
differs on different architectures and datasets.

• Local linearity of the PMP fθ,t(xt). As shown in Figure 2(b) of (Chen et al., 2024), the mapping
fθ,t(xt) exhibits strong linearity across a large portion of the timesteps, which is consistently true
among different architectures trained on different datasets. In particular, the work (Chen et al.,
2024) evaluated the linearity of fθ,t(xt) at t = 0.7T where the rank ratio is close to the lowest
value, showing that fθ,t(xt + λ∆x) ≈ lθ(xt;λ∆x) even when λ = 40,

3 WATERMARKING BY SHALLOW-DIFFUSE

In this section, we introduce Shallow Diffuse for watermarking diffusion models. Building on the
benign properties of PMP discussed in Section 2.2, we explain how to inject and detect invisible
watermarks in unconditional diffusion models in Section 3.1 and Section 3.2, respectively. Algo-
rithm 1 outlines the overall watermarking method for unconditional diffusion models. In Section 3.3,
we extend this approach to text-to-image diffusion models, illustrated in Figure 3.

3.1 INJECTING INVISIBLE WATERMARKS

Consider an unconditional diffusion model ϵθ(xt, t) as we introduced in Section 2.1. Instead of
injecting the watermark ∆x in the initial noise, we inject it in a particular timestep t ∈ [0, T ] with

xW
t = xt + λ∆x, (3)

where λ ∈ R is the watermarking strength, xt = DDIM-Inv (x0, t) under the user scenario and
xt = DDIM (xT , t) under the server scenario. Based upon Section 2.2, we choose the timestep t
so that the Jacobian of the PMP Jθ,t(xt) = ∇xt

fθ,t(xt) is low-rank. Moreover, based upon the
linearity of PMP discussed in Section 2.2, we approximately have

fθ,t(x
W
t ) = fθ,t(xt) + λJθ,t(xt) ·∆x

≈0

≈ fθ,t(xt) = x̂0,t, (4)
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where we select the watermark ∆x to span the entire space Rd uniformly; a more detailed discussion
on the pattern design of ∆x is provided in Section 3.2. The key intuition for Equation (4) to hold is
that, when rt = rank(Jθ,t(xt)) ≪ d is low, a significant proportion of λ∆x lies in the null space
of Jθ,t(xt) so that Jθ,t(xt)∆x ≈ 0.

Therefore, the selection of t is based on ensuring that fθ,t(xt) is locally linear and that the dimen-
sionality of its Jacobian rt ≪ d. In practice, we choose t = 0.3T based on results from the ablation
study in Section 5.4. As a results, the injection in Equation (4) maintains better consistency without
changing the predicted x0. In the meanwhile, it is very robust because any attack on x0 would
remain disentangled from the watermark, so that λ∆x remains detectable.

Although in practice we employ the DDIM method instead of PMP for sampling high-quality im-
ages, the above intuition still carries over to DDIM. From Equation (1), one step sampling of DDIM
in terms of fθ,t(xt) becomes:

xt−1 =
√
αt−1 fθ,t(xt)︸ ︷︷ ︸

”predicted x0”

+

√
1− αt−1√
1− αt

(xt −
√
αtfθ,t(xt))︸ ︷︷ ︸

”the direction pointing to xt”

. (5)

As explained in Song et al. (2021a), the first term predicts x0 while the second term points towards
xt. When we inject the watermark ∆x into xt as given in Equation (3), we know that

xW
t−1 =

√
αt−1fθ,t(x

W
t ) +

√
1− αt−1√
1− αt

(
xW
t −

√
αtfθ,t(x

W
t )
)

≈ √αt−1fθ,t(xt) +

√
1− αt−1√
1− αt

(xt + λ∆x−
√
αtfθ,t(xt)) , (6)

where the second approximation follows from Equation (4). This implies that the watermark λ∆x
is embedded into the DDIM sampling process entirely through the second term of Equation (6)
and it decouples from the first which predicts x0. Therefore, similar to our analysis for PMP, the
first term in equation 6 maintains the consistency of data generation, while the difference in second
term highlighted by blue would be useful for detecting the watermark which we will discuss next.
In Section 4, we provide more rigorous proofs validating the consistency and detectability of our
approach.

3.2 WATERMARK DESIGN AND DETECTION

Second, building on the watermark injection method described in Section 3.1, we discuss the design
of the watermark pattern and the techniques for effective detection.

Watermark pattern design. Building on the method proposed by Wen et al. (2023a), we inject the
watermark in the frequency domain to enhance robustness against adversarial attacks. Specifically,
we adapt this approach by defining a watermark λ∆x for the input xt at timestep t as follows:

λ∆x := DFT-Inv (DFT (xt)⊙ (1−M) +W ⊙M)− xt, (7)

where the Hadamard product ⊙ denotes the element-wise multiplication. Additionally, we have the
following for Equation (7):

• Transformation into the frequency domain. Let DFT(·) and DFT-Inv(·) represent the forward
and inverse Discrete Fourier Transform (DFT) operators, respectively. As shown in Equation (7),
we first apply DFT(·) to transform xt into the frequency domain, where we then introduce the
watermark via a mask. Finally, the modified input is transformed back into the pixel domain using
DFT-Inv(·).

• The mask and key of watermarks. M is the mask used to apply the watermark in the frequency
domain as shown in the top-left of Figure 2, and W denotes the key of the watermark. Typically,
the mask M is circular, with the white area representing 1 and the black area representing 0 in
Figure 2, where we use it to modify specific frequency bands of the image. Specifically, the radius
of the circle in mask M is 8, In the following, we discuss the design of M and W in detail.
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Figure 3: Overview of Shallow Diffuse for T2I diffusion models.

Previous methods (Wen et al., 2023a; Ci et al., 2024) design the mask M to modify the low-
frequency components of the initial noise input. While this approach works, as most of the energy
in natural images is concentrated in the low-frequency range, it tends to distort the image when such
watermarks are injected (see Figure 1 for an illustration). In contrast, as shown in Figure 2, we
design the mask M to target the high-frequency components of the image. Since high-frequency
components capture fine details where the energy is less concentrated on these bands, modifying
them results in less distortion of the original image. This is especially true in our case because we
are modifying xt, which is closer to x0, compared to the initial noise used in (Wen et al., 2023a;
Ci et al., 2024).To modify the high-frequency components, we apply the DFT without shifting and
centering the zero frequency, as illustrated in the bottom-left of Figure 2.

Figure 2: Illustration of watermark patterns.

In terms of designing the key W , we follow
Wen et al. (2023a). The key W is composed
of multi-rings and each ring has the same value
that is drawn from Gaussian distribution; see
the top-right of Figure 2 for an illustration. Fur-
ther ablation studies on the choice of M , W ,
and the effects of selecting low-frequency or
high-frequency regions for watermarking can
be found in Table 7.

Watermark detection. During watermark
detection, suppose we are given a watermarked
image x̄W

0 with certain corruptions, we ap-
ply the DDIM Inversion to recover the water-
marked image at timestep t, denoted as x̄W

t =
DDIM-Inv

(
x̄W
0 , t

)
. To detect the watermark, following Wen et al. (2023a); Zhang et al. (2024c),

the Detector(·) in Algorithm 1 calculates the following p-value:

η =
sum(M) · ||M ⊙W −M ⊙ DFT

(
x̄W
t

)
||2F

||M ⊙ DFT
(
x̄W
t

)
||2F

, (8)

where sum(·) is the summation of all elements of the matrix. Ideally, if x̄W
t is a watermarked image,

M ⊙W = M ⊙ DFT
(
x̄W
t

)
and η = 0. When x̄W

t is a non-watermarked image, M ⊙W ̸=
M⊙DFT

(
x̄W
t

)
and η > 0. By choosing a threshold η0, non-watermarked images will have η > η0

and watermarked images will have η < η0. Theoretically, the derivation of the p-value η could be
found in Zhang et al. (2024c).

3.3 EXTENSION TO TEXT-TO-IMAGE (T2I) DIFFUSION MODELS

Up to this point, our discussion has focused exclusively on unconditional diffusion models. Next,
we demonstrate how our approach can be readily extended to text-to-image (T2I) diffusion models,
which are predominantly used in practice.

6
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Figure 3 provides an overview of our method for T2I diffusion models, which can be flexibly applied
to both server and user scenarios. Specifically,

• Watermark injection. Shallow Diffuse embeds watermarks into the noise corrupted image xt at
a specific timestep t = 0.3T . In the server scenario, given xT ∼ N (0, Id) and prompt c, we
calculate xt = CFG (xT , t, c). In the user scenario, given the generated image x0, we compute
xt = DDIM-Inv (x0, t,∅∅∅), using an empty prompt ∅∅∅. Next, similar to Section 3.1, we apply
DDIM to obtain the watermarked image xW

0 = DDIM
(
xW
t , 0,∅∅∅

)
and channel averaging x∗W

0 ←
ChannelAverage

(
xW
0 ,DDIM (xt, 0)

)
. The detailed discussion about channel averaging is in

Appendix B.
• Watermark detection. During watermark detection, suppose we are given a watermarked image
x̄W
0 with certain corruptions, we apply the DDIM Inversion to recover the watermarked image at

timestep t, denoted as x̄W
t = DDIM-Inv

(
x̄W
0 , t,∅∅∅

)
. We detect the watermark ∆x in x̄W

t by
calculating η in Equation (8), with detail explained in Section 3.2.

4 THEORETICAL JUSTIFICATION

In this section, we provide theoretical justifications for the consistency and the detectability of Shal-
low Diffuse introduced in Section 3 for unconditional diffusion models. First, we make the following
assumptions on the watermark and the diffusion model process.
Assumption 1. Suppose the following hold for the PMP fθ,t(xt):

• Linearity: For any small t and ∆x ∈ Sd−1, we always have

fθ,t(xt + λ∆x) = fθ,t(xt) + λJθ,t(xt)∆x.

• L-Lipschitz continuous: we assume that fθ,t(x) is a L-Lipschiz continuous at every t:

||Jθ,t(x)||2 ≤ L, ∀x ∈ Rd.

It should be noted that our assumptions are mild. The L-Lipschitz continuity is a common as-
sumption for analysis. The approximated linearity have been shown in (Chen et al., 2024) with the
assumption of data distribution to be a mixture of low-rank Gaussians. Here, we assume the linearity
to be exact for the ease of analysis, and it can be generalized to approximate linear case.

Now consider injecting a watermark λ∆x in Equation (3), where λ > 0 is a scaling factor and ∆x
is a random vector uniformly distributed on the unit hypersphere Sd−1, i.e., ∆x ∼ U(Sd−1). Then
the following hold for the PMP fθ,t(xt).

Theorem 1 (Consistency of the watermarks). Suppose Assumption 1 holds and ∆x ∼ U(Sd−1).
Let us define x̂W

0,t := fθ,t(xt + λ∆x), x̂0,t := fθ,t(xt). The ℓ2-norm distance between x̂W
0,t and

x̂0,t can be bounded by:
||x̂W

0,t − x̂0,t||2 ≤ λLh(rt), (9)

with probability at least 1− r−1
t . Here, h(rt) =

√
rt
d

+

√
18π3

d− 2
log (2rt).

Our Theorem 1 guarantees that adding the watermark λ∆x would only change the estimation by
an amount of λLh(rt) with a constant probability. In particular, when rt is small, it implies that
the change in the prediction would be small. Given the relationship between PMP and DDIM in
equation 1, the consistency also applies to the practical use. On the other hand, in the following we
show that the injected watermark can be detected based upon the second term in Equation (6).
Theorem 2 (Detectability of the watermarks). Suppose Assumption 1 holds and ∆x ∼
U(Sd−1). With xW

t given in Equation (3), define xW
t−1 = DDIM

(
xW
t , t− 1

)
and x̄W

t =

DDIM-Inv
(
xW
t−1, t

)
. The ℓ2-norm distance between x̃W

t and xW
t can be bounded by:

||x̄W
t − xW

t ||2 ≤ λL (−g (αt, αt−1) + g (αt−1, αt) (1− Lg (αt, αt−1)))h(max{rt−1, rt}) (10)

with probability at least 1− r−1
t − r−1

t−1. Here, g(x, y) :=
√
1− y

√
x−
√
1− x

√
y

√
1− x

, ∀x, y ∈ (0, 1).
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Here−g (αt, αt−1)+ g (αt−1, αt) (1− Lg (αt, αt−1)) is a small number under the αt designed for
variance preserving (VP) noise scheduler Ho et al. (2020) and h(max{rt−1, rt}) is small when rt
is small. This indicates that the difference between x̄W

t and xW
t is small when rt is small and xW

t

could be recovered by x̄W
t from one-step DDIM. Therefore, Theorem 2 implies that the injected

watermark can be detected with constant probability.

5 EXPERIMENTS

In this section, we present a comprehensive set of experiments to demonstrate the robustness and
consistency of Shallow-Diffuse across various datasets. We begin by highlighting its performance in
terms of robustness and consistency in both the server scenario (Section 5.1) and the user scenario
(Section 5.2). Additionally, we compare Shallow Diffuse with other related works in the trade-
off between robustness and consistency, as detailed in Section 5.3. Moreover, we investigate the
effect of timestep t on both robustness and consistency, with results presented in Section 5.4. We
further explore the multi-key identification experiments in Appendix C.2. Lastly, we provide an
ablation study on watermark pattern design (Appendix C.3), channel averaging (Appendix C.4),
watermarking embedded channel (Appendix C.5), and sampling method (Appendix C.6).

Baseline For the server scenario, we select the following non-diffusion-based method: DWtDct
Cox et al. (2007), DwtDctSvd Cox et al. (2007), RivaGAN Zhang et al. (2019), StegaStamp Tancik
et al. (2020); and diffusion-based method: Stable Signature Fernandez et al. (2023), Tree-Ring
Watermarks Wen et al. (2023a), RingId Ci et al. (2024), and Gaussian Shading Yang et al. (2024).
In the user scenario, we adopt the same baseline methods, except for Stable Signature and Gaussian
Shading, as these methods are not suitable for this setting.

Datasets We use Stable Diffusion 2-1-base (Rombach et al., 2022) as the underlying model for
our experiments, applying Shallow diffusion within its latent space. For the server scenario (Sec-
tion 5.1), all diffusion-based methods are based on the same Stable Diffusion, with the original
images x0 generated from identical initial seeds xT . Non-diffusion methods are applied to these
same original images x0 in a post-watermarking process. A total of 5000 original images are gen-
erated for evaluation in this scenario. For the user scenario (Section 5.2), we utilize the MS-COCO
Lin et al. (2014), WikiArt Tan et al. (2019), and DiffusionDB datasets Wang et al. (2022). The first
two are real-world datasets, while DiffusionDB is a collection of diffusion model-generated images.
From each dataset, we select 500 images for evaluation. For the remaining experiments in Sec-
tion 5.3, Section 5.4, Appendix C, we use the server scenario and sample 100 images for evaluation.

Metric To evaluate image consistency under the user scenario, we use peak signal-to-noise ratio
(PSNR) Jähne (2005), structural similarity index measure (SSIM) Wang et al. (2004), and Learned
Perceptual Image Patch Similarity (LPIPS) Zhang et al. (2018), comparing watermarked images to
their original counterparts. In the server scenario, we assess the generation quality of the water-
marked images using Contrastive Language-Image Pretraining Score (CLIP-Score) Radford et al.
(2021) and Fréchet Inception Distance (FID) Heusel et al. (2017). To evaluate robustness, we vary
the threshold η0 and plot the true positive rate (TPR) against the false positive rate (FPR) for the
receiver operating characteristic (ROC) curve. We use the area under the curve (AUC) and TPR
when FPR = 0.01 (TPR @1% FPR) as robustness metrics. Robustness is evaluated both under clean
conditions (no attacks) and with various attacks, including JPEG compression, Gaussian blurring,
Gaussian noise, and color jitter, Resize and restore, Random drop, median blurring, diffusion pu-
rification Nie et al. (2022), VAE-based image compression models Cheng et al. (2020); Ballé et al.
(2018) and stable diffusion-based image regeneration Zhao et al. (2023b). We report the average ro-
bustness of these attacks in the main paper. Detailed settings and experiment results of these attacks
are provided in Appendix C.1.

5.1 CONSISTENCY AND ROBUSTNESS UNDER THE SERVER SCENARIO

Table 1 compares the performance of Shallow Diffuse with other methods in the user scenario. For
reference, we also apply stable diffusion to generate images from the same random seeds, without
adding watermarks (referred to as ”Stable Diffusion w/o WM” in Table 1). In terms of generation
quality, Shallow Diffuse achieves the best FID score among the diffusion-based methods. Addi-
tionally, the FID and CLIP scores of Shallow Diffuse are very close to those of Stable Diffusion
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Table 1: Generation quality and watermark robustness under the server scenario.

Method Generation Quality Watermark Robustness (AUC ↑/TPR@1%FPR↑)
CLIP-Score ↑ FID ↓ Clean Adversarial Average

Stable Diffusion w/o WM 0.3286 25.56 - -
DwtDct 0.3298 25.73 0.97/0.85 0.61/0.18
DwtDctSvd 0.3291 26.00 1.00/1.00 0.79/0.46
RivaGAN 0.3252 24.60 1.00/0.99 0.85/0.57
Stegastamp 0.3552 24.59 1.00/1.00 0.97/0.87
Stable Signature 0.3622 30.86 1.00/1.00 0.83/0.44
Tree-Ring Watermarks 0.3310 25.82 1.00/1.00 0.98/0.87
RingID 0.3285 27.13 1.00/1.00 1.00/1.00
Gaussian Shading 0.3631 26.17 1.00/1.00 1.00/1.00
Shallow Diffuse (ours) 0.3285 25.58 1.00/1.00 1.00/1.00

Table 2: Generation consistency and watermark robustness under the user scenario.
Dataset Method Generation Consistency Watermark Robustness (AUC ↑/TPR@1%FPR↑)

PSNR ↑ SSIM ↑ LPIPS ↓ Clean Adversarial Avg.

COCO

Stable Diffusion w/o WM 32.28 0.78 0.06 - -
DwtDct 37.88 0.97 0.02 0.98/0.83 0.61/0.19
DwtDctSvd 38.06 0.98 0.02 1.00/1.00 0.79/0.48
RivaGAN 40.57 0.98 0.04 1.00/1.00 0.87/0.61
Stegastamp 31.88 0.86 0.08 1.00/1.00 0.96/0.83
Tree-Ring Watermarks 28.22 0.51 0.41 1.00/1.00 0.99/0.93
RingID 28.22 0.38 0.61 1.00/1.00 1.00/0.99
Shallow Diffuse (ours) 32.11 0.77 0.06 1.00/1.00 1.00/0.98

DiffusionDB

Stable Diffusion w/o WM 33.42 0.85 0.03 - -
DwtDct 37.77 0.96 0.02 0.96/0.76 0.61/0.18
DwtDctSvd 37.84 0.97 0.02 1.00/1.00 0.79/0.46
RivaGAN 40.6 0.98 0.04 1.00/0.98 0.85/0.57
Stegastamp 32.03 0.85 0.08 1.00/1.00 0.96/0.84
Tree-Ring Watermarks 28.3 0.62 0.29 1.00/1.00 0.97/0.85
RingID 27.9 0.21 0.77 1.00/1.00 1.00/0.99
Shallow Diffuse (ours) 33.07 0.84 0.04 1.00/1.00 0.99/0.97

WikiArt

Stable Diffusion w/o WM 31.6 0.7 0.09 - -
DwtDct 38.84 0.97 0.02 0.96/0.75 0.60/0.18
DwtDctSvd 39.14 0.98 0.02 1.00/1.00 0.78/0.48
RivaGAN 40.44 0.98 0.05 1.00/1.00 0.87/0.60
Stegastamp 31.62 0.85 0.09 1.00/1.00 0.95/0.75
Tree-Ring Watermarks 28.24 0.53 0.34 1.00/1.00 0.97/0.92
RingID 27.90 0.19 0.78 1.00/1.00 0.99/0.98
Shallow Diffuse (ours) 31.4 0.68 0.10 1.00/1.00 1.00/0.99

w/o WM. This similarity arises because the watermarked distribution produced by Shallow Diffuse
remains highly consistent with the original generation distribution. Regarding robustness, Shallow
Diffuse outperforms all other methods. Although both Gaussian Shading and RingID exhibit com-
parable generation quality and robustness in the server scenario, they are less suitable for the user
scenario. Specifically, Gaussian Shading embeds the watermark into xT , which is not accessible to
the user, while RingID suffers from poor consistency, as demonstrated in Figure 1 and Table 2.

5.2 CONSISTENCY AND ROBUSTNESS UNDER THE USER SCENARIO

Table 2 presents a comparison of Shallow Diffuse’s performance against other methods in the
user scenario. In terms of consistency, Shallow Diffuse outperforms all other diffusion-based ap-
proaches. To measure the upper bound of diffusion-based methods, we apply stable diffusion with
x̂0 = DDIM(DDIM-Inv(x0, t,∅), 0,∅), and measure the data consistency between x̂0 and x0

(denotes in Stable Diffusion w/o WM in Table 2). The upper bound is constrained by errors intro-
duced through DDIM inversion, and Shallow Diffuse comes the closest to reaching this limit. For
non-diffusion-based methods, which are not affected by DDIM inversion errors, better image con-
sistency is achievable. However, as visualized in Figure 8, Shallow Diffuse also demonstrates strong
generation consistency. As for the robustness, Shallow Diffuse is comparable to RingID and outper-
forms all other methods in all three datasets. While RivaGAN achieves the best image consistency
and comparable watermark robustness to Shallow Diffuse in the user scenario, Shallow Diffuse is
much more efficient. Unlike RivaGAN, which requires training for each individual image, Shallow
Diffuse only involves the computational overhead of DDIM and DDIM inversion.

5.3 TRADE-OFF BETWEEN CONSISTENCY AND ROBUSTNESS

Figure 4 illustrates the trade-off between consistency and robustness for Shallow Diffuse and other
baselines. As the radius of M increases, the watermark intensity λ also increases, reducing image
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Figure 4: Trade-off between consistency and robustness for Tree-Ring Watermarks, RingID,
and Shallow Diffuse.

(a) Consistency (b) Robustness

Figure 5: Ablation study of the watermark at different timestep t.

consistency but improving robustness. By adjusting the radius of M , we plot the trade-off using
PSNR, SSIM, and LPIPS against TPR@1%FPR. From Figure 4, curve of Shallow Diffuse is con-
sistently above the curve of Tree-Ring Watermarks and RingID, demonstrating Shallow Diffuse’s
better consistency at the same level of robustness.

5.4 RELATION BETWEEN INJECTING TIMESTEP, CONSISTENCY AND ROBUSTNESS

Figure 5 shows the relationship between the watermark injection timestep t and both consistency
and robustness 1. Shallow Diffuse achieves optimal consistency at t = 0.2T and optimal robustness
at t = 0.3T . In practice, we select t = 0.3T . This result aligns with the intuitive idea proposed
in Section 3.1 and the theoretical analysis in Section 4: low-dimensionality enhances both data
generation consistency and watermark detection robustness. However, according to Chen et al.
(2024), the optimal timestep rt for minimizing rt satisfies t∗ ∈ [0.5T, 0.7T ]. We believe the best
consistency and robustness are not achieved at t∗ due to the error introduced by DDIM-Inv. As t
increases, this error grows, leading to a decline in both consistency and robustness. Therefore, the
best tradeoff is reached at t ∈ [0.2T, 0.3T ], where Jθ,t(xt) remains low-rank but t is still below
t∗. Another possible explanation is the gap between the image space and latent space in diffusion
models. The rank curve in Chen et al. (2024) is evaluated for an image-space diffusion model,
whereas Shallow Diffuse operates in the latent-space diffusion model (e.g., Stable Diffusion).

6 CONCLUSION

We proposed Shallow Diffuse, a novel and flexible watermarking technique that operates seamlessly
in both server-side and user-side scenarios. By decoupling the watermark from the sampling pro-
cess, Shallow Diffuse achieves enhanced robustness and greater consistency. Our theoretical anal-
ysis demonstrates both the consistency and detectability of the watermarks. Extensive experiments
further validate the superiority of Shallow Diffuse over existing approaches.

1In this experiment, we do not incorporate additional techniques like channel averaging or enhanced water-
mark patterns. Therefore, when t = 1.0T , the method is equivalent to Tree-Ring Watermarks.
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A RELATED WORK

A.1 IMAGE WATERMARKING

Image watermarking has long been a crucial method for protecting intellectual property in computer
vision (Cox et al., 2007; Solachidis & Pitas, 2001; Chang et al., 2005; Liu et al., 2019). Traditional
techniques primarily focus on user-side watermarking, where watermarks are embedded into images
post-generation. These methods (Al-Haj, 2007; Navas et al., 2008) typically operate in the frequency
domain to ensure the watermarks are imperceptible. However, such watermarks remain vulnerable
to adversarial attacks and can become undetectable after applying simple image manipulations like
blurring.

Early deep learning-based approaches to watermarking (Zhang et al., 2024c; Fernandez et al., 2023;
Ahmadi et al., 2020; Lee et al., 2020; Zhu et al., 2018) leveraged neural networks to embed water-
marks. While these methods improved robustness and imperceptibility, they often suffer from high
computational costs during fine-tuning and lack flexibility. Each new watermark requires additional
fine-tuning or retraining, limiting their practicality.

More recently, diffusion model-based watermarking techniques have gained attraction due to their
ability to seamlessly integrate watermarks during the generative process without incurring extra
computational costs. Techniques such as Wen et al. (2023a); Yang et al. (2024); Ci et al. (2024)
embed watermarks directly into the initial noise and retrieve the watermark by reversing the diffusion
process. These methods enhance robustness and invisibility but are typically restricted to server-side
watermarking, requiring access to the initial random seed. Moreover, the watermarks introduced
by Wen et al. (2023a); Ci et al. (2024) significantly alter the data distribution, leading to variance
towards watermarks in generated outputs (as shown in Figure 1).

In contrast to Wen et al. (2023a); Ci et al. (2024), our proposed shallow diffuse disentangles the
watermark embedding from the generation process by leveraging the high-dimensional null space.
This approach, both empirically and theoretically validated, significantly improves watermark con-
sistency and robustness. To the best of our knowledge, this is the first method that supports water-
mark embedding for both server-side and user-side applications while maintaining high robustness
and consistency.

A.2 LOW-DIMENSIONAL SUBSPACE IN DIFFUSION MODEL

In recent years, there has been growing interest in understanding deep generative models through
the lens of the manifold hypothesis (Loaiza-Ganem et al., 2024). This hypothesis suggests that

15

https://arxiv.org/abs/2401.04247
https://arxiv.org/abs/2401.04247
https://openreview.net/forum?id=Loek7hfb46P
https://openreview.net/forum?id=Loek7hfb46P
http://papers.nips.cc/paper_files/paper/2023/hash/9c2aa1e456ea543997f6927295196381-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/9c2aa1e456ea543997f6927295196381-Abstract-Conference.html


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

high-dimensional real-world data actually lies in latent manifolds with a low intrinsic dimension.
Focusing on diffusion models, Stanczuk et al. (2024) empirically and theoretically shows that the
approximated score function (the gradient of the log density of a noise-corrupted data distribution) in
diffusion models is orthogonal to a low-dimensional subspace. Building on this, Wang et al. (2024);
Chen et al. (2024) find that the estimated posterior mean from diffusion models lies within this low-
dimensional space. Additionally, Chen et al. (2024) discovers strong local linearity within the space,
suggesting that it can be locally approximated by a linear subspace. This observation motivates our
Assumption 1, where we assume the estimated posterior mean lies in a low-dimensional subspace.

Building upon these findings, Stanczuk et al. (2024); Kamkari et al. (2024) introduce a local in-
trinsic dimension estimator, while Loaiza-Ganem et al. (2024) proposes a method for detecting
out-of-domain data. Wang et al. (2024) offers theoretical insights into how diffusion model training
transitions from memorization to generalization, and Chen et al. (2024); Manor & Michaeli (2024b)
explores the semantic basis of the subspace to achieve disentangled image editing. Unlike these pre-
vious works, our approach leverages the low-dimensional subspace for watermarking, where both
empirical and theoretical evidence demonstrates that this subspace enhances robustness and consis-
tency.

B CHANNEL AVERAGING

B.1 TECHNIQUE DETAILS

Figure 6: Illustration of channel average

Natural images have multiple channels denoted
by C. Instead of applying watermark λ∆ to all
channels of xt, we can apply the watermark to
a specific channel c to make it even more in-
visible and robust. For this consideration, let
us reshape the image xt and the watermark
∆x into the form xt ∈ RH×W×C , λ∆x ∈
RH×W×C , where H , W , and C represent the
height, width, and channel dimensions for the
image, respectively. These dimensions satisfy
HWC = d.

Denote [xt]i ∈ RH×W as the ith channel of xt,
with i ∈ [C]. Thus [xW

t ]c = [xt]c + [λ∆x]c
and [xW

t ]i = [xt]i for i ̸= c. For the watermark in Equation (3), the channel averaging is defined
as:

[x∗W
0 ]i = ChannelAverage

(
xW
0 ,x∗

0

)
,

=

{
[xW

0 ]i, i = c

(1− γ)[xW
0 ]i + γ[x∗

0]i, i ̸= c
,

(11)

(12)

where we applied γ = 1. In our experiments, we found that we can increase both imperceptibility
and robustness by further employing this simple approach. See our ablation study in Appendix C.4
for a more detailed analysis.

C ADDITIONAL EXPERIMENTS

C.1 DETAILS ABOUT ATTACKS

In this work, we intensively tested our method on four different watermarking attacks, both in the
server scenario and in the user scenario. These watermarking attacks represent the most common
image distortion methods in real life, including

• JPEG compression (JPEG) with a compression rate of 25%.
• Gaussian blurring (G.Blur) with an 8× 8 filter size.
• Gaussian noise (G.Noise) with σ = 0.1.
• Color jitter (CJ) with brightness factor uniformly ranges between 0 and 6.
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(a) Clean (b) JPEG (c) G.Blur (d) G.Noise

(e) CJ (f) RR (g) RD (h) M.Blur

(i) DiffPure (j) IC1 (k) IC2 (l) IR

Figure 7: Visualization of different attacks.

• Resize and restore (RR). Resize to 50% of pixels and restore to original size.

• Random drop (RD). Random drop a square with 40% of pixels.

• Median blurring (M.Blur) with a 7× 7 median filter.

• Diffusion purification Nie et al. (2022) (DiffPure) with the purified step at 0.3T.

• VAE-based image compression Cheng et al. (2020) (IC1) and Ballé et al. (2018) (IC2),
with a quality level of 3.

• Diffusion-based image regeneration Zhao et al. (2023b) with 60 denoising steps.

Visualizations of these attacks are in Figure 7. Detailed experiments for table 1 (Table 4) on above
attacks are in Table 3 (Table 4).

Table 3: Watermarking Robustness for different attacks under the server scenario.

Method Watermarking Robustness (AUC ↑/TPR@1%FPR↑)
Clean JPEG G.Blur G.Noise CJ RR RD M.Blur DiffPure IC1 IC2 IR Average

DwtDct 0.97/0.85 0.47/0.00 0.51/0.02 0.96/0.78 0.53/0.15 0.66/0.14 0.99/0.88 0.58/0.01 0.50/0.00 0.52/0.01 0.49/0.00 0.50/0.00 0.61/0.18
DwtDctSvd 1.00/1.00 0.64/0.10 0.96/0.70 0.99/0.99 0.53/0.12 0.99/0.99 1.00/1.00 1.00/1.00 0.51/0.02 0.73/0.03 0.68/0.04 0.70/0.07 0.79/0.46
RivaGAN 1.00/0.99 0.94/0.69 0.96/0.76 0.97/0.88 0.95/0.79 0.99/0.98 0.99/0.98 0.99/0.97 0.73/0.16 0.65/0.03 0.63/0.04 0.56/0.00 0.85/0.57
Stegastamp 1.00/1.00 1.00/1.00 1.00/0.95 0.98/0.97 1.00/0.97 1.00/1.00 1.00/1.00 1.00/1.00 0.81/0.29 1.00/0.97 1.00/0.99 0.90/0.43 0.97/0.87
Stable Signature 1.00/1.00 0.99/0.76 0.57/0.00 0.71/0.14 0.96/0.87 0.90/0.34 1.00/1.00 0.95/0.62 0.54/0.01 0.93/0.58 0.91/0.50 0.67/0.02 0.83/0.44
Tree-Ring Watermarks 1.00/1.00 0.99/0.97 0.98/0.98 0.94/0.50 0.96/0.67 1.00/1.00 0.99/0.97 0.99/0.94 0.98/0.73 0.99/0.97 0.99/0.98 0.99/0.92 0.98/0.87
RingID 1.00/1.00 1.00/1.00 1.00/1.00 1.00/0.99 0.99/0.98 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
Gaussian Shading 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
Shallow Diffuse (ours) 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

C.2 MULTI-KEY WATERMARKING

In this section, we examine the capability of Shallow Diffuse to support multi-key watermarking.
We evaluate two important tasks associated with multi-key watermarking: Multi-key identification
and Multi-key re-watermarking.
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Table 4: Watermarking Robustness for different attacks under the user scenario.

Method Watermarking Robustness (AUC ↑/TPR@1%FPR↑)
Clean JPEG G.Blur G.Noise CJ RR RD M.Blur DiffPure IC1 IC2 IR Average

COCO Dataset
DwtDct 0.98/0.83 0.50/0.01 0.50/0.00 0.97/0.81 0.54/0.14 0.67/0.17 0.99/0.93 0.59/0.05 0.46/0.00 0.49/0.00 0.49/0.01 0.46/0.00 0.61/0.19
DwtDctSvd 1.00/1.00 0.64/0.13 0.98/0.83 0.99/0.99 0.54/0.13 1.00/1.00 1.00/1.00 1.00/1.00 0.50/0.01 0.70/0.05 0.64/0.04 0.68/0.07 0.79/0.48
RivaGAN 1.00/1.00 0.97/0.86 0.98/0.86 0.99/0.94 0.96/0.82 1.00/1.00 1.00/1.00 1.00/1.00 0.63/0.02 0.68/0.05 0.66/0.04 0.75/0.15 0.87/0.61
Stegastamp 1.00/1.00 1.00/1.00 0.99/0.90 0.90/0.87 1.00/0.98 1.00/0.99 1.00/0.99 1.00/1.00 0.81/0.27 1.00/0.95 1.00/0.95 0.85/0.28 0.96/0.83
Tree-Ring Watermarks 1.00/1.00 0.99/0.87 0.99/0.86 1.00/1.00 0.88/0.49 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 0.99/0.93
RingID 1.00/1.00 1.00/1.00 1.00/1.00 0.98/0.86 1.00/0.99 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/0.99
Shallow Diffuse (ours) 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/0.99 1.00/1.00 1.00/1.00 1.00/1.00 0.99/0.86 1.00/0.99 0.99/0.97 1.00/1.00 1.00/0.98

DiffusionDB Dataset
DwtDct 0.96/0.76 0.47/0.002 0.51/0.018 0.96/0.78 0.53/0.15 0.66/0.14 0.99/0.88 0.58/0.01 0.50/0.004 0.52/0.008 0.49/0.004 0.50/0.002 0.61/0.18
DwtDctSvd 1.00/1.00 0.64/0.10 0.96/0.70 0.99/0.99 0.53/0.12 1.00/1.00 1.00/1.00 1.00/1.00 0.51/0.022 0.73/0.03 0.68/0.04 0.70/0.07 0.79/0.46
RivaGAN 1.00/0.98 0.94/0.69 0.96/0.76 0.97/0.88 0.95/0.79 1.00/0.98 0.99/0.98 1.00/1.00 0.56/0.004 0.65/0.03 0.63/0.04 0.73/0.16 0.85/0.57
Stegastamp 1.00/1.00 1.00/1.00 0.99/0.88 0.91/0.89 1.00/0.99 1.00/0.97 1.00/1.00 1.00/0.96 0.83/0.28 1.00/0.91 1.00/0.93 0.85/0.40 0.96/0.84
Tree-Ring Watermarks 1.00/1.00 0.99/0.68 0.94/0.62 1.00/1.00 0.84/0.15 1.00/1.00 1.00/1.00 1.00/1.00 0.99/0.99 0.99/0.99 0.99/0.98 0.96/0.92 0.97/0.85
RingID 1.00/1.00 1.00/1.00 1.00/1.00 0.98/0.86 1.00/0.98 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/0.99
Shallow Diffuse (ours) 1.00/1.00 1.00/0.99 1.00/0.99 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 0.96/0.90 0.96/0.92 0.97/0.93 0.98/0.96 0.99/0.97

WikiArt Dataset
DwtDct 0.96/0.75 0.46/0.004 0.51/0.008 0.95/0.75 0.50/0.13 0.68/0.13 0.98/0.87 0.61/0.08 0.48/0.006 0.47/0.006 0.49/0.002 0.48/0.006 0.60/0.18
DwtDctSvd 1.00/1.00 0.65/0.22 0.97/0.76 0.99/0.99 0.50/0.10 1.00/1.00 1.00/1.00 1.00/1.00 0.47/0.03 0.72/0.04 0.66/0.07 0.67/0.08 0.78/0.48
RivaGAN 1.00/1.00 0.96/0.80 0.99/0.95 0.98/0.93 0.89/0.66 1.00/1.00 1.00/1.00 1.00/1.00 0.63/0.02 0.66/0.04 0.67/0.04 0.80/0.11 0.87/0.60
Stegastamp 1.00/1.00 1.00/0.96 0.97/0.77 0.92/0.88 0.98/0.84 0.99/0.89 1.00/1.00 0.99/0.91 0.77/0.20 0.99/0.95 0.99/0.90 0.80/0/30 0.95/0.75
Tree-Ring Watermarks 1.00/1.00 1.00/0.97 1.00/0.88 1.00/1.00 0.71/0.26 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 0.97/0.92
RingID 1.00/1.00 1.00/1.00 1.00/1.00 0.95/0.82 0.99/0.98 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 0.99/0.98
Shallow Diffuse (ours) 1.00/1.00 1.00/0.99 1.00/0.99 1.00/1.00 1.00/0.99 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 0.97/0.94 0.98/0.95 1.00/1.00 1.00/0.99

Figure 8: Generation Consistency in User Scenarios. We compare the visualization quality of our
method against DwtDct, DwtdctSvd, RivaGAN, and Stegastamp across the DiffusionDB, WikiArt,
and COCO datasets.

Multi-key identification This is a classification task designed to test the ability to accurately iden-
tify individual watermarks. We generate a set of N = 2048 watermarks, all using the same circular
mask M but with distinct ring-shaped keys {Wi}Ni=1. During watermarking, a random key Wi is
selected and injected into images. After an attack is applied, we attempt to detect the watermark
key Wj and determine if i = j. The success rate of identification serves as the evaluation metric.
This setup is inspired by the work in Ci et al. (2024). We compare Tree-Ring, RingID, and Shallow
Diffuse in the server scenario. The results of this experiment are shown in Table 5. Despite lacking a
dedicated design for multi-key scenarios, Shallow Diffuse outperforms Tree-Ring. RingID, specif-
ically designed for multi-key identification, achieves the highest success rate. Exploring multi-key
identification strategies could be an important direction for future research.

Multi-key re-watermarking : This task evaluates the ability to embed multiple watermarks into
the same image and detect each one independently. For this experiment, we test cases with 2, 4, 8,
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Figure 9: Generation Consistency in server scenarios. We compare the visualization quality of
our method against the original image and StageStamp.

16, 32 watermarks. Each watermark uses a unique ring-shaped key Wi and a non-overlapped mask
M (part of a circle). This is a non-trivial setting as we could pre-defined the key number and non-
overlapped mask M for application. The metric for this task is the average robustness across all keys,
measured in terms of AUC and TPR@1%FPR. For this study, we test the Tree-Ring and Shallow
Diffuse in the server scenario. The results of this experiment are presented in Table 6. Shallow
Diffuse consistently outperformed Tree-Ring in robustness across different numbers of users. Even
as the number of users increased to 32, Shallow Diffuse maintained strong robustness under clean
conditions. However, in adversarial settings, its robustness began to decline when the number of
users exceeded 16. Under the current setup, when the number of users surpasses the predefined
limit, our method becomes less robust and accurate. We believe that enabling watermarking for
hundreds or even thousands of users simultaneously is a challenging yet promising future direction
for Shallow Diffuse.

Table 5: Multi-key identification for different attacks under the server scenario.

Method Successfull Rate ↑
Clean JPEG G.Blur G.Noise CJ DiffPure IC1 IC2 IR Average

Tree-Ring 0.20 0.04 0.09 0.07 0.06 0.06 0.28 0.29 0.23 0.15
RingID 1.00 0.97 0.97 0.95 0.87 0.88 0.98 0.98 0.99 0.95
Shallow Diffuse 0.88 0.77 0.57 0.88 0.40 0.48 0.41 0.64 0.80 0.65

C.3 ABLATION STUDY OF DIFFERENT WATERMARK PATTERNS

In Table 7, we examine various combinations of watermark patterns M ⊙W . For the shape of
the mask M , ”Circle” refers to a circular mask M (see Figure 2 top left), while ”Ring” represents
a ring-shaped M . Since the mask is centered in the middle of the figure, ”Low” and ”High” de-
note frequency regions: ”Low” represents a DFT with zero-frequency centering, whereas ”High”
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Table 6: Multi-key re-watermark for different attacks under the server scenario.

Watermark numbder Method Watermarking Robustness (AUC ↑/TPR@1%FPR↑)
Clean JPEG G.Blur G.Noise CJ RR RD M.Blur DiffPure IC1 IC2 IR Average

2 Tree-Ring 1.00/1.00 0.99/0.84 1.00/0.97 0.95/0.83 0.98/0.75 1.00/1.00 1.00/1.00 1.00/1.00 0.91/0.23 1.00/0.91 0.98/0.82 0.94/0.49 0.98/0.80
Shallow Diffuse 1.00/1.00 1.00/1.00 1.00/1.00 0.98/0.95 1.00/0.90 1.00/1.00 1.00/1.00 1.00/1.00 0.98/0.65 1.00/0.91 1.00/0.97 1.00/0.99 0.99/0.95

4 Tree-Ring 1.00/1.00 0.98/0.63 1.00/0.89 0.96/0.86 0.90/0.54 1.00/0.92 1.00/0.99 1.00/0.95 0.88/0.11 0.99/0.72 0.97/0.67 0.92/0.37 0.96/0.70
Shallow Diffuse 1.00/1.00 1.00/0.96 0.99/0.88 0.97/0.91 0.99/0.82 1.00/1.00 1.00/1.00 1.00/1.00 0.94/0.37 0.99/0.80 0.99/0.83 0.99/0.89 0.99/0.86

8 Tree-Ring 1.00/0.95 0.90/0.32 0.97/0.56 0.92/0.64 0.90/0.45 0.98/0.71 1.00/0.89 0.98/0.68 0.77/0.08 0.91/0.38 0.89/0.25 0.83/0.16 0.91/0.47
Shallow Diffuse 1.00/1.00 0.99/0.85 0.97/0.73 0.97/0.90 0.98/0.80 1.00/0.98 1.00/1.00 1.00/0.96 0.91/0.36 0.98/0.71 0.97/0.70 0.99/0.80 0.98/0.80

16 Tree-Ring 0.96/0.57 0.78/0.18 0.87/0.32 0.87/0.38 0.84/0.24 0.90/0.42 0.95/0.53 0.90/0.36 0.68/0.05 0.80/0.18 0.77/0.14 0.72/0.05 0.83/0.26
Shallow Diffuse 1.00/0.89 0.94/0.59 0.89/0.39 0.94/0.73 0.92/0.53 0.97/0.73 0.99/0.84 0.96/0.73 0.78/0.11 0.90/0.46 0.91/0.46 0.92/0.55 0.92/0.56

32 Tree-Ring 0.95/0.44 0.77/0.11 0.85/0.15 0.86/0.31 0.80/0.15 0.88/0.22 0.94/0.34 0.89/0.26 0.63/0.03 0.78/0.11 0.75/0.08 0.70/0.05 0.80/0.16
Shallow Diffuse 0.99/0.89 0.91/0.46 0.86/0.26 0.93/0.63 0.91/0.47 0.96/0.65 0.99/0.84 0.95/0.59 0.74/0.07 0.87/0.31 0.87/0.30 0.89/0.28 0.90/0.44

indicates a DFT without zero-frequency centering, as illustrated in Figure 2 bottom. For the distri-
bution of W , ”Zero” implies all values are zero, ”Rand” denotes values sampled fromN (0,1), and
”Rotational Rand” represents multiple concentric rings in W , with each ring’s values sampled from
N (0,1).

As shown in Table 7, watermarking in high-frequency regions (Rows 7-9) yields improved image
consistency compared to low-frequency regions (Rows 1-6). Additionally, the ”Circle” M com-
bined with ”Rotational Rand” W (Rows 3 and 9) demonstrates greater robustness than other water-
mark patterns. Consequently, Shallow Diffuse employs the ”Circle” M with ”Rotational Rand” W
in the high-frequency region.

Table 7: Ablation study on different watermark patterns.

Method & Dataset PSNR ↑ SSIM ↑ LPIPS ↓ Average Watermarking Robustness (AUC ↑/TPR@1%FPR↑)Frequency Region Shape Distribution

Low Circle Zero 29.10 0.90 0.06 0.93/0.65
Low Circle Rand 29.37 0.92 0.05 0.92/0.25
Low Circle Rotational Rand 29.13 0.90 0.06 1.00/1.00
Low Ring Zero 36.20 0.95 0.02 0.78/0.35
Low Ring Rand 38.23 0.97 0.01 0.87/0.49
Low Ring Rotational Rand 35.23 0.93 0.02 0.99/0.98
High Circle Zero 38.3 0.96 0.01 0.80/0.34
High Circle Rand 42.3 0.98 0.004 0.86/0.35
High Circle Rotational Rand 38.0 0.94 0.01 1.00/1.00

C.4 ABLATION STUDY OF CHANNEL AVERAGE

We evaluate Shallow Diffuse with channel averaging enabled (γ = 1.0) and disabled (γ = 0.0),
as shown in Table 8. Unlike the adaptive image enhancement techniques proposed in Zhang
et al. (2024c), our approach embeds the watermark in a single channel while averaging the non-
watermarked channels. This design takes advantage of the fact that many image processing opera-
tions, such as color jittering or Gaussian blurring, tend to affect all channels uniformly. By isolating
the watermark in one channel, it will be less vulnerable to those attacks. Thus, applying channel
averaging slightly enhances robustness against certain attacks while maintaining comparable con-
sistency. Therefore, we set γ = 1.0 for Shallow Diffuse.

Table 8: ablation study on channel average.

Channel average intensity γ PSNR ↑ SSIM ↑ LPIPS ↓ Watermarking Robustness (TPR@1%FPR↑)
Clean JPEG G.Blur G.Noise Color Jitter

0 37.1103 0.941 0.0154 1.0000 1.0000 0.9971 1.0000 0.9584
1.0 36.6352 0.931 0.0151 1.0000 1.0000 1.0000 1.0000 1.0000

C.5 ABLATION STUDY OF WATERMARKING EMBEDDED CHANNEL.

As shown in Table 9, we evaluate specific embedding channels c for Shallow Diffuse, where ”0,” ”1,”
”2,” and ”3” denote c = 0, 1, 2, 3, respectively, and ”0 + 1 + 2 + 3” indicates watermarking applied
across all channels 2. Since applying watermarking to any single channel yields similar results (Row

2Here we apply Shallow Diffuse on the latent space of Stable Diffusion, the channel dimension is 4.
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1-4), but applying it to all channels (Row 5) negatively impacts image consistency and robustness,
we set c = 3 for Shallow Diffuse. This finding aligns with the observations in the channel average
ablation study (appendix C.4). The reason is that many image processing operations tend to affect
all channels uniformly, making watermarking across all channels more susceptible to such attacks.)

Table 9: Ablation study on watermarking embedded channel.

Watermark embedding channel PSNR ↑ SSIM ↑ LPIPS ↓ Watermarking Robustness (TPR@1%FPR↑)
Clean JPEG G.Blur G.Noise Color Jitter

0 36.46 0.93 0.02 1.00 1.00 1.00 1.00 0.99
1 36.57 0.93 0.02 1.00 1.00 1.00 1.00 0.99
2 36.13 0.92 0.02 1.00 1.00 1.00 1.00 1.00
3 36.64 0.93 0.02 1.00 1.00 1.00 1.00 1.00

0 + 1 + 2 + 3 33.19 0.83 0.05 1.00 1.00 1.00 1.00 0.95

C.6 ABLATION STUDY OF DIFFERENT SAMPLING METHODS

We conducted ablation studies on various diffusion model sampling methods, including DDIM,
DEIS Zhang & Chen (2023), DPM-Solver Lu et al. (2022b), PNDM Liu et al. (2022), and UniPC
Zhao et al. (2023a). All methods were evaluated using 50 sampling steps. The results, presented
in Table 10, indicate that Shallow Diffuse is not highly sensitive to the choice of sampling method.
Across all methods, the generation quality and watermark robustness remain consistent.

Table 10: Ablation study on sampling methods.

Sampling Method Generation Quality Watermark Robustness (AUC ↑/TPR@1%FPR↑)
CLIP-Score ↑ Clean JPEG G.Blur G.Noise CJ Adversarial Average

DDIM 0.3652 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
DEIS 0.3651 1.00/1.00 0.99/0.99 1.00/1.00 1.00/1.00 0.99/0.95 1.00/0.99
DPM-Solver 0.3645 1.00/1.00 1.00/1.00 1.00/1.00 1.00/0.99 0.99/0.94 1.00/0.98
PNDM 0.3651 1.00/1.00 0.99/0.99 1.00/1.00 1.00/1.00 0.98/0.96 1.00/0.99
UniPC 0.3645 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

D PROOFS IN SECTION 4

D.1 PROOFS OF THEOREM 1

Proof of Theorem 1. According to Assumption 1, we have ||x̂W
0,t − x̂0,t||22 = λ||Jθ,t(xt) · ∆x||22.

From Levy’s Lemma proposed in Popescu et al. (2006), given function ||Jθ,t(xt) ·∆x||22 : Sd−1 →
R we have:

P
(∣∣||Jθ,t(xt) ·∆x||22 − E

[
||Jθ,t(xt) ·∆x||22

]∣∣ ≥ ϵ
)
≤ 2 exp

(
−C(d− 2)ϵ2

L2

)
,

given L to be the Lipschitz constant of ||Jθ,t(xt)||22 and C is a positive constant (which can be taken
to be C = (18π3)−1). From Lemma 2 and Lemma 3, we have:

P
(∣∣∣∣||Jθ,t(xt) ·∆x||22 −

||Jθ,t(xt)||2F
d

∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−(18π3)−1(d− 2)ϵ2

||Jθ,t(xt)||42

)
.

Define
1

rt
as the desired probability level, set

1

rt
= 2 exp

(
−(18π3)−1(d− 2)ϵ2

||Jθ,t(xt)||42

)
,

Solving for ϵ:

ϵ = ||Jθ,t(xt)||22

√
18π3

d− 2
log (2rt).
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Therefore, with probability 1− 1

rt
, we have:

||x̂W
0,t − x̂0,t||22 = λ2||Jθ,t(xt) ·∆x||22,

≤ λ2||Jθ,t(xt)||2F
d

+ λ2||Jθ,t(xt)||22

√
18π3

d− 2
log (2rt),

≤ λ2||Jθ,t(xt)||22

(
rt
d

+

√
18π3

d− 2
log (2rt)

)
,

= λ2L2

(
rt
d

+

√
18π3

d− 2
log (2rt)

)
,

where the last inequality is obtained from ||Jθ,t(xt)||2F ≤ rt||Jθ,t(xt)||22. Therefore, with proba-

bility 1− 1

rt
,

||x̂W
0,t − x̂0,t||2 ≤ λL

√
rt
d

+

√
18π3

d− 2
log (2rt) = λLh(rt).

⊔⊓

Proof of Theorem 2. According to Equation (1), one step of DDIM sampling at timestep t could be
represented by PMP fθ,t(xt) as:

xt−1 =
√
αt−1fθ,t(xt) +

√
1− αt−1

(
xt −

√
αtfθ,t(xt)√
1− αt

)
,

=

√
1− αt−1

1− αt
xt +

√
1− αt

√
αt−1 −

√
1− αt−1

√
αt√

1− αt
fθ,t(xt),

(13)

(14)

If we inject a watermark λ∆x to xt, so xW
t = xt + λ∆x. To solve xW

t−1, we could plugging
Equation (2) to Equation (14), we could obtain:

xW
t−1 =

√
1− αt−1

1− αt
xW
t +

√
1− αt

√
αt−1 −

√
1− αt−1

√
αt√

1− αt
fθ,t(x

W
t ),

= xt−1 +

√
1− αt−1

1− αt
λ∆x+

√
1− αt

√
αt−1 −

√
1− αt−1

√
αt√

1− αt
Jθ,t(xt)∆x

= xt−1 + λ

(√
1− αt−1

1− αt
I +

√
1− αt

√
αt−1 −

√
1− αt−1

√
αt√

1− αt
Jθ,t(xt)

)
︸ ︷︷ ︸

:=Wt

∆x,

(15)

(16)

(17)

One step DDIM Inverse sampling at timestep t− 1 could be represented by PMP fθ,t(xt) as:

xt =

√
1− αt

1− αt−1
xt−1 +

√
1− αt−1

√
αt −

√
1− αt

√
αt−1√

1− αt−1
fθ,t−1(xt−1), (18)

To detect the watermark, we apply one step DDIM Inverse on xW
t−1 at timestep t− 1 to obtain x̃W

t :

x̃W
t =

√
1− αt

1− αt−1
xW
t−1 +

√
1− αt−1

√
αt −

√
1− αt

√
αt−1√

1− αt−1
fθ,t−1(x

W
t−1),

= xt + λ

(√
1− αt

1− αt−1
I +

√
1− αt−1

√
αt −

√
1− αt

√
αt−1√

1− αt−1
Jθ,t−1(xt−1)

)
︸ ︷︷ ︸

:=Wt−1

Wt∆x,

= xt + λWt−1Wt∆x = xW
t + λ (Wt−1Wt − I)∆x.
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Therefore:
||x̃W

t − xW
t ||2 = λ|| (Wt−1Wt − I)∆x||2,

= λ||
√
1− αt−1

√
αt −

√
1− αt

√
αt−1√

1− αt
Jθ,t−1(xt−1)∆x,

+

√
1− αt

√
αt−1 −

√
1− αt−1

√
αt√

1− αt−1
Jθ,t(xt)∆x,

−
(√

1− αt
√
αt−1 −

√
1− αt−1

√
αt

)2
√
1− αt−1

√
1− αt

Jθ,t−1(xt−1)Jθ,t(xt)∆x||2,

≤ −λg (αt, αt−1) ||Jθ,t−1(xt−1)∆x||2 + λg (αt−1, αt) ||Jθ,t(xt)∆x||2
− λg (αt−1, αt) g (αt, αt−1) ||Jθ,t−1(xt−1)Jθ,t(xt)∆x||2,

≤ −λg (αt, αt−1) ||Jθ,t−1(xt−1)∆x||2
+ λg (αt−1, αt) (1− g (αt, αt−1)L) ||Jθ,t(xt)∆x||2,

= −g (αt, αt−1) ||x̂W
0,t−1 − x̂0,t−1||2

+ g (αt−1, αt) (1− g (αt, αt−1)L) ||x̂W
0,t − x̂0,t||2,

The first inequality holds because g (αt−1, αt) < 0 and g (αt, αt−1) > 0. The second in-
equality holds because ||Jθ,t−1(xt−1)Jθ,t(xt)∆x||2 ≤ ||Jθ,t−1(xt−1)||2||Jθ,t(xt)∆x||2 ≤
L||Jθ,t(xt)∆x||2. From Theorem 1, with probability 1− 1

rt−1
,

||x̂W
0,t−1 − x̂0,t−1||2 ≤ λLh(rt−1),

with probability 1− 1

rt
,

||x̂W
0,t − x̂0,t||2 ≤ λLh(rt),

Thus, from the union of bound, with a probability at least 1− 1

rt
− 1

rt−1
,

||x̃W
t − xW

t ||2 ≤ −λLg (αt, αt−1)h(rt−1) + λLg (αt−1, αt) (1− g (αt, αt−1)L)h(rt)

≤ λL (−g (αt, αt−1) + g (αt−1, αt) (1− Lg (αt, αt−1)))h(max{rt−1, rt})
⊔⊓

E AUXILIARY RESULTS

Lemma 1. Given a unit vector vi with and ϵ ∼ N (0, Id), we have

Eϵ∼N (0,Id)[
(
vT
i ϵ
)2

/||ϵ||22] =
1

d
.

Proof of Lemma 1. Because ϵ ∼ N (0, Id),

vT
i ϵ ∼ N (vT

i 0,v
T
i Idvi) = N (vT

i 0,v
T
i Idvi) = N (0, 1), (19)

Assume a set of d unit vecotrs {v1, v2, . . . ,vi, . . . , vd} are orthogonormal and are basis of Rd,
similarly, we could show that ∀j ∈ [d], Xj := vTj ϵ ∼ N (0, 1). Therefore, we could rewrite(
vT
i ϵ
)2

/||ϵ||22 as: (
vT
i ϵ
)2

/||ϵ||22 =

(
vT
i ϵ
)2

||
∑d

k=1 vkv
T
k ϵ||22

,

=

(
vT
i ϵ
)2∑d

k=1

(
vTk ϵ

)2 ,
=

X2
i∑d

k=1 X
2
k

.

(20)

(21)

(22)
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Let Yi :=
X2

i∑d
j=1 X2

j

. Because ∀j ∈ [d], Xj := vTj ϵ ∼ N (0, 1), ∀j ∈ [d], Yj has the same distribution.

Additionally,
∑d

j=1 Yj = 1. So:

Eϵ∼N (0,Id)[

(
vT
i ϵ
)2

||ϵ||22
] = E[Yi] =

1

d
E[

d∑
j=1

Yj ] =
1

d
.

⊔⊓

Lemma 2. Given a matrix J ∈ Rd×d with rank (J) = r. Given x which is uniformly sampled on
the unit hypersphere Sd−1, we have:

Ex

[
||Jx||22

]
=
||J ||2F
d

.

Proof of Lemma 2. Let’s define the singular value decomposition of J = UΣV T with Σ =
diag (σ1, . . . , σr, 0 . . . , 0). Therefore, Ex

[
||Jx||22

]
= Ex

[
||UΣV Tx||22

]
= Ez

[
||Σz||22

]
where

z := V Tx is is uniformly sampled on the unit hypersphere Sd−1. Thus, we have:

Ez

[
||Σz||22

]
= Ez

[
||

r∑
i=1

σie
T
i z||22

]
,

= Ez

[
r∑

i=1

σ2
i ||eTi z||22

]
,

=

r∑
i=1

σ2
i Ez

[
||eTi z||22

]
=
||J ||2F
d

,

where ei is the standard basis with i-th element equals to 0. The second equality is because of
independence between eTi z and eTj z. The fourth equality is from Lemma 1. ⊔⊓

Lemma 3. Given function f (x) = ||Jx||22, the lipschitz constant Lf of function f (x) is:

Lf = 2||J ||22.

Proof of Lemma 3. The jacobian of f(x) is:

∇xf(x) = 2JTJx,

Therefore, the lipschitz constant L follows:

Lf = sup
x∈Sd−1

||∇xf(x)||2 = 2 sup
x∈Sd−1

||JTJx||2 = ||JTJ ||2 = ||J ||22

⊔⊓
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