
Curriculum Design for Teaching via Demonstrations:
Theory and Applications

Gaurav Yengera1,2 Rati Devidze1 Parameswaran Kamalaruban3 Adish Singla1

gyengera@mpi-sws.org rdevidze@mpi-sws.org kparameswaran@turing.ac.uk adishs@mpi-sws.org

1Max Planck Institute for Software Systems (MPI-SWS), Saarbrucken, Germany
2Saarland University, Saarland Informatics Campus (SIC), Saarbrucken, Germany

3The Alan Turing Institute, London, UK

Abstract

We consider the problem of teaching via demonstrations in sequential decision-
making settings. In particular, we study how to design a personalized curriculum
over demonstrations to speed up the learner’s convergence. We provide a unified
curriculum strategy for two popular learner models: Maximum Causal Entropy
Inverse Reinforcement Learning (MaxEnt-IRL) and Cross-Entropy Behavioral
Cloning (CrossEnt-BC). Our unified strategy induces a ranking over demonstra-
tions based on a notion of difficulty scores computed w.r.t. the teacher’s optimal
policy and the learner’s current policy. Compared to the state of the art, our
strategy doesn’t require access to the learner’s internal dynamics and still enjoys
similar convergence guarantees under mild technical conditions. Furthermore,
we adapt our curriculum strategy to the setting where no teacher agent is present
using task-specific difficulty scores. Experiments on a synthetic car driving
environment and navigation-based environments demonstrate the effectiveness of
our curriculum strategy.

1 Introduction

Imitation learning is a paradigm in which a learner acquires a new set of skills by imitating a
teacher’s behavior. The importance of imitation learning is realized in real-world applications where
the desired behavior cannot be explicitly defined but can be demonstrated easily. These applications
include the settings involving both human-to-machine interaction [1–4], and human-to-human in-
teraction [5, 6]. The two most popular approaches to imitation learning are Behavioral Cloning
(BC) [7] and Inverse Reinforcement Learning (IRL) [8]. BC algorithms aim to directly match the
behavior of the teacher using supervised learning methods. IRL algorithms operate in a two-step
approach: first, a reward function explaining the teacher’s behavior is inferred; then, the learner
adopts a policy corresponding to the inferred reward.

In the literature, imitation learning has been extensively studied from the learner’s point of view to
design efficient learning algorithms [9–15]. However, much less work is done from the teacher’s
point of view to reduce the number of demonstrations required to achieve the learning objective. In
this paper, we focus on the problem of Teaching via Demonstrations (TvD), where a helpful teacher
assists the imitation learner in converging quickly by designing a personalized curriculum [16–20].
Despite a substantial amount of work on curriculum design for reinforcement learning agents [21–
27], curriculum design for imitation learning agents is much less investigated.

Prior work on curriculum design for IRL learners has focused on two concrete settings: non-
interactive and interactive. In the non-interactive setting [17, 18], the teacher provides a
near-optimal set of demonstrations as a single batch. These curriculum strategies do not incorporate

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

any feedback from the learner, hence unable to adapt the teaching to the learner’s progress. In the
interactive setting [28], the teacher can leverage the learner’s progress to adaptively choose the next
demonstrations to accelerate the learning process. However, the existing state-of-the-art work [28]
has proposed interactive curriculum algorithms that are based on learning dynamics of a specific
IRL learner model (i.e., the learner’s gradient update rule); see further discussion in Section 1.1. In
contrast, we focus on designing an interactive curriculum algorithm with theoretical guarantees that
is agnostic to the learner’s dynamics. This will enable the algorithm to be applicable for a broad
range of learner models, and in practical settings where the learner’s internal model is unknown
(such as tutoring systems with human learners). A detailed comparison between our curriculum
algorithm and the prior state-of-the-art algorithms from [18, 28] is presented in Section 1.1.

Our approach is motivated by works on curriculum design for supervised learning and reinforcement
learning algorithms that use a ranking over the training examples using a difficulty score [29–35].
In particular, our work is inspired by theoretical results on curriculum learning for linear regression
models [32]. We define difficulty scores for any demonstration based on the teacher’s optimal policy
and the learner’s current policy. We then study the differential effect of the difficulty scores on the
learning progress for two popular imitation learners: Maximum Causal Entropy Inverse Reinforce-
ment Learning (MaxEnt-IRL) [10] and Cross-Entropy loss-based Behavioral Cloning (CrossEnt-
BC) [36]. Our main contributions are as follows:1

1. Our analysis for both MaxEnt-IRL and CrossEnt-BC learners leads to a unified curriculum strat-
egy, i.e., a preference ranking over demonstrations. This ranking is obtained based on the ratio
between the demonstration’s likelihood under the teacher’s optimal policy and the learner’s cur-
rent policy. Experiments on a synthetic car driving environment validate our curriculum strategy.

2. For the MaxEnt-IRL learner, we prove that our curriculum strategy achieves a linear convergence
rate (under certain mild technical conditions), notably without requiring access to the learner’s
dynamics.

3. We adapt our curriculum strategy to the learner-centric setting where a teacher agent is not
present through the use of task-specific difficulty scores. As a proof of concept, we show that
our strategy accelerates the learning process in synthetic navigation-based environments.

1.1 Comparison to Existing Approaches on Curriculum Design for Imitation Learning

In the non-interactive setting, [18] have proposed a batch teaching algorithm (SCOT) by showing that
the teaching problem can be formulated as a set cover problem. In contrast, our algorithm is interac-
tive in nature and hence, can leverage the learner’s progress (see experimental results in Section 5).

In the interactive setting, [28] have proposed the Omniscient algorithm (OMN) based on the iterative
machine teaching (IMT) framework [37]. Their algorithm obtains strong convergence guarantees
for the MaxEnt-IRL learner model; however, requires exact knowledge of the learner’s dynamics
(i.e, the learner’s update rule). Our algorithm on the other hand is agnostic to the learner’s dynamics
and is applicable to a broader family of learner models (see Sections 4 and 5).

Also for the interactive setting, [28] have proposed the Blackbox algorithm (BBOX) as a heuristic
to apply the OMN algorithm when the learner’s dynamics are unknown—this makes the BBOX al-
gorithm more widely applicable than OMN. However, this heuristic algorithm is still based on the
gradient functional form of the linear MaxEnt-IRL learner model (see Footnote 2), and does not pro-
vide any convergence guarantees. In contrast, our algorithm is derived independent of any specific
learner model and we provide a theoretical analysis of our algorithm for different learner models
(see Theorems 1, 2, and 3). Another crucial difference is that the BBOX algorithm requires access
to the true reward function of the environment, which precludes it from being applied to learner-
centric settings where no teacher agent is present. In comparison, our algorithm is applicable to
learner-centric settings (see experimental results in Section 6).

1.2 Additional Related Work on Curriculum Design and Teaching

Curriculum design. Curriculum design for supervised learning settings has been extensively stud-
ied in the literature. Early works present the idea of designing a curriculum comprising of tasks with
increasing difficulty to train a machine learning model [29–31]. However, these approaches require

1Github repo: https://github.com/adishs/neurips2021_curriculum-teaching-demonstrations_code.

2

https://github.com/adishs/neurips2021_curriculum-teaching-demonstrations_code

task-specific knowledge for designing heuristic difficulty measures. Recent works have tackled the
problem of automating curriculum design [38, 39]. There is also an increasing interest in theo-
retically analyzing the impact of a curriculum (ordering) of training tasks on the convergence of
supervised learner models [32, 40, 41]. In particular, our work builds on the idea of difficulty scores
of the training examples studied in [32].

The existing results on curriculum design for sequential decision-making settings are mostly em-
pirical in nature. Similar to the supervised learning settings, the focus on curriculum design for
reinforcement learning settings has been shifted from hand-crafted approaches [34, 35] to auto-
matic methods [21–23, 25]. We refer the reader to a recent survey [42] on curriculum design for
reinforcement learning. The curriculum learning paradigm has also been studied in psychology lit-
erature [43–47]. One key aspect in these works has been to design algorithms that account for the
pedagogical intentions of a teacher, which often aims to explicitly demonstrate specific skills rather
than just provide an optimal demonstration for a task. We see our work as complementary to these.

Machine teaching. The algorithmic teaching problem considers the interaction between a teacher
and a learner where the teacher’s objective is to find an optimal training sequence to steer the learner
towards a desired goal [37, 48–50]. Most of the work in machine teaching for supervised learning
settings is on batch teaching where the teacher provides a batch of teaching examples at once without
any adaptation. The question of how a teacher should adaptively select teaching examples for a
learner has been addressed recently in supervised learning settings [51–56].

Furthermore, [16–18, 28, 57, 58] have studied algorithmic teaching for sequential decision-making
tasks. In particular, [17, 18] have proposed batch teaching algorithms for an IRL agent, where the
teacher decides the entire set of demonstrations to provide to the learner before any interaction.
These teaching algorithms do not leverage any feedback from the learner. In contrast, as discussed
in Section 1.1, [28] have proposed interactive teaching algorithms (namely OMN and BBOX) for an
IRL agent, where the teacher takes into account how the learner progresses. The works of [57, 58]
are complementary to ours and study algorithmic teaching when the learner has a differet worldview
than the teacher or has its own specific preferences.

2 Formal Problem Setup

Here, we formalize our problem setting which is based on prior work on sequential teaching [28, 37].

Environment. We consider an environment defined as a Markov Decision Process (MDP)M :=(
S,A, T , γ, P0, R

E
)
, where the state and action spaces are denoted by S and A, respectively. T :

S × S × A → [0, 1] is the transition dynamics, γ is the discounting factor, and P0 : S → [0, 1] is
an initial distribution over states S. A policy π : S × A → [0, 1] is a mapping from a state to a
probability distribution over actions. The underlying reward function is given by RE : S ×A → R.

Teacher-learner interaction. We consider a setting with two agents: a teacher and a sequential
learner. The teacher has access to the full MDPM and has a target policy πE (e.g., a near-optimal
policy w.r.t. RE). The learner knows the MDPM but not the reward function RE , i.e., has only
access to M \ RE . The teacher’s goal is to provide an informative sequence of demonstrations
to teach the policy πE to the learner. Here, a teacher’s demonstration ξ =

{(
sξτ , a

ξ
τ

)}
τ=0,1,...

is

obtained by first choosing an initial state sξ0 ∈ S (where P0(sξ0) > 0) and then choosing a trajectory,
sequence of state-action pairs, obtained by executing the policy πE in the MDPM. The interaction
between the teacher and the learner is formally described in Algorithm 1. For simplicity, we assume
that the teacher directly observes the learner’s policy πLt at any time t. In practice, the teacher could
approximately infer the policy πLt by probing the learner and using Monte Carlo methods.

Generic learner model. Here, we describe a generic learner update rule for Algorithm 1. Let
Θ ⊆ Rd be a parameter space. The learner searches for a policy in the following parameterized
policy space: ΠΘ := {πθ : S ×A → [0, 1] , where θ ∈ Θ}. For the policy search, the learner se-
quentially minimizes a loss function ` that depends on the policy parameter θ and the demonstration
ξ =

{(
sξτ , a

ξ
τ

)}
τ

provided by the teacher. More concretely, we consider ` (ξ, θ) := − logP (ξ|θ),

where P (ξ|θ) = P0(sξ0) ·
∏
τ πθ

(
aξτ |sξτ

)
· T
(
sξτ+1|sξτ , aξτ

)
is the likelihood (probability) of the demon-

3

Algorithm 1 Teacher-Learner Interaction

1: Initialization: Initial knowledge of learner πL1 .
2: for t = 1, 2, . . . do
3: Teacher observes the learner’s current policy πLt .
4: Teacher provides demonstration ξt to the learner.
5: Learner updates its policy to πLt+1 using ξt.

stration ξ under policy πθ in the MDP M. At time t, upon receiving a demonstration ξt pro-
vided by the teacher, the learner performs the following online projected gradient descent update:
θt+1 ← ProjΘ [θt − ηtgt], where ηt is the learning rate, and gt = [∇θ` (ξt, θ)]θ=θt . Note that the
parameter θ1 reflects the initial knowledge of the learner. Given the learner’s current parameter θt at
time t, the learner’s policy is defined as πLt := πθt .

Teaching objective. For any policy π, the value (total expected reward) of π in the MDPM is de-
fined as V π :=

∑
s,a

∑∞
τ=0 γ

τ ·P {Sτ = s | π,M}·π (a | s)·RE (s, a) ,where P {Sτ = s | π,M}
denotes the probability of visiting the state s after τ steps by following the policy π. Let πL denote
the learner’s final policy at the end of teaching. The performance of the policy πL (w.r.t. πE) inM
can be evaluated via

∣∣∣V πE − V πL∣∣∣ [9, 59]. The teaching objective is to ensure that the learner’s final

policy ε-approximates the teacher’s policy, i.e.,
∣∣∣V πE − V πL ∣∣∣ ≤ ε. The teacher aims to provide an

optimized sequence of demonstrations {ξt}t=1,2,... to the learner to achieve the teaching objective.
The teacher’s performance is then measured by the number of demonstrations required to achieve
this objective. Based on existing work [28, 37], we assume that ∃ θ∗ ∈ Θ such that πE = πθ∗ (we
refer to θ∗ as the target teaching parameter). Similar to [28], we assume that a smoothness condi-
tion holds in the policy parameter space: |V πθ − V πθ′ | ≤ O (f (‖θ − θ′‖))∀θ, θ′ ∈ Θ. Then, the
teaching objective in terms of V π convergence can be reduced to the convergence in the parameter
space, i.e., we can focus on the quantity ‖θ∗ − θt‖.

3 Curriculum Design using Difficulty Scores

In this section, we introduce our curriculum strategy which is based on the concept of difficulty
scores and is agnostic to the dynamics of the learner.

Difficulty scores. We begin by assigning a difficulty score Ψθ (ξ) for any demonstration ξ w.r.t.
a parameterized policy πθ in the MDP M. Inspired by difficulty scores for supervised learning
algorithms [32], we consider a difficulty score which is directly proportional to the loss function `,
i.e., Ψθ (ξ) ∝ g (` (ξ, θ)), for a monotonically increasing function g. Setting g(·) = exp(·) leads to
Ψθ (ξ) = 1∏

τ πθ(aξτ |sξτ)
for MDPs with deterministic transition dynamics. Based on this insight, we

define the following difficulty score which we use throughout our work.
Definition 1. The difficulty score of a demonstration ξ w.r.t. the policy πθ in the MDPM is given
by Ψθ (ξ) := 1∏

τ πθ(aξτ |sξτ)
.

Intuitively, the difficulty score of a demonstration ξ w.r.t. an agent’s policy is inversely proportional
to the preference of the agent to follow the demonstration. Demonstrations with a higher likelihood
under the agent’s policy (higher preference) have a lower difficulty score and vice versa. With
the above definition, the difficulty scores for any demonstration ξ w.r.t. the teacher’s and learner’s
policies (at any time t) are respectively given by ΨE (ξ) := Ψθ∗ (ξ) and ΨL

t (ξ) := Ψθt (ξ).

General curriculum strategy. Our curriculum strategy picks the next demonstration ξt to provide
to the learner based on a preference ranking induced by the teacher’s and learner’s difficulty scores.
The difficulty score of a demonstration ξ w.r.t. the teacher and learner (at any time t) is denoted by
ΨE and ΨL

t respectively. Specifically, our curriculum strategy is given by:

ξt ← arg max
ξ

ΨL
t (ξ)

ΨE (ξ)
. (1)

4

Teacher-centric and learner-centric settings. In the teacher-centric setting formalized in Section
2, our curriculum strategy utilizes the difficulty scores induced by the learner’s current policy πLt
and the teacher’s policy πE . From Eq. (1) and Definition 1, we obtain the following teacher-centric
curriculum strategy: ξt ← arg maxξ

∏
τ
πE(aξτ |s

ξ
τ)

πLt (aξτ |sξτ)
.

Additionally, we also consider the learner-centric setting where a teacher agent is not present and the
target policy πE is unknown. Here, the learner can benefit from designing a self-curriculum (i.e.,
automatically ordering demonstrations) based on its current policy πLt . We adapt our curriculum
strategy to this setting by utilizing task-specific domain knowledge to define the teacher’s difficulty
score ΨE(ξ) for any demonstration ξ. From Eq. (1), given the learner’s current policy πLt and
the teacher’s difficulty score ΨE(ξ), the learner-centric curriculum strategy is given as follows:
ξt ← arg maxξ

1

ΨE(ξ)
∏
τ π

L
t (aξτ |sξτ)

.

Note that our curriculum strategy only requires access to the learner’s and teacher’s policies (πLt
and πE) and does not depend on the learner’s internal dynamics (i.e, its update rule as mentioned
in Section 2). This makes our approach more widely applicable to practical applications where it is
often possible to infer an agent’s policy, but the internal update rule is unknown.

4 Theoretical Analysis of Our Curriculum Strategy

In this section, we present the theoretical analysis of our curriculum strategy for two popular learner
models, namely, MaxEnt-IRL and CrossEnt-BC. For our analysis, we consider the teacher-centric
setting as introduced in Section 2. Our curriculum strategy obtains a preference ranking over the
demonstrations to provide to the learner based on the difficulty scores (see Definition 1). To this
end, we analyze the relationship between the difficulty scores (w.r.t. the teacher and the learner)
of the provided demonstration and the teaching objective (convergence towards the target teaching
parameter θ∗) during each sequential update step of the learner.

Given two difficulty values ψE , ψL ∈ R, we define the feasible set of demonstrations at time t
as Dt

(
ψE , ψL

)
:=
{
ξ : ΨE (ξ) = ψE and ΨL

t (ξ) = ψL
}

. This set contains all demonstrations ξ
for which the teacher’s difficulty score ΨE(ξ) is equal to the value ψE , and the learner’s difficulty
score ΨL(ξ) is equal to the value ψL. Let ∆t

(
ψE , ψL

)
denote the expected convergence rate of the

teaching objective at time t, given difficulty values ψE and ψL:

∆t

(
ψE , ψL

)
:= Eξt|ψE ,ψL[‖θ∗ − θt‖

2 − ‖θ∗ − θt+1(ξt)‖2], (2)

where the expectation is w.r.t. the uniform distribution over the setDt
(
ψE , ψL

)
. Below, we analyse

the differential effect of ψE and ψL on ∆t

(
ψE , ψL

)
, i.e., the effect of picking demonstrations with

higher or lower difficulty scores on the learning progress.

4.1 Analysis for MaxEnt-IRL Learner

Here, we consider the popular MaxEnt-IRL learner model [10, 59, 60] in an MDPM with deter-
ministic transition dynamics, i.e., T : S × S ×A → {0, 1}. The MaxEnt-IRL learner model uses a
parametric reward function Rθ : S ×A → R where θ ∈ Rd is a parameter. The reward function Rθ
also depends on a feature mapping φ : S ×A → Rd′ which encodes each state-action pair (s, a) by
a feature vector φ (s, a) ∈ Rd′ . For our theoretical analysis, we consider Rθ with a linear form, i.e.,
Rθ (s, a) := 〈θ, φ (s, a)〉 and d = d′. In our experiments, we go beyond these simplifications and
consider environments with stochastic transition dynamics and non-linear reward functions.

Under the MaxEnt-IRL learner model, the parametric policy takes the following soft-Bellman form:
πθ(a|s) = exp (Qθ(s, a)− Vθ(s)), where Vθ(s) = log

∑
a expQθ(s, a) and Qθ(s, a) = Rθ(s, a) +

γ
∑
s′ T (s′|s, a) · Vθ(s′). For any given θ, the corresponding policy πθ can be efficiently computed

via the Soft-Value-Iteration procedure with reward Rθ (see [59, Algorithm. 9.1]). For the above
setting and a given parameter θ, the probability distribution P (ξ|θ) over the demonstration ξ takes

the closed-form P (ξ|θ) =
exp(〈θ,µξ〉)

Z(θ) , where µξ :=
∑∞
τ=0 γ

τφ(sξτ , a
ξ
τ) andZ (θ) is a normalization

factor. Then, at time t, the gradient of the MaxEnt-IRL learner is given by gt = µπθt − µξt , where

5

µπ :=
∑
s,a

∑∞
τ=0 γ

τ ·P {Sτ = s | π,M} · π (a | s) ·φ (s, a) is the feature expectation vector of policy
π. We note that our curriculum strategy in Eq. (1) is not using knowledge of gt.

For the MaxEnt-IRL learner, we obtain the following theorem, which shows the differential effect
of the difficulty scores (w.r.t. the teacher and the learner) on the expected rate of convergence of
the teaching objective ∆t

(
ψE , ψL

)
. We note that [32] obtained similar results for linear regression

learner models in the supervised learning setting.

Theorem 1. Assume that ηt is sufficiently small for all t s.t. ηt ‖gt‖2 � 2 |〈θ∗ − θt, gt〉|, where gt is
the gradient of the MaxEnt-IRL learner. Then, for the MaxEnt-IRL learner, the expected convergence
rate of the teaching objective ∆t

(
ψE , ψL

)
is:

• monotonically decreasing with value ψE , i.e., ∂∆t

∂ψE
< 0, and

• monotonically increasing with value ψL, i.e., ∂∆t

∂ψL
> 0.

Theorem 1 suggests that choosing demonstrations with lower difficulty score w.r.t. the teacher’s
policy and higher difficulty score w.r.t. the learner’s policy would lead to faster convergence. Our
curriculum strategy in Eq. (1) induces a preference ranking over demonstrations that aligns with
these insights of Theorem 1. Furthermore, the following theorem states that the particular form of
combining the two difficulty scores used in curriculum strategy, Eq. (1), achieves linear convergence
to the teaching objective. This is similar to the state-of-the-art OMN algorithm based on the IMT
framework for sequential learners [28, 37]. Importantly, unlike the OMN algorithm, our curriculum
strategy does not rely on specifics of the learner model when selecting demonstrations.
Theorem 2. Consider Algorithm 1 with the MaxEnt-IRL learner and our curriculum strategy in
Eq. (1). Then, the teaching objective ‖θ∗ − θt‖ ≤ ε is achieved in t = O(log 1

ε) iterations.

In the above theorem, the constant terms suppressed by the O(·) notation depend on the learning
rate of the learner (ηt), the distance between the learner’s initial parameter/knowledge and the target
teaching parameter (‖θ∗ − θ1‖), and the richness of the set of demonstrations obtained by executing
the policy πE in the MDPM. The richness notion is formally discussed in the Appendix.

4.2 Analysis for CrossEnt-BC Learner

Next, we consider the CrossEnt-BC learner model [15, 36]. In this case, the learner’s parametric
policy takes the following softmax form: πθ(a|s) = exp(Hθ(s,a))∑

a′ exp(Hθ(s,a′)) , where Hθ : S × A → R
is a parametric scoring function that depends on the parameter θ ∈ Rd and a feature mapping
φ : S × A → Rd′ . For our theoretical analysis, we consider a linear scoring function Hθ of the
form Hθ (s, a) := 〈θ, φ (s, a)〉 (with d = d′). Then, at time step t, the gradient gt of the CrossEnt-
BC learner is given by: gt =

∑∞
τ=0

(
E
a∼πθt(·|s

ξt
τ)

[
φ(sξtτ , a)

]
− φ(sξtτ , a

ξt
τ)
)

. In the experiments,
we also consider non-linear scoring functions parameterized by neural networks.

Similar to Theorem 1, we obtain the following theorem for the CrossEnt-BC learner, which also
justifies our curriculum strategy in Eq. (1).

Theorem 3. Assume that ηt is sufficiently small for all t s.t. ηt ‖gt‖2 � 2 |〈θ∗ − θt, gt〉|, where
gt is the gradient of the CrossEnt-BC learner. Then, for the CrossEnt-BC learner, the expected
convergence rate of the teaching objective ∆t

(
ψE , ψL

)
, after first-order approximation, is:

• monotonically decreasing with ψE , i.e., ∂∆t

∂ψE
< 0, and

• monotonically increasing with ψL, i.e., ∂∆t

∂ψL
> 0.

We note that the proof of Theorem 3 relies on the first-order Taylor approximation of the term∑
τ log

∑
a′ exp

(
Hθ

(
sξtτ , a

′)) around θt (detailed in the Appendix). Due to this approximation, it
is more challenging to obtain a convergence result analogous to Theorem 2.

5 Experimental Evaluation: Teacher-Centric Setting

Inspired by the works of [28, 61, 62], we evaluate the performance of our curriculum strategy,
Eq. (1), in a synthetic car driving environment on MaxEnt-IRL and CrossEnt-BC learners. In
particular, we consider the environment of [28] and the teacher-centric setting of Section 2.

6

stone

pedestrian

car

HOV

grass

0

1

2

6

4

5

7

8

3

9

a b

T0 T6T1 T3 T5T2 T4

a aaaa b b b
1

b b a b

police

a b

T7

Figure 1: Car environment with 8 different types of tasks. Arrows
represent the path taken by the teacher’s policy.

φE(s) w
stone -1
grass -0.5
car -5
ped -10

car-front -2
ped-front -5

HOV +1
police 0

Figure 2: Environment features
φE (s) and reward weights w.

Car driving setup. Fig. 1 illustrates a synthetic car driving environment consisting of 8 different
types of tasks, denoted as T0, T1, . . ., T7. Each type is associated with different driving skills.
For instance, T0 corresponds to a basic setup representing a traffic-free highway. T1 represents a
crowded highway. T2 has stones on the right lane, whereas T3 has a mix of both cars and stones.
Similarly, T4 has grass on the right lane, and T5 has a mix of both grass and cars. T6 and T7
introduce more complex features such as pedestrians, police, and HOV (high occupancy vehicles).
The agent starts navigating from an initial state at the bottom of the left lane of each task, and the
goal is to reach the top of a lane while avoiding cars, stones, and other obstacles. The agent’s action
space is given by A = {left, straight, right}. Action left steers the agent to the left
of the current lane. If the agent is already in the leftmost lane when taking action left, then the
lane is randomly chosen with uniform probability. We define similar stochastic dynamics for taking
action right; action straight means no change in the lane. Irrespective of the action taken, the
agent always moves forward.

Environment MDP. Based on the above setup, we define the environment MDP,Mcar, consisting
of 8 types of tasks, namely T0–T7, and 5 tasks of each type. Every location in the environment is
associated with a state. Each task is of length 10 and width 2, leading to a state space of size
5 × 8 × 20. We consider an action-independent reward function REcar that is dependent on an
underlying feature vector φE (see Fig. 2). The feature vector of a state s, denoted by φE(s), is a
binary vector encoding the presence or absence of an object at the state. In this work we have two
types of features: features indicating the type of the current cell as stone, grass, car, ped,
police, and HOV, as well as features providing some look-ahead information such as whether
there is a car or pedestrian in the immediate front cell (denoted as car-front and ped-front).
Now we explain the reward functionREcar . For states in tasks of type T0-T6, the reward is given by〈
w, φE(s)

〉
(see Fig. 2). Essentially there are different penalties (i.e., negative rewards) for colliding

with specific obstacles such as stone and car. For states in tasks of type T7, there is a reward of
value +1 for driving on HOV; however, if police is present while driving on HOV, a reward value
of −5 is obtained. Overall, this results in the reward function REcar being nonlinear.

5.1 Teaching Algorithms

Here, we introduce the teaching algorithms considered in our experiments. The teacher’s near-
optimal policy πE is obtained via policy iteration [63]. The teacher selects demonstrations to pro-
vide to the learner using its teaching algorithm. We compare the performance of our proposed
CUR teacher, which implements our strategy in Eq. (1), with the following baselines:

• CUR-T: A variant of our CUR teacher that samples demonstrations based on the difficulty score
ΨE alone, and sets ΨL

t to constant.
• CUR-L: A similar variant of our CUR teacher that samples demonstrations based on the difficulty

score ΨL
t alone, and sets ΨE to constant.

• AGN: an agnostic teacher that picks demonstrations based on random ordering [28, 32].
• OMN: The omniscient teacher is a state-of-the-art algorithm [28, 37], which is applicable only

to MaxEnt-IRL learners. OMN requires complete knowledge of the parameter θ∗, the learner’s
current parameter θt, and the learner’s gradients ηtgt. Based on this knowledge, the teacher picks
demonstrations to directly steer the learner towards θ∗, i.e., by minimizing ‖θ∗ − (θt − ηtgt)‖.

7

0 50 100 150 200
Time t

−6

−4

−2

0

2
E

xp
ec

te
d

re
w

ar
d

CUR

CUR-T
CUR-L
SCOT

AGN

OMN

BBOX

(a)

0 100 200
Time t

T0
T1
T2
T3
T4
T5
T6
T7

Ta
sk

pi
ck

ed

(b)

0 50 100 150 200
Time t

0

1

2

3

E
xp

ec
te

d
re

w
ar

d

CUR

CUR-T
CUR-L
SCOT

AGN

OMN

BBOX

(c)

0 100 200
Time t

T0
T1
T2
T3
T4
T5
T6
T7

Ta
sk

pi
ck

ed

(d)
Figure 3: Learning curves and curriculum visualization for MaxEnt-IRL learners (with varying initial knowl-
edge) trained on the car driving environment: (a) reward convergence plot and (b) curriculum generated by
the CUR teacher for the learner with initial knowledge of T0; (c) reward convergence plot and (d) curriculum
generated by the CUR teacher for the learner with initial knowledge of T0–T3.

0 100 200 300 400
Time t

−5.0

−2.5

0.0

2.5

E
xp

ec
te

d
re

w
ar

d

CUR

CUR-T
CUR-L
AGN

(a)

0 100 200 300 400
Time t

T0
T1
T2
T3
T4
T5
T6
T7

Ta
sk

pi
ck

ed

(b)

0 100 200 300 400
Time t

0

1

2

3

E
xp

ec
te

d
re

w
ar

d

CUR

CUR-T
CUR-L
AGN

(c)

0 100 200 300 400
Time t

T0
T1
T2
T3
T4
T5
T6
T7

Ta
sk

pi
ck

ed

(d)
Figure 4: Learning curves and curriculum visualization for CrossEnt-BC learners (with varying initial knowl-
edge) trained on the car driving environment: (a) reward convergence plot and (b) curriculum generated by
the CUR teacher for the learner with initial knowledge of T0; (c) reward convergence plot and (d) curriculum
generated by the CUR teacher for the learner with initial knowledge of T0–T3.

• BBOX: The blackbox teacher [28] is designed based on the functional form of gradients
for the linear MaxEnt-IRL learner model.2 Specifically, the teacher picks a demonstration ξ

which maximizes |∑s′,a′{ρπ
L
t (s′, a′) − ρξ(s′, a′)}RE(s′, a′)|, where ρ denotes state visitation

frequency vectors. The BBOX teacher does not require access to θ∗ or the learner’s current
parameter θt; however, it requires access to the true reward function RE .

• SCOT: The SCOT teacher [18] aims to find the smallest set of demonstrations required to teach an
optimal reward function to the MaxEnt-IRLlearner. The teacher uses a set cover algorithm to pre-
compute the entire curriculum as a batch, prior to training. In our implementation, after having
provided the entire batch, the teacher continues providing demonstrations selected at random.

5.2 Learner Models

Next, we describe the MaxEnt-IRL and CrossEnt-BC learner models. For the MaxEnt-IRL learner,
we evaluate all the above-mentioned teaching algorithms that include state-of-the-art baselines; for
the CrossEnt-BC learner, we evaluate CUR, CUR-T, CUR-L, and AGN algorithms.

MaxEnt-IRL learner. For alignment with the prior state-of-the-art work on teaching sequential
MaxEnt-IRL learners [28], we perform teaching over states in our experiments. More concretely, at
time t the teacher picks a state st (where P0(st) > 0) and provides all demonstrations starting from
st to the learner given by Ξst =

{
ξ =

{(
sξτ , a

ξ
τ

)}
τ

s.t. sξ0 = st
}

. The gradient gt of the MaxEnt-

IRL learner is then given by gt = µπθt ,st − µΞst , where (i) µΞst := 1

|Ξst |
∑
ξ∈Ξst

µξ, and (ii) µπ,st

is the feature expectation vector of policy π with starting state set to st (see Section 4.1). Based
on [28], we consider the learner’s feature mapping as φ(s, a) = φE(s) and the learner uses a non-
linear parametric reward functionRLθ (s, a) = 〈θ1:d′ , φ (s, a)〉+〈θd′+1:2d′ , φ (s, a)〉2 where d′ is the

2The BBOX teacher’s objective is derived under the assumptions that the reward function can be linearly
parameterized as

〈
w∗, φE(s)

〉
and gradients gt are based on the linear MaxEnt-IRL learner model. Under

these assumptions, the teacher’s objective can be equivalently written as | 〈w∗, gt〉 |.

8

dimension of φ(s, a). As explained in [28], a linear reward representation cannot capture the optimal
behaviour forMcar. We consider learners with varying levels of initial knowledge, i.e., the learner
is trained on a subset of tasks before the teaching process starts. In this setting, for our curriculum
strategy in Eq. (1) the difficulty score of a set of demonstrations associated with a starting state Ξs
is computed as the mean difficulty score of individual demonstrations in the set.
CrossEnt-BC learner. We consider the CrossEnt-BC learner model of Section 4.2 as our sec-
ond learner model. The learner’s feature mapping is given by φ (s, a) = Es′∼T (·|s,a)[φ

E(s′)]. A
quadratic parametric form is selected for the scoring function, i.e., Hθ (s, a) = 〈θ1:d′ , φ (s, a)〉 +

〈θd′+1:2d′ , φ (s, a)〉2, where d′ is the dimension of φ(s, a). We consider learners with varying initial
knowledge and perform teaching over states similar to the MaxEnt-IRL learner.

5.3 Experimental results

Figs. 3a, 3c and 4a, 4c show the convergence of the total expected reward for the MaxEnt-IRL and
CrossEnt-BC learners respectively, averaged over 10 runs. The CUR teacher outperforms OMN de-
spite not requiring information about the learner’s dynamics. For non-linear parametric reward
functions, the MaxEnt-IRL learner no longer solves a convex optimization problem. As a result,
forcing the learner to converge to a fixed parameter doesn’t necessarily perform well, as seen by
the poor performance of the OMN teacher in Fig. 3c. The CUR teacher is competitive with the
BBOX teacher. Unlike our CUR teacher, the BBOX teacher does require exact access to the true
reward function, RE . The CUR teacher consistently outperforms the AGN and SCOT teachers, as
well as both the CUR-T and CUR-L variants.

Figs. 3b, 3d and 4b, 4d visualize the curriculum generated by the CUR teacher for the MaxEnt-
IRL and CrossEnt-BC learners respectively. Here, the curriculum refers to the type of task, T0–T7,
associated with the demonstrations provided by the teacher to the learner at time step t. For both
types of learners we see that at the beginning of training, the teacher focuses on tasks which teach
skills the learner is yet to master. For example, in Fig. 4d, the teacher picks tasks T4, T6, and T7,
which teaches the learner to avoid grass, pedestrians, and to navigate through police and HOV. We
also notice that the CUR teacher can identify degradation in performance on previously mastered
tasks, e.g., task T1 in Fig. 3d, and corrects for this by picking them again later during training.

0 50 100 150 200
Time t

0

1

2

3

E
xp

ec
te

d
re

w
ar

d

CUR(B = 1,k→ ∞)

CUR(B = 40,k→ ∞)

CUR(B = 40,k = 10)

Figure 5: Learning curves for
the MaxEnt-IRL learner under
limited observability.

Additional results under limited observability. In the above ex-
periments, we consider the learner’s policy to be fully observable by
the teacher at every time step. Here, we study the performance of
our CUR teacher under the limited observability setting, similar to
[28], where the learner’s policy needs to be estimated by probing the
learner. The probing process is formally characterized by two param-
eters, (B, k), where the learner’s policy is probed after every B time
steps and each probing step corresponds to querying the learner’s pol-
icy πLt a total of k times from each state s ∈ S in the MDP. The
learner’s policy, πLt (a|s) ∀a, s, is then approximated based on the
fraction of the k queries in which the learner performed action a from
state s. In between every B time steps that the learner is probed, the
CUR teacher does not update its estimate of the learner’s policy. We
note that the (B = 1, k →∞) setting corresponds to full observability of the learner. Fig. 5 depicts
the performance of the CUR teacher for different values of (B, k). Even under limited observability,
the CUR teacher’s performance is competitive with the full observability setting. The performance
of (B = 40, k → ∞) is even slightly better at certain time steps during later stages of training
compared to (B = 1, k →∞), which is possibly due to the strategy of greedily picking demonstra-
tions not being necessarily optimal. Also, for the limited observability setting it can be interesting
to explore approaches that alleviate the need to query the full policy of the learner [64, 65].

6 Experimental Evaluation: Learner-Centric Setting

In this section, we evaluate our curriculum strategy in a learner-centric setting, i.e., no teacher agent
is present, and the teacher’s difficulty ΨE(ξ) is expressed by a task-specific difficulty score (see Sec-
tion 3). We evaluate our approach for training a multi-task neural policy to solve discrete optimiza-
tion problems. Here, we provide an overview of the results with additional details in the Appendix.

9

(a) (b)

Figure 6: Illustration of a shortest path navigation
task (left) and convergence curves (right).

(a) (b)

Figure 7: Illustration of a travelling salesman naviga-
tion task (left) and convergence curves (right).

Experiment setup. We begin by describing the synthetic navigation-based environments consid-
ered in our experiments. Our first navigation environment comprises of tasks based on the shortest
path problem [66]. We represent each task with a grid-world (see Fig. 6a) containing goal cells
(depicted by stars), and cells with muds and bombs (shown in brown and red respectively). The
agent aims to navigate to the closest goal cell while avoiding muds and bombs. Our second navi-
gation environment comprises of tasks inspired by the travelling salesman problem (TSP) [67, 68]
(see Fig. 7a). Again we represent each task with a grid-world, where the agent’s goal is to find the
shortest tour which visits all goals and returns to its initial location (see Fig. 7a). Orange arrows in
Figs. 6a and 7a depict the optimal path for the agent. In our experimental setup, we begin by creating
a pool of tasks and split them into training and test sets. The curriculum algorithms order the training
tasks during the training phase based on their strategy to speed up the learner’s progress. The aim of
the learner is to learn a multi-task neural policy that can generalize to new unseen tasks in the test set.

Curriculum algorithms. We compare the performance of four different curriculum algorithms:
(i) the CUR algorithm picks tasks from the training set using Eq. (1) where the numerator is ΨL

t and
the denominator ΨE is defined by a task-specific difficulty score (detailed in the Appendix); (ii) the
CUR-L algorithm picks tasks from the training set using Eq. (1) where the numerator is ΨL

t and the
denominator is set to 1; (iii) the CUR-T algorithm picks tasks from the training set using Eq. (1)
where the numerator is set to 1 and the denominator is set to ΨE ; (iv) the AGN algorithm picks
tasks with a uniform distribution over the training set.

Learner model. We consider a neural CrossEnt-BC learner (see Section 4.2). The learner’s scor-
ing function Hθ is parameterized by a 6-layer Convolutional Neural Network (CNN). The CNN
takes as input a feature mapping of the agent’s current position in a task, and outputs a score for each
action. The learner minimizes the cross-entropy loss between its predictions and the demonstrations.

Results. Figs. 6b and 7b, show the reward convergence curves on the test set for the different
curriculum algorithms averaged over 5 runs. The CUR algorithm leads to faster reward convergence
compared to the AGN algorithm, which is the common approach for training a neural policy. CUR-
L is competitive with CUR in this setting which highlights the importance of the learner’s difficulty.

7 Discussion and Conclusions

We presented a unified curriculum strategy, with theoretical guarantees, for the sequential MaxEnt-
IRL and CrossEnt-BC learner models, based on the concept of difficulty scores. Our proposed
strategy is independent of the learner’s internal dynamics and is applicable in both teacher-centric
and learner-centric settings. Experiments on a synthetic car driving environment and on navigation-
based environments demonstrated the effectiveness of our curriculum strategy.

Our work provides theoretical underpinnings of curriculum design for teaching via demonstrations,
which can be beneficial in educational applications such as tutoring systems and also for self-
curriculum design for imitation learners. As such we do not see any negative societal impact of our
work. Some of the interesting directions for future work include: obtaining convergence bounds
for CrossEnt-BC and other learner models, designing curriculum algorithms for reinforcement
learning agents based on the concept of difficulty scores, and designing approaches to efficiently
approximate the learner’s policy using less queries.

10

References
[1] S. Schaal. Learning from demonstration. In NeurIPS, pages 1040–1046, 1997.

[2] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

[3] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research, 32(11):1238–1274, 2013.

[4] Maya Cakmak and Andrea L Thomaz. Eliciting good teaching from humans for machine
learners. Artificial Intelligence, 217:198–215, 2014.

[5] Daphna Buchsbaum, Alison Gopnik, Thomas L Griffiths, and Patrick Shafto. Children’s imi-
tation of causal action sequences is influenced by statistical and pedagogical evidence. Cogni-
tion, 120(3):331–340, 2011.

[6] Patrick Shafto, Noah D Goodman, and Thomas L Griffiths. A rational account of pedagogical
reasoning: Teaching by, and learning from, examples. Cognitive psychology, 71:55–89, 2014.

[7] D. A. Pomerleau. Efficient training of artificial neural networks for autonomous navigation.
Neural Computation, 3(1):88–97, 1991.

[8] Stuart Russell. Learning agents for uncertain environments. In COLT, pages 101–103, 1998.

[9] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.
In ICML, page 1, 2004.

[10] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. In AAAI, 2008.

[11] Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse reinforcement learn-
ing. In AISTATS, pages 182–189, 2011.

[12] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy deep inverse rein-
forcement learning. arXiv preprint arXiv:1507.04888, 2015.

[13] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal
control via policy optimization. In ICML, pages 49–58, 2016.

[14] Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active preference-based
learning of reward functions. RSS, 2017.

[15] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, and
Jan Peters. An algorithmic perspective on imitation learning. Foundations and Trends R© in
Robotics, 2018.

[16] Thomas J Walsh and Sergiu Goschin. Dynamic teaching in sequential decision making envi-
ronments. UAI, 2012.

[17] Maya Cakmak and Manuel Lopes. Algorithmic and human teaching of sequential decision
tasks. In AAAI, volume 26, 2012.

[18] Daniel S Brown and Scott Niekum. Machine teaching for inverse reinforcement learning:
Algorithms and applications. In AAAI, 2019.

[19] Manuel Lopes, Francisco Melo, and Luis Montesano. Active learning for reward estimation
in inverse reinforcement learning. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 31–46. Springer, 2009.

[20] Kareem Amin, Nan Jiang, and Satinder Singh. Repeated inverse reinforcement learning. In
NeurIPS, pages 1815–1824, 2017.

[21] Maxwell Svetlik, Matteo Leonetti, Jivko Sinapov, Rishi Shah, Nick Walker, and Peter Stone.
Automatic curriculum graph generation for reinforcement learning agents. In AAAI, volume 31,
2017.

[22] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse
curriculum generation for reinforcement learning. In CORL, pages 482–495, 2017.

[23] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation
for reinforcement learning agents. In ICML, 2018.

11

[24] Wojciech Czarnecki, Siddhant Jayakumar, Max Jaderberg, Leonard Hasenclever, Yee Whye
Teh, Nicolas Heess, Simon Osindero, and Razvan Pascanu. Mix & match agent curricula for
reinforcement learning. In ICML, 2018.

[25] Sanmit Narvekar and Peter Stone. Learning curriculum policies for reinforcement learning. In
AAMAS, pages 25–33, 2019.

[26] Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and
Robert Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. In ICLR,
2018.

[27] Martin A Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom
Van de Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing
solving sparse reward tasks from scratch. In ICML, 2018.

[28] Parameswaran Kamalaruban, Rati Devidze, Volkan Cevher, and Adish Singla. Interactive
teaching algorithms for inverse reinforcement learning. In IJCAI, 2019.

[29] Jeffrey L Elman. Learning and development in neural networks: The importance of starting
small. Cognition, 48(1):71–99, 1993.

[30] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In ICML, pages 41–48, 2009.

[31] Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615,
2014.

[32] Daphna Weinshall, Gad Cohen, and Dan Amir. Curriculum learning by transfer learning:
Theory and experiments with deep networks. In ICML, 2018.

[33] Daphna Weinshall and Dan Amir. Theory of curriculum learning, with convex loss functions.
arXiv preprint arXiv:1812.03472, 2018.

[34] Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida, and Koh Hosoda. Purposive behavior
acquisition for a real robot by vision-based reinforcement learning. Machine learning, 23(2-
3):279–303, 1996.

[35] Yuxin Wu and Yuandong Tian. Training agent for first-person shooter game with actor-critic
curriculum learning. In ICLR, 2016.

[36] Michael Bain. A framework for behavioural cloning. In Machine Intelligence 15, pages 103–
129, 1995.

[37] Weiyang Liu, Bo Dai, Ahmad Humayun, Charlene Tay, Chen Yu, Linda B Smith, James M
Rehg, and Le Song. Iterative machine teaching. In ICML, 2017.

[38] Alex Graves, Marc G Bellemare, Jacob Menick, Rémi Munos, and Koray Kavukcuoglu. Au-
tomated curriculum learning for neural networks. In ICML, pages 1311–1320, 2017.

[39] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning
data-driven curriculum for very deep neural networks on corrupted labels. In ICML, pages
2304–2313, 2018.

[40] Tianyi Zhou and Jeff Bilmes. Minimax curriculum learning: Machine teaching with desirable
difficulties and scheduled diversity. In ICLR, 2018.

[41] Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. Curriculum learning by optimizing learning
dynamics. In AISTATS, pages 433–441, 2021.

[42] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter
Stone. Curriculum learning for reinforcement learning domains: A framework and survey.
Journal of Machine Learning Research, 21:1–50, 2020.

[43] Mark K Ho, Michael Littman, James MacGlashan, Fiery Cushman, and Joseph L Austerweil.
Showing versus doing: Teaching by demonstration. In NeurIPS, 2016.

[44] Mark K Ho, Michael Littman, and Joseph L Austerweil. Teaching by intervention: Working
backwards, undoing mistakes, or correcting mistakes? In Conference of the Cognitive Science
Society, 2017.

[45] Mark K Ho, Michael Littman, Fiery Cushman, and Joseph L Austerweil. Effectively learning
from pedagogical demonstrations. In Conference of the Cognitive Science Society, 2018.

12

[46] Mark K Ho, Fiery Cushman, Michael Littman, and Joseph L Austerweil. People teach with
rewards and punishments as communication not reinforcements. In Journal of Experimental
Psychology: General, page 520–549, 2019.

[47] Mark K Ho, Fiery Cushman, Michael Littman, and Joseph L Austerweil. Communication in
action: Planning and interpreting communicative demonstrations. In Journal of Experimental
Psychology: General, 2021.

[48] Sally A Goldman and Michael J Kearns. On the complexity of teaching. Journal of Computer
and System Sciences, 50(1):20–31, 1995.

[49] Xiaojin Zhu, Adish Singla, Sandra Zilles, and Anna N. Rafferty. An overview of machine
teaching. CoRR, abs/1801.05927, 2018.

[50] Scott Cheng-Hsin Yang, Yue Yu, arash Givchi, Pei Wang, Wai Keen Vong, and Patrick Shafto.
Optimal cooperative inference. In AISTATS, pages 376–385, 2018.

[51] Francisco S Melo, Carla Guerra, and Manuel Lopes. Interactive optimal teaching with un-
known learners. In IJCAI, pages 2567–2573, 2018.

[52] Weiyang Liu, Bo Dai, Xingguo Li, Zhen Liu, James Rehg, and Le Song. Towards black-box
iterative machine teaching. In ICML, 2018.

[53] Yuxin Chen, Adish Singla, Oisin Mac Aodha, Pietro Perona, and Yisong Yue. Understanding
the role of adaptivity in machine teaching: The case of version space learners. In NeurIPS,
2018.

[54] Teresa Yeo, Parameswaran Kamalaruban, Adish Singla, Arpit Merchant, Thibault Asselborn,
Louis Faucon, Pierre Dillenbourg, and Volkan Cevher. Iterative classroom teaching. In AAAI,
2019.

[55] Anette Hunziker, Yuxin Chen, Oisin Mac Aodha, Manuel Gomez Rodriguez, Andreas Krause,
Pietro Perona, Yisong Yue, and Adish Singla. Teaching multiple concepts to a forgetful learner.
In NeurIPS, 2019.

[56] Farnam Mansouri, Yuxin Chen, Ara Vartanian, Jerry Zhu, and Adish Singla. Preference-based
batch and sequential teaching: Towards a unified view of models. In NeurIPS, 2019.

[57] Luis Haug, Sebastian Tschiatschek, and Adish Singla. Teaching inverse reinforcement learners
via features and demonstrations. In NeurIPS, 2018.

[58] Sebastian Tschiatschek, Ahana Ghosh, Luis Haug, Rati Devidze, and Adish Singla. Learner-
aware teaching: Inverse reinforcement learning with preferences and constraints. In NeurIPS,
2019.

[59] Brian D Ziebart. Modeling Purposeful Adaptive Behavior with the Principle of Maximum
Causal Entropy. PhD thesis, University of Washington, 2010.

[60] Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. The principle of maximum causal
entropy for estimating interacting processes. IEEE Transactions on Information Theory,
59(4):1966–1980, 2013.

[61] Andrew Y Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In ICML,
2000.

[62] Sergey Levine, Zoran Popovic, and Vladlen Koltun. Feature construction for inverse reinforce-
ment learning. NeurIPS, 23:1342–1350, 2010.

[63] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.
[64] Alexis Jacq, Matthieu Geist, Ana Paiva, and Olivier Pietquin. Learning from a learner. In

ICML, 2019.
[65] Daniel S Brown, Jordan Schneider, Anca Dragan, and Scott Niekum. Value alignment verifi-

cation. In ICML, 2021.
[66] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1:269–271,

December 1959.
[67] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems!

In ICLR, 2019.
[68] Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. On learning paradigms for the

travelling salesman problem. In NeurIPS graph representation learning workshop, 2019.
[69] Xiaoxia Wu, Ethan Dyer, and Behnam Neyshabur. When do curricula work? In ICLR, 2020.

13

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] In Sections 3 and 4, we present our curriculum strategy
and provide theoretical analysis as described in the introduction. The experimental re-
sults mentioned in the abstract and introduction are detailed in Sections 5 and 6.

(b) Did you describe the limitations of your work? [Yes] We discuss the limitations of
our work in Sections 5 and 7. We point out that convergence bounds for CrossEnt-
BC learners have not been obtained yet and that it would be beneficial to explore
approaches to estimate the learner’s policy πLt using fewer queries.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] As stated
in Section 7, this work presents the theoretical underpinnings of curriculum design
for teaching via demonstrations. This can be beneficial for education applications and
for self-curriculum design for imitation learners. As such in the present form, we do
not see any direct negative societal impacts of our work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We confirm that our paper conforms with the ethics review guidelines.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] In Section 4.1,

we state our assumptions of a deterministic MDP and linear reward structure. Simi-
larly, we state our assumption of a linear scoring function for the CrossEnt-BC learner
in Section 4.2. The simplifications considered are reiterated in the proofs.

(b) Did you include complete proofs of all theoretical results? [Yes] Complete proofs of
all theoretical results are included in the Appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] The code and
instructions are included as a URL.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Training details are presented in the Appendix and are also
present in the code.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Error bars are included in all the result graphs, as can be
seen in figures.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] The details are provided in the
Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

A List of Appendices

In this section, we provide a brief description of the content in the appendices of the paper.

• Appendix B provides proofs for MaxEnt-IRL learner.
• Appendix C provides proofs for CrossEnt-BC learner.
• Appendix D provides a detailed description of the synthetic navigation-based experiments.

B Proofs for MaxEnt-IRL Learner

B.1 Auxiliary Lemma

Lemma 1. Consider the MaxEnt-IRL learner defined in Section 4.1. Then, at time step t, we have

−〈θ∗ − θt, gt〉 = log
ΨL
t (ξt)

ΨE (ξt)
+Kt,

where Kt = log Z(θ∗)
Z(θt)

− 〈θ∗ − θt, µπθt 〉 is a constant independent of ξt.

Proof. Consider the following:

Ψθ (ξt) =
1∏

τ πθ

(
aξtτ |sξtτ

)
=

P0(sξt0)

P0(sξt0) ·∏τ πθ

(
aξtτ |sξtτ

)
(i)
=

P0(sξt0)

P0(sξt0) ·∏τ πθ

(
aξtτ |sξtτ

)
· T
(
sξtτ+1|sξtτ , aξtτ

)
=

P0(sξt0)

P (ξt|θ)

=
P0(sξt0) · Z (θ)

exp (〈θ, µξt〉)
where (i) is due to the deterministic transition dynamics of the MDP. Thus, we have:〈

θ, µξt
〉

= log
P0(sξt0) · Z (θ)

Ψθ (ξt)
.

Then, we get:〈
θ∗ − θt, µξt − µπθt

〉
= log

P0(sξt0) · Z (θ∗)

Ψθ∗ (ξt)
− log

P0(sξt0) · Z (θt)

Ψθt (ξt)
− 〈θ∗ − θt, µπθt 〉

= log
Ψθt (ξt)

Ψθ∗ (ξt)
· Z (θ∗)

Z (θt)
− 〈θ∗ − θt, µπθt 〉

= log
ΨL
t (ξt)

ΨE (ξt)
+Kt,

where Kt = log Z(θ∗)
Z(θt)

− 〈θ∗ − θt, µπθt 〉 is a constant independent of ξt.

B.2 Proof of Theorem 1

Technical conditions. Let Θ = Rd, and for each time step t, the learning rate ηt satisfies the
following condition:

η2
t ‖gt‖2 � 2ηt |〈θ∗ − θt, gt〉| , (3)

15

where gt is given in Section 4.1. We decompose the gradient as gt = κ (θ∗ − θt) + δ, where
δ ⊥ (θ∗ − θt), and κ ∈ R. Then, the above condition can be reduced to the following:

η2
t

(
|κ|2 ‖θ∗ − θt‖2 + ‖δ‖2

)
� 2ηt |κ| ‖θ∗ − θt‖2

=⇒ ηt �
2 |κ| ‖θ∗ − θt‖2

|κ|2 ‖θ∗ − θt‖2 + ‖δ‖2
.

When the gradient gt primarily aligns with ± (θ∗ − θt), and has a small magnitude to control vari-
ance, the above condition further simplifies as follows:

ηt �
2

|κ| .

Smaller values of |κ| would impose less stringent condition on ηt. From Lemma 1, one can easily
observe that our curriculum strategy indeed aims to align the gradient gt with − (θ∗ − θt):

arg max
ξ

ΨL
t (ξ)

ΨE (ξ)
= arg max

ξ
log

ΨL
t (ξ)

ΨE (ξ)
= arg max

ξ
{− 〈θ∗ − θt, gt (ξ)〉} .

We remark that these technical conditions are only required for our theoretical analysis, and not for
our experiments.

Proof. Consider the following:

∆t

(
ψE , ψL

)
= Eξt|ψE ,ψL

[
‖θ∗ − θt‖2 − ‖θ∗ − θt+1 (ξt)‖2

]
= Eξt|ψE ,ψL

[
‖θ∗ − θt‖2 − ‖θ∗ − θt + ηtgt‖2

]
= Eξt|ψE ,ψL

[
−η2

t ‖gt‖2 − 2ηt 〈θ∗ − θt, gt〉
]

(i)≈ 2ηtEξt|ψE ,ψL [−〈θ∗ − θt, gt〉]
(ii)
= 2ηtEξt|ψE ,ψL

[
log

ΨL
t (ξt)

ΨE (ξt)
+Kt

]
= 2ηt log

ψL

ψE
+ 2ηtKt, (4)

where the approximation (i) is due to Eq. (3), and (ii) is due to Lemma 1. Then, from (4), we have:

∂∆t

∂ψE
≈ − 2ηt

ψE
< 0, and

∂∆t

∂ψL
≈ 2ηt

ψL
> 0.

B.3 Proof of Theorem 2

Proof. From Lemma 1, we have that

arg max
ξ

〈
θ∗ − θt, µξ

〉
= arg max

ξ
log

ΨL
t (ξ)

ΨE (ξ)
= arg max

ξ

ΨL
t (ξ)

ΨE (ξ)
.

Thus, our curriculum teaching algorithm picks the demonstration to provide by optimizing the fol-
lowing objective:

ξt ← arg max
ξ

〈
θ∗ − θt, µξ

〉
.

For a bounded feature mapping φ, we have that
∥∥µξ∥∥ ≤ L, ∀ξ. Any optimal solution ξt to the above

problem satisfies: µξt = L
‖θ∗−θt‖ (θ∗ − θt). Since in our setting the teacher’s demonstrations are

16

restricted to trajectories obtained by executing policy πE in the MDPM, we assume that within the
set of available teacher’s demonstrations, the optimal feature vector has the following form [28, 37]:

µξt = βt (θ∗ − θt) + δt,

where βt ∈
[
0, L
‖θ∗−θt‖

]
bounds the magnitude of the gradient in the desired direction of (θ∗ − θt),

and δt represents the deviation from the desired direction, s.t. ∆ = maxt ‖δt‖. We further define
the following terms: zmax = maxt ‖θ∗ − θt‖, ηmax = maxt ηt, and β = mint ηtβt.

Consider the following:

‖θ∗ − θt+1‖2 =
∥∥∥θ∗ − (θt + ηtµ

ξt − ηtµπ
L
t

)∥∥∥2

= ‖θ∗ − θt‖2 + η2
t

∥∥∥µξt − µπLt ∥∥∥2

− 2ηt

〈
θ∗ − θt, µξt − µπ

L
t

〉
= ‖θ∗ − θt‖2 + η2

t

∥∥∥βt (θ∗ − θt) + δt − µπ
L
t

∥∥∥2

− 2ηt

〈
θ∗ − θt, βt (θ∗ − θt) + δt − µπ

L
t

〉
= ‖θ∗ − θt‖2 + η2

t β
2
t ‖θ∗ − θt‖2 + η2

t ‖δt‖2 + η2
t

∥∥∥µπLt ∥∥∥2

+ 2η2
t βt 〈θ∗ − θt, δt〉 − 2η2

t βt

〈
θ∗ − θt, µπ

L
t

〉
− 2η2

t

〈
δt, µ

πLt

〉
− 2ηtβt ‖θ∗ − θt‖2 − 2ηt 〈θ∗ − θt, δt〉+ 2ηt

〈
θ∗ − θt, µπ

L
t

〉
(i)

≤
(
1 + η2

t β
2
t − 2ηtβt

)
‖θ∗ − θt‖2 + η2

t

[
∆2 + L2

]
+ 2ηt (1− ηtβt) ∆ ‖θ∗ − θt‖+ 2ηt (1− ηtβt)L ‖θ∗ − θt‖+ 2η2

t∆L

(ii)

≤ (1− ηtβt)2 ‖θ∗ − θt‖2 + η2
t (∆ + L)

2
+ 2ηt (1− ηtβt) (∆ + L) zmax

(iii)

≤ (1− β)
2 ‖θ∗ − θt‖2 + η2

max (∆ + L)
2

+ 2ηmax (1− β) (∆ + L) zmax

(iv)

≤ (1− β)
2 ‖θ∗ − θt‖2 + ηmax {1 + 2 (1− β) zmax} (∆ + L) ,

where (i) uses the inequalities
∥∥µξt∥∥ ≤ L, and ‖δt‖ ≤ ∆, along with the Cauchy-Schwarz inequal-

ity; (ii) utilizes the fact that ‖θ∗ − θt‖ ≤ zmax; (iii) is obtained by substituting β = mint ηtβt, and
ηmax = maxt ηt; (iv) is obtained when ηmax (∆ + L) ≤ 1. Note that the inequality (i) is valid when
1− ηtβt > 0, ∀t.
With the inequality

√
a+ b ≤ √a+

√
b for positive a, b, and utilizing recurrence, we obtain:

‖θ∗ − θt+1‖ ≤ (1− β) ‖θ∗ − θt‖+
√
ηmax {1 + 2 (1− β) zmax} (∆ + L)

≤ (1− β)
t ‖θ∗ − θ1‖+

√
ηmax {1 + 2 (1− β) zmax} (∆ + L)

∞∑
s=0

(1− β)
s

= (1− β)
t ‖θ∗ − θ1‖+

√
ηmax {1 + 2 (1− β) zmax} (∆ + L) · 1

β

≤ ε

2
+
ε

2
= ε,

for t =
(

log 1
1−β

)−1

log 2‖θ∗−θ1‖
ε = O

(
log 1

ε

)
, and ηmax (∆ + L) ≤ ε2β2

4{1+2(1−β)zmax} .

C Proofs for CrossEnt-BC Learner

C.1 Auxiliary Lemma

Lemma 2. Consider the CrossEnt-BC learner defined in Section 4.2. Then, at time step t, we have

−〈θ∗ − θt, gt〉 ≈ log
ΨL
t (ξt)

ΨE (ξt)
.

17

Proof. Consider the following:

log Ψθ (ξt) = − log
∏
τ

πθ
(
aξtτ |sξtτ

)
= −

∑
τ

log πθ
(
aξtτ |sξtτ

)
=
∑
τ

log
∑
a′

exp
(
Hθ

(
sξtτ , a

′))−∑
τ

Hθ

(
sξtτ , a

ξt
τ

)
(i)≈

∑
τ

log
∑
a′

exp
(
Hθt

(
sξtτ , a

′))−〈θ − θt,∑
τ

E
a′∼πθt(·|s

ξt
τ)

[
φ(sξtτ , a

′)
]〉
−
〈
θ,
∑
τ

φ(sξtτ , a
ξt
τ)

〉
where (i) is due to the first-order Taylor approximation of

∑
τ log

∑
a′ exp

(
Hθ

(
sξtτ , a

′)) around
θt. Then, we have:

log
Ψθt (ξt)

Ψθ∗ (ξt)
= log Ψθt (ξt)− log Ψθ∗ (ξt)

≈
〈
θ∗ − θt,

∑
τ

φ(sξtτ , a
ξt
τ)−

∑
τ

E
a′∼πθt(·|s

ξt
τ)

[
φ(sξtτ , a

′)
]〉

= − 〈θ∗ − θt, gt〉

C.2 Proof of Theorem 3

Technical conditions. Let Θ = Rd, and for each time step t, the learning rate ηt satisfies the
following condition:

η2
t ‖gt‖2 � 2ηt |〈θ∗ − θt, gt〉| , (5)

where gt is the gradient of the CrossEnt-BC learner as given in section 4.2. We can further simplify
the above condition, similar to Section B.2.

Proof. Consider the following:

∆t

(
ψE , ψL

)
= Eξt|ψE ,ψL

[
‖θ∗ − θt‖2 − ‖θ∗ − θt+1 (ξt)‖2

]
= Eξt|ψE ,ψL

[
‖θ∗ − θt‖2 − ‖θ∗ − θt + ηtgt‖2

]
= Eξt|ψE ,ψL

[
−η2

t ‖gt‖2 − 2ηt 〈θ∗ − θt, gt〉
]

(i)≈ 2ηtEξt|ψE ,ψL [−〈θ∗ − θt, gt〉]
(ii)≈ 2ηtEξt|ψE ,ψL

[
log

ΨL
t (ξt)

ΨE (ξt)

]
= 2ηt log

ψL

ψE
, (6)

where the approximation (i) is due to Eq. (5), and (ii) is due to Lemma 2. Then, from (6), we have:
∂∆t

∂ψE
≈ − 2ηt

ψE
< 0, and

∂∆t

∂ψL
≈ 2ηt

ψL
> 0.

D Additional Details for Learner-Centric Experiments

In this appendix, we present additional experimental details for the synthetic navigation-based
environments considered in Section 6.

18

D.1 Environment MDPs

We first formally define the environment MDPs for the shortest path and TSP inspired environments
described in Section 6.

Shortest path environment. A task in the shortest path environment is represented by a grid-
world containing the agent, goals, muds, and bombs. Each possible configuration of a grid-world,
including the agent’s location and direction, is associated with a state in the shortest path environ-
ment MDP,Mpath. The size of the state space sees a combinatorial growth with the size of the grid,
corresponding to different ways of placing bombs/muds/goals. Hence, the state-space is intractably
large to enumerate. The agent’s action space consists of 3 actions, A = {move,left,right}.
The actions left or right changes the agent’s direction accordingly. The agent moves one step
forward in its current direction with the action move. The environment reward function REpath has
a −1 reward value for each action performed by the agent. Reaching a goal cell has a +10 reward
value. There is a reward value of −1 for encountering a cell with mud and a reward value of −5 for
encountering a bomb. Reaching a goal or a bomb ends the agent’s episode.

Each state s is characterized by a feature mapping φEpath(s) which encodes the agent’s location and
direction, as well as the position of bombs, muds, and goals in the grid-world. In our environment,
we consider grid-worlds of size 6× 6, and each cell in the grid has a binary feature vector of length
7 as shown in Table 1. The first 4 features are a one-hot encoding representation of the agent’s
location and direction in the grid-world. The last 3 binary features represent the presence or absence
of either a mud, bomb, or goal respectively at a cell. Consequently, the feature mapping φEpath(s)
is of dimension 6× 6× 7.

TSP environment. A task in the TSP environment is represented by a grid-world contain-
ing the agent and goal cells. Each possible configuration of a grid-world is associated with a
state in the TSP environment MDP, Mtour, similar to Mpath. The agent’s action space A =
{move,left,right} is defined the same as for Mpath. In this environment, the reward func-
tion REtour has a +10 reward value for completion of a successful tour, i.e., arriving back at the
initial location after having visited all the goals in the grid-world. Similar to the shortest path envi-
ronment, there is a reward value of −1 for each action performed by the agent. The agent’s episode
ends on the completion of a successful tour or after a certain time horizon.

Each state s in the TSP environment is characterized by a feature mapping φEtour(s) similar to
the shortest path environment. We again consider grid-worlds of size 6 × 6, and each cell in the
grid has a binary feature vector of length 6 as shown in Table 2. The first 4 features are a one-
hot encoding representation of the agent’s location and direction in the grid-world. The next feature
captures the starting cell of the agent, which signals the final point of the tour. The last binary feature
represents the presence or absence of a goal at a given cell. Hence, the feature mapping φEtour(s) is
of dimension 6× 6× 6.

D.2 Dataset Generation

Here, we outline the dataset generation process. We create separate training, validation, and test sets
for both of our navigation environments. Further, optimal paths were computed for all the tasks in
the training set for both environments. These are provided as demonstrations to the learner during
the training phase. In the case of multiple optimal paths for a task, each optimal path was included
as a unique demonstration.

Agent facing North
Agent facing South
Agent facing West
Agent facing East

Mud
Bomb
Goal

Table 1: Shortest path task features

Agent facing North
Agent facing South
Agent facing West
Agent facing East

Start
Goal

Table 2: TSP task features

19

Algorithm 2 Scheduling Mechanism

1: Initialization: parameters a, b and total training epochs N .
2: for Epoch e = 1, 2, . . . , N do
3: Curriculum strategy computes a preference over all demonstrations Ξ.

4: Scheduling size is computed as X =

{
b|Ξ|+ e

aN (1− b)|Ξ| if e < aN

|Ξ| otherwise
5: The X most preferred demonstrations are provided to the learner in random batches.

Shortest path environment. For the shortest path navigation tasks, we sample grid-worlds con-
taining several muds and bombs, both in the range {0, . . . , 12}. The agent’s initial position and
location of goals, muds, and bombs are all sampled at random without overlap. The training, vali-
dation, and test sets contain 100, 10, 30 grid-worlds respectively for each combination of muds and
bombs, leading to datasets of sizes 16900, 1690, and 5070 respectively. Additionally, each dataset
contains an equal percentage of grid-worlds with a single goal cell and with two goal cells.

TSP environment. For the TSP navigation tasks, we sample grid-worlds containing goal cells in
the range {2, . . . , 4}. The agent’s initial position and location of goals are sampled at random with-
out overlap. The training, validation, and test sets contain 2000, 100, 500 grid-worlds respectively
for each unique number of goal cells in a task, leading to datasets of size 6000, 1500, and 300
respectively.

D.3 Teacher’s Difficulty Score

As explained in Sections 3 and 6, for the learner-centric setting we define the teacher’s difficulty
ΨE(ξ) using a task-specific difficulty score.

Shortest path environment. For the shortest path tasks we define the following difficulty score:

ΨE(ξ) =
#goals×#optimal_paths

optimal_reward
. (7)

Intuitively, the difficulty score in Eq. (7) is proportional to the difficulty of a task as the greater
the number of goals present and optimal paths, the more challenging the task is for the learner.
Additionally, a higher optimal reward implies a shorter path to a goal that is less challenging for the
learner.

TSP environment. For the TSP tasks we define the teacher’s difficulty score as:

ΨE(ξ) =
#goals

optimal_reward− greedy_gap
, (8)

where greedy gap is defined as the difference in reward between the optimal tour and the greedy tour
for the given task. In the greedy tour, the agent repeatedly navigates to the closest goal which has
not been visited yet. Once all goals have been visited, the agent returns to its initial location. The
greedy tour is not necessarily the optimal tour for a task.

Following a similar intuition as before, we see that the difficulty score of Eq. (8) is proportional to
the difficulty of a task. The greater the number of goals and the lower the optimal reward, the greater
the difficulty of the task for the learner. Further, tasks with a larger greedy_gap are more complex
for the learner.

In both Eqs. (7) and (8) the denominator for the training tasks are linearly transformed to make all
values ≥ 1.

D.4 Scheduling Mechanism

As commonly done in prior work [32, 69] when training neural networks using curriculum learning,
we incorporate randomization in the training process for our CUR algorithm and its variants using
a scheduling mechanism. Demonstrations of higher preference are prioritized at the beginning of

20

Input feature mapping 6× 6× d
Convolution Conv2D, kernel size = 3, padding = 1, d→ 32

ReLU

Residual Block 1

Conv2D, kernel size = 3, padding 1, 32→ 32
ReLU

Conv2D, kernel size = 3, padding 1, 32→ 32
ReLU

Conv2D, kernel size = 3, padding 1, 32→ 32
ReLU

Residual Block 2

Conv2D, kernel size = 3, padding 1, 32→ 32
ReLU

Conv2D, kernel size = 3, padding 1, 32→ 32
ReLU

Conv2D, kernel size = 3, padding 1, 32→ 32
ReLU

Fully Connected Linear, 6× 6× 32→ 512
Fully Connected Linear, 512→ 256
Fully Connected Linear, 256→ 3

Table 3: Network architecture

training, while during later stages, all demonstrations are provided with uniform probability to the
learner.

In our experiments, we use a linear scheduling mechanism [69], where the first training epoch in-
cludes a fraction b of the total demonstrations. The number of demonstrations included grows lin-
early every subsequent epoch such that by the time a fraction a of the total epochs are completed, all
the demonstrations are included. Algorithm 2 details the scheduling mechanism. The demonstra-
tions in an epoch are provided to the learner in randomly ordered batches. In our experiments we
set a = 0.8 and b = 0.5.

D.5 Learner model

Training hyperparameters. For both navigation environments, the learners were trained for 40
epochs with an initial learning rate of 0.01 and a batch size of 32 demonstrations. The learning
rate was decayed by a factor of 0.5 after every 500 batches of demonstrations. The learning rate
decay rule ensures the learning rate is consistent across the different curriculum algorithms since
CUR and its variants utilize a different number of training tasks in each epoch due to the scheduling
mechanism. Our models were trained on Nvidia Tesla V100 GPUs.

Network Architecture The learner’s neural network takes as input the feature mapping φE(s) of
a state s. The dimension of the feature mapping is given by 6× 6× d, where d = 7 for states in the
shortest path navigation environment and d = 6 for states in the TSP navigation environment. In
turn, the learner’s neural network outputs a vector of size 3, which provides a probability distribution
over actions after the softmax function is applied. The architecture of the neural network is provided
in Table 3.

D.6 Curriculum Visualization

In addition to the results presented in Section 6, we visualize the curriculum generated by our
CUR algorithm for the shortest path and TSP environments in Figs. 8 and 9 respectively. In Figs. 8
and 9, the y-axis represents different features of the tasks provided to the learner, normalized in the
range [0, 1] and calculated as a moving average over the previous 100 batches. The x-axis represents
the number of demonstrations provided to the learner.

Shortest path environment. Fig. 8 shows that at the beginning of training, the CUR algorithm
picks tasks with a fewer goals and a higher number of muds/bombs. We hypothesize that this
teaches the agent how to avoid muds and bombs while navigating to a goal. During later stages

21

100 5500 11000
No. of Batches

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

ta
sk

fe
at

ur
es

Reward
Goals

Bombs
Muds

Figure 8: Shortest path environment curriculum visu-
alization.

100 4500 9000
No. of Batches

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

ta
sk

fe
at

ur
es

Reward
Goals

Greedy gap

Figure 9: TSP environment curriculum visualization.

of training, CUR picks tasks with higher optimal rewards and a greater number of goals. Here we
believe the agent is taught how to identify the path with maximum reward among all paths that lead
to a goal. Essentially the learner is first taught the general navigation task followed by the most
difficult concept of deciding the optimal path.

TSP environment. Fig. 9 illustrates that at the beginning of training CUR selects tasks with a
greater number of goals, but with a low greedy gap. This would teach the learner the general navi-
gation problem of visiting all goals. As training progresses, CUR picks tasks with a greater greedy
gap. We hypothesize that these tasks teach the learner the most difficult concept of planning the
optimal tour.

22

	1 Introduction
	1.1 Comparison to Existing Approaches on Curriculum Design for Imitation Learning
	1.2 Additional Related Work on Curriculum Design and Teaching

	2 Formal Problem Setup
	3 Curriculum Design using Difficulty Scores
	4 Theoretical Analysis of Our Curriculum Strategy
	4.1 Analysis for MaxEnt-IRL Learner
	4.2 Analysis for CrossEnt-BC Learner

	5 Experimental Evaluation: Teacher-Centric Setting
	5.1 Teaching Algorithms
	5.2 Learner Models
	5.3 Experimental results

	6 Experimental Evaluation: Learner-Centric Setting
	7 Discussion and Conclusions
	A List of Appendices
	B Proofs for MaxEnt-IRL Learner
	B.1 Auxiliary Lemma
	B.2 Proof of Theorem 1
	B.3 Proof of Theorem 2

	C Proofs for CrossEnt-BC Learner
	C.1 Auxiliary Lemma
	C.2 Proof of Theorem 3

	D Additional Details for Learner-Centric Experiments
	D.1 Environment MDPs
	D.2 Dataset Generation
	D.3 Teacher's Difficulty Score
	D.4 Scheduling Mechanism
	D.5 Learner model
	D.6 Curriculum Visualization

