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1 REBUTTAL FOR REVIEWER 8JTY

1.1 WEAKNESS

1. The intuitive explanation for the distance covariance and its existing usages in
statistics are not well explained.
Answer: Thanks for your comment. In the submitted version, the related works
section highlights the computational disadvantages of Hirschfeld-Gebelein-Rényi
(HGR) maximal correlation and mutual information (MI). In this revised version,
we add discussions about advantages and disadvantages of the distance covariance,
HGR and MI in the introduction section.
Two random vectors (variables) are independent if and only if any of their HGR
maximal correlation, MI, and distance covariance (DC) obtain a value of 0. Al-
though all the above three can be used to characterize the independence of two
random variables (vectors), the DC stands out in terms of its computational effi-
ciency and suitability for optimization.
The definition of HGR of two random vectors is

HGR(U, V ) = sup
f,g

⟨f(U), g(V )⟩.

In practical computations, it is IMPOSSIBLE to traverse all f, g. Some classical
methods are to approximate HGR by requiring f, g belonging to linear space or
Reproducing Kernel Hilbert Spaces. In [1], the authors solve it through a kernel
approximation.
MI terms are difficult to estimate and optimize [2]. In [2], they replace both mutual
information of the objective function and the function in constraint by their lower
bound and upper bounds respectively.
For DC,
1. Empirical DC, as a statistic, can be directly computed from the samples, although
population DC [3] is also challenge for computing since it requires knowledge of
the analytical form of the distribution function and involves integration.
2. The empirical DC of the predicted target and sensitive attribute is continuously
differentiable and biconvex when we treat the predicted target as a free variable.
Furthermore, it can be expressed in matrix form, which makes it relatively more
suitable for optimization and efficient for computation.
[1]. J. Mary, C. Calauzènes, and N. E. Karoui. Fairness-Aware Learning for
Continuous Attributes and Treatments. ICML, 4382–4391, 2019.
[2]. J. Song, P. Kalluri, A. Grover, S. Zhao, and S. Ermon. Learning Controllable
Fair Representations. AISTAT, 2164–2173, 2019.
[3]. J. Liu, Z. Li, Y. Yao, F. Xu, X. Ma, M. Xu, and H. Tong. Fair Representation
Learning: An Alternative to Mutual Information. SIGKDD, 1088–1097, 2022.

2. There are some missing references for fairness interventions, which I encourage
the authors to include and compare, for example,
a. Lowy, A., Baharlouei, S., Pavan, R., Razaviyayn, M. and Beirami, A., 2021.
A stochastic optimization framework for fair risk minimization. arXiv preprint
arXiv:2102.12586.
b. Alghamdi, W., Hsu, H., Jeong, H., Wang, H., Michalak, P., Asoodeh, S. and
Calmon, F., 2022. Beyond Adult and COMPAS: Fair multi-class prediction via
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information projection. Advances in Neural Information Processing Systems, 35,
pp.38747-38760.
Answer: Thanks for your recommendation, we add them to related works and
numerical experiment parts.

3. Despite that the distance covariance is interesting, the reason why it is poten-
tially a better metrics than other information-theoretic quantities such as mutual
information and the Renyi maximal correlation is unclear to me.
Distance covariance, MI and the maximal correlation are all zero when two random
variables are independent; however, the maximal correlation satisfies Renyi’s
postulates for a good measure of dependency.
It is encouraged that the authors spend more space to discuss the pros and cons
regarding the dependency metrics, give illustrations on why one is better than the
other and hopefully provide a simple numerical example.
Answer: Thanks for your comment, we add this part to the introduction section.
Although all the above three can be used to characterize the independence of two
random variables (vectors), the distance covariance (DC) stands out in terms of its
computational efficiency and suitability for optimization.
For DC, Empirical DC, as a statistic, can be directly computed from the samples,
although population DC [1] is also challenge for computing since it requires knowl-
edge of the analytical form of the distribution function and involves integration.
In addition, the empirical DC is a continuously differentiable and biconvex function
about the predicted target matrix and the sensitive attribute matrix. In the fairness
classification problem, the sensitive attribute matrix is known, so the empirical
DC is a continuously differentiable convex function of the predicted target matrix,
which is an elegant property for optimization.
Moreover, the paper [1] also demonstrates the advantages of DC by comparing
with methods based on mutual information [2,3], demonstrating its advantages. We
further utilized empirical distance covariance, not only reducing training time but
also improving both accuracy and fairness.
For HGR and MI, we can only use the estimations or upper/lower bounds instead,
which are used to approximate independence. In practice, this inevitably introduces
biases and errors, subsequently reducing the utility of downstream classification
tasks.
The definition of HGR of two random vectors is

HGR(U, V ) = sup
f,g

⟨f(U), g(V )⟩.

In practical computations, it is IMPOSSIBLE to traverse all f, g. Some classical
methods are to approximate HGR by requiring f, g belonging to linear space or
Reproducing Kernel Hilbert Spaces. In [4], the authors use an m-out-of-n bootstrap
to estimate the singular values of a stochastic matrix from a finite sample and solve
it through a kernel approximation.
MI terms are DIFFICULT to estimate and optimize, researchers try to replace the
MI by the lower/upper bounds [5] or some variational methods [6].
[1]. J. Liu, Z. Li, Y. Yao, F. Xu, X. Ma, M. Xu, and H. Tong. Fair Representation
Learning: An Alternative to Mutual Information. SIGKDD, 1088–1097, 2022.
[2] E. Creager, D. Madras, J.-H. Jacobsen, M. Weis, K. Swersky, T. Pitassi, and R.
Zemel. Flexibly fair representation learning by disentanglement. ICLR, 1436-1445,
2019.
[3] C. Louizos, K. Swersky, Y. Li, M. Welling, and R. Zemel. The variational fair
autoencoder. arXiv preprint arXiv:1511.00830, 2015.
[4]. J. Mary, C. Calauzènes, and N. E. Karoui. Fairness-Aware Learning for
Continuous Attributes and Treatments. ICML, 4382–4391, 2019.
[5]. J. Song, P. Kalluri, A. Grover, S. Zhao, and S. Ermon. Learning Controllable
Fair Representations. AISTAT, 2164–2173, 2019.
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[6] J. Song, and E. Stefano. Understanding the Limitations of Variational Mutual
Information Estimators. ICLR, 2019.

4. In the experimental results (Table 1 and 2), it seems that the proposed results
consistently have higher accuracy and lower fairness violation. However, the
proposed result is not too different from other methods as most of them are in
the Lagrangian form, i.e., CE loss plus fairness/ independence constrains. It is
encouraged that the authors explain clearly why the proposed method could lead to
a consistently better acc-fariness trade-off point than other methods.
Answer: Thanks for your comment. A consistently better result is from a better
model + better model parameter selection + better optimization. As stated in the
above, our DC regularization is a good choice for fair classification.
In our optimization problems, there is a crucial parameter that plays a significant
role in achieving optimal performance. The selection and adjustment of this
parameter greatly influence the optimization process and the quality of the resulting
solution. To address this, we employ the Lagrangian dual method as an alternative
approach to update the balanced parameter and network parameters.
In our experiments, we initially attempted to manually choose the balanced pa-
rameter. However, we found that the performance was slightly lower compared to
using the Lagrangian dual method. This highlights the advantage of employing an
adaptive approach.
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2 REBUTTAL FOR REVIEWER EHOC

2.1 QUESTIONS MAIN ARGUMENTS

1. The novelty of the proposed fair classification method came from two parts:
(1) introduce an alternative independence approximation named distance covari-

ance. For me, the first novelty is limited as this is an extension of previous
work, e.g., mutual information (Kamishima et al., 2012), covariance (Zafar
et al., 2017), or HGR coefficient ****(Mary et al., 2019) were token as the
approximation metric. These works all added the empirical approximation to
the original loss function as the regularization term.
As the authors mentioned in the paper, the covariance only captures linear
dependency between sensitive attributes and the predictions. MI and HGR
are also nonlinear independence approximation metrics. The superiority of
selecting distance covariance over other nonlinear metrics are not clear in
terms of computational efforts and math property.
In particular, Mutual Information is nonnegative measure, closely related
to KL divergence measure, and can be well approximated by subsamples
(Kamishima et al., 2012).
Thanks for your time to review our paper, we add their comparisons into the
introduction section of the revised paper.
While alternatives such as MI, covariance, and HGR can potentially replace
distance covariance (DC), it is important to note that DC offers several advan-
tages that these three alternatives lack.

– Two random vectors (variables) are independent if and only if any of their
HGR maximal correlation, MI, and distance covariance (DC) obtain a
value of 0, but independence implies Covariance= 0 and the converse is
not always true.
This implies that MI, HGR, DC can capture all relationship between the
random vectors we used. Therefore, our DC can capture ALL relation-
ships, but NOT only linear dependency.

– The definition of HGR of two random vectors is

HGR(U, V ) = sup
f,g

⟨f(U), g(V )⟩.

In practical computations, it is IMPOSSIBLE to traverse all f, g. Some
classical methods are to approximate HGR by requiring f, g belonging
to linear space or Reproducing Kernel Hilbert Spaces. In [1], the authors
solve it through a kernel approximation.

– MI terms are DIFFICULT to estimate and optimize, they replace the MI by
the lower/upper bounds [2] or some variational methods [3]. In practice,
this inevitably introduces biases and errors, subsequently reducing the
utility of downstream classification tasks.

– For DC, empirical DC, as a statistic, can be directly computed from the
samples, although population DC [3] is also challenge for computing since
it requires knowledge of the analytical form of the distribution function
and involves integration.
In addition, the empirical DC is a continuously differentiable and bicon-
vex function about the predicted target matrix and the sensitive attribute
matrix. In the fairness classification problem, the sensitive attribute matrix
is known, so the empirical DC is a continuously differentiable convex
function of the predicted target matrix, which is an elegant property.
Moreover, the paper [4] also demonstrates the advantages of DC by com-
paring with methods based on mutual information [5,6], demonstrating its
advantages. We further utilized empirical distance covariance, not only
reducing training time but also improving both accuracy and fairness.

[1]. J. Liu, Z. Li, Y. Yao, F. Xu, X. Ma, M. Xu, and H. Tong. Fair Representa-
tion Learning: An Alternative to Mutual Information. SIGKDD, 1088–1097,
2022.
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[2]. J. Song, P. Kalluri, A. Grover, S. Zhao, and S. Ermon. Learning Control-
lable Fair Representations. AISTAT, 2164–2173, 2019.
[3] J. Song, and E. Stefano. Understanding the Limitations of Variational
Mutual Information Estimators. ICLR, 2019.
[4]. J. Mary, C. Calauzènes, and N. E. Karoui. Fairness-Aware Learning for
Continuous Attributes and Treatments. ICML, 4382–4391, 2019.
[5] E. Creager, D. Madras, J.-H. Jacobsen, M. Weis, K. Swersky, T. Pitassi,
and R. Zemel. Flexibly fair representation learning by disentanglement. ICLR,
1436-1445, 2019.
[6] C. Louizos, K. Swersky, Y. Li, M. Welling, and R. Zemel. The variational
fair autoencoder. arXiv preprint arXiv:1511.00830, 2015.

(2) leverage Lagrangian primal-dual alternative optimization to automatically
select the weight coefficient. This part of contribution is debatable. While the
Lagrangian approach is an efficient way of iteratively updating both training
parameters and the weight coefficient, it also lost the advantage of controlling
the trade-off if the decision-maker does have the domain knowledge.
Answer: Thanks for your comment.
Initially, we conducted experiments to optimize our problem using both
manual parameter tuning and the Lagrangian dual method. Through these
experiments, we observed that the performance of the Lagrangian dual method
is better when both methods are from the same value of λ. This finding
suggests that the Lagrangian dual method contributes to the stability of the
optimization process and leads to improved results.
In the Primal Dual method, the decision-maker also has some control over
the fairness-utility trade-off curve by choosing the initial guess of λ or other
hyperparameters.

2. The main theoretical contributions are the analysis of the properties of distance
covariance and the convergence analysis of the empirical distance covariance.
While the existence of bi-convexity renders lower effort in minimizing the distance
covariance in the fair ML setting, the convergence analysis is not associated with the
quality of the fair solution, i.e., how the convergence speed to a (Pareto) minimizer
of the penalized training object is impacted by the sample size.
Answer: The convergence analysis of the empirical distance covariance holds
significant importance for our fairness classification task. This is because:

• Suitability: In our task, it is crucial to assess the suitability of using empirical
distance covariance as the regularized term. If there is a substantial differ-
ence between the empirical distance covariance and the population distance
covariance, it may not be appropriate to rely on the empirical version. This is
because the theorem we have only establishes that DC(predicted target, sensi-
tive attribute) equals 0 if and only if the two variables are independent. If there
is a significant discrepancy between the empirical and population distance
covariances, using the empirical version could lead to biased or inaccurate
results.

• Consideration of Batch Computation: In our deep learning computations,
data is typically processed in batches rather than considering the entire dataset
at once. As a result, the number of samples we can work with is limited and
cannot tend to infinity. To address this constraint, our theorem (Theorem 4)
provides valuable insights by specifying the minimum number of samples
required to achieve a user-defined precision. This information allows us to
determine the sample size needed to ensure reliable and accurate results in
our fairness classification task.

The biconvexity of the empirical distance covariance in our objective function is a
key characteristic that contributes to the elegance of our optimization problem.
Furthermore, analyzing the convergence speed represents a valuable future direction
to enhance the computational efficiency and performance of our approach.
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3. It is not clear in the paper whether the distance covariance has non-negative
property. This is related to the sign of Lagrangian multiplier. It should not have
any sign constraint for equality equality-constrained problem given in (2).
Answer: Both distance covariance and empirical distance covariance exactly have
non-negative property. The definition of distance covariance (also see our paper) is

V(Y,Z) =

∫
Rp+q

|fY,Z(t, s)− fY(t)fZ(s)|2w(t, s) dtds,

where the weight w(t, s) = (cpcq|t|1+p|s|1+q)−1 with cd = π(1+d)/2

Γ((1+d)/2) and Γ

being the gamma function.
It is obvious the integated function is non-negative, so distance covariance is
non-negative.
The non-negativity of empirical distance covariance can be guaranteed by Theorem
1 in [1].
[1] G. J. Székely, M. L. Rizzo, and N. K. Bakirov. Measuring and testing depen-
dence by correlation of distances. The Annals of Statistics, 2769-2794, 2007.

2.2 QUESTIONS IMPRECISE PART

1. Section 4.2 P8: It is not clear how the trade-off curve is obtained if the La-
grangian multiplier is not under control. Fixing the Lagrangian multiplier or just
randomly initialize the starting points?
Answer: The points of Figure 1 in Section 4.1 are related to the initial guesses
of balanced parameter λ, since different inital guesses will give different results.
In our experiments, the points we choose are in the interval [1, 15] as the initial
guesses.

2. Figure 1 Right P8: a trade-off curve should only contain non-dominated solutions.
For example, the left most blue dot is dominated by the second dot and should not
included in the numerical result.
Answer:Thank you for your comment, we delete the dominated one.

3. Section 4.2.2: Not sure if I understand correctly, the experiment targeting
predicting gender is odd and not aligned with any realistic applications.
Answer: We actually follow the experimental setup from [1] and evaluate our
proposed method by comparing with some baselines.
[1] Park, Sungho, et al. ”Fair contrastive learning for facial attribute classifica-
tion.” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022.

4. It is mentioned in the Related Work section that benchmark methods like HGR,
MI, etc. are computationally challenging. So it is natural that readers are expecting
a comparison of computation effort.
Answer: Thanks for your comment, we provide the computational time about
many algorithms, including HGR and FCRL (MI-based method), on the Adult
dataset in Table 1.
The computation challenge in our paper refers to the impossibility of direct cal-
culation of HGR and MI. Instead, estimations or lower/upper bounds need to be
employed.
In the related works, we try to compare the three algorithms. We can calculate
empirical DC directly, but only estimations of the others can be utilized for compu-
tatoin.
In reference [1], a kernel approximation is utilized for HGR and the lower and
upper bounds of Mutual Information (MI) are utilized to deal with the computation
challenge in [2, 3].
[1]. J. Mary, C. Calauzènes, and N. E. Karoui. Fairness-Aware Learning for
Continuous Attributes and Treatments. ICML, 4382–4391, 2019.
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Adult Time(second)

Vallina 21.783
Ours 33.85
HGR 47.91
Fair Mixup 50.64
FCRL 684.03
FairDisCo 704.28
Dist-fair 479.78
FSCL 161.67
FairProjection 100.98
FERMI 642.43

Table 1: Computational time on the Adult dataset.

[2]. J. Song, P. Kalluri, A. Grover, S. Zhao, and S. Ermon. Learning Controllable
Fair Representations. AISTAT, 2164–2173, 2019.
[3] Gupta, Umang, et al. ”Controllable guarantees for fair outcomes via con-
trastive information estimation.” Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 35. No. 9. 2021.
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3 REBUTTAL FOR REVIEWER UH68

3.1 WEAKNESS

W1. The paper is relatively weak in describing and analyzing the mathematical
properties of distance covariance. Although the paper mentions that distance
covariance can measure linear and nonlinear correlations between two random
vectors (predicted values and sensitive attributes), are there other metrics that can
also capture nonlinear relationships between variables?
Also, does distance covariance have any advantages over other measures? This is
the starting point of why distance covariance is used as a constraint term, which is
not elaborated in the article.
Answer: Thanks for your comment, we add the comparisons into the introduction
part of the revised paper.
All of Distance covariance (DC), MI, and HGR can be used to capture linear and
nonlinear correlations between two random vectors, but there are some advantages
of DC in computation and optimization that the others do not have:

• For DC, Empirical DC, as a statistic, can be directly computed from the
samples, although population DC [1] is also challenge for computing since
it requires knowledge of the analytical form of the distribution function and
involves integration.
In addition, the empirical DC is a continuously differentiable and biconvex
function about the predicted target matrix and the sensitive attribute matrix.
In the fairness classification problem, the sensitive attribute matrix is known,
so the empirical DC is a continuously differentiable convex function of the
predicted target matrix, which is an elegant property.
Moreover, the paper [1] also demonstrates the advantages of DC by comparing
with methods based on mutual information [2,3], demonstrating its advantages.
We further utilized empirical distance covariance, not only reducing training
time but also improving both accuracy and fairness.

• For HGR and MI, we can only use the estimations or upper/lower bounds
instead, which are used to approximate independence. In practice, this in-
evitably introduces biases and errors, subsequently reducing the utility of
downstream classification tasks.
The definition of HGR of two random vectors is

HGR(U, V ) = sup
f,g

⟨f(U), g(V )⟩.

In practical computations, it is IMPOSSIBLE to traverse all f, g. Some
classical methods are to approximate HGR by requiring f, g belonging to
linear space or Reproducing Kernel Hilbert Spaces. In [4], the authors use an
m-out-of-n bootstrap to estimate the singular values of a stochastic matrix
from a finite sample and solve it through a kernel approximation. .
MI terms are DIFFICULT to estimate and optimize, they replace the MI by
the lower/upper bounds [5] or some variational methods [6].

[1]. J. Liu, Z. Li, Y. Yao, F. Xu, X. Ma, M. Xu, and H. Tong. Fair Representation
Learning: An Alternative to Mutual Information. SIGKDD, 1088–1097, 2022.
[2] E. Creager, D. Madras, J.-H. Jacobsen, M. Weis, K. Swersky, T. Pitassi, and R.
Zemel. Flexibly fair representation learning by disentanglement. ICLR, 1436-1445,
2019.
[3] C. Louizos, K. Swersky, Y. Li, M. Welling, and R. Zemel. The variational fair
autoencoder. arXiv preprint arXiv:1511.00830, 2015.
[4]. J. Mary, C. Calauzènes, and N. E. Karoui. Fairness-Aware Learning for
Continuous Attributes and Treatments. ICML, 4382–4391, 2019.
[5]. J. Song, P. Kalluri, A. Grover, S. Zhao, and S. Ermon. Learning Controllable
Fair Representations. AISTAT, 2164–2173, 2019.
[6] J. Song, and E. Stefano. Understanding the Limitations of Variational Mutual
Information Estimators. ICLR, 2019.
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W2. The explanation of the connection between DP and EO in Section 3.3 is
not very clear. For example, ”the equation (7) suggests that the objective goes
beyond achieving independence between the feature representation ϕθ(X) and the
sensitive attribute Z.” Is ϕθ(X) a feature representation or a prediction?
Answer: Sorry, we made a mistake of the statement, ϕθ(X) is a prediction. Thanks
for your reminder.
In Section 3.3, we try to think about the connections between DP and EO and find:
Model max

θ
P (ϕθ(X) = Y ), s.t. ϕθ(X) ⊥ Z suggests that the objective goes

beyond achieving independence between the predictions ϕθ(X) and the sensitive
attribute Z.
Intuitively, samples sharing the same sensitive attribute, regardless of their target
classes, have a tendency to cluster together due to shared characteristics or patterns
within those groups. Conversely, the fitting term related to the target attribute places
greater emphasis on accurately classifying the majority group. This is because
capturing the patterns and characteristics of the majority group is often more crucial
for optimizing the model’s overall performance.
Suppose Y = y is a majority class in the sensitive class Z = Zi, but not a
majority class in Z = Zj . The worst case is P (Ŷ = y|Y = y, Z = Zi) = 1

and P (Ŷ = y|Y = y, Z = Zj) = 0 since Y = y is not a majority class in
Z = Aj , which implies strong dependence between Y and Z. The introduction
of independence seeks to break this dependence, leading to an increase in P (Ŷ =
y|Y = y, Z = Zj), and resulting in a smaller EO value.
We also provide numerical illustrations on the connection between DP and EO in
the Appendix B.
In Figure 2, we showcase the model’s performance on the test set of the CelebA
dataset across various values of the parameter λ. As the value of λ increases, both
the accuracy (Acc) and the differential privacy gap (∆DP) decrease. Conversely,
the equal opportunity gap (∆EO) exhibits a V -shaped or increasing trend. Based on
these observations, we can numerically select an optimal parameter value such that
both DP and EO are smaller while maintaining a high level of predictive accuracy.
We also provide detailed insights into the UTKFace dataset. Despite manually
introducing imbalances in the dataset, we observed that both DP and EO met-
rics decrease simultaneously as the number of epochs increases, while accuracy
improves.
In our setting for each sensitive attribute class, the ratio of the majority class to the
minority class in relation to the target classes is the same. This observation can
possibly be attributed to the fact that we maintained a consistent imbalance factor
across all sensitive attribute classes.

W3. In Experiment 4.1, the trend between accuracy and EO demonstrated by
the proposed method is quite different from the comparison method. Is there any
analysis to explain this?
Answer: In the paper, the right-hand side (now the second subfigure in the revised
version) of Figure 1 displays points representing (accuracy, EO)-pairs with different
initial guesses of the balanced parameter λ ∈ [1, 15]. As mentioned in the second
reviewer, it may be better to remove the leftmost blue dot.
We appreciate the comment and will make the necessary adjustments in the revised
paper. Thank you for your comment.

W4. Does this method work equally well in scenarios where the sensitive attribute
is a continuous variable?
Answer: Indeed, our empirical distance covariance is applicable to both discrete
and continuous variables.
To the best of our knowledge, all datasets containing continuous sensitive attributes
are currently used for regression tasks, such as the Communities and Crime dataset
mentioned in [1]. As our method in this paper focuses on achieving fairness in
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classification, we have identified fair regression as a potential avenue for future
research.
[1]. J. Mary, C. Calauzènes, and N. E. Karoui. Fairness-Aware Learning for
Continuous Attributes and Treatments. ICML, 4382–4391, 2019.

3.2 QUESTIONS

Explain the proposd connection between DP and EO.

Does this method work equally well in scenarios where the sensitive attribute is a
continuous variable?
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4 REBUTTAL FOR REVIEWER ZY1Z

4.1 WEAKNESS

W1. Section 3.3 claims that optimizing for Eq. (6) leads to an optimal case where
both DP and EO are satisfied. This contradicts to the fact that (also mentioned in
Section 3.3) ”It is only possible to achieve both DP and EO when the sensitive
attributes Z are independent of the labels Y.” Therefore, I do not think it justifies
the claim that the proposed approach can achieve both DP and EO at the same time.

W3. More tabular data experiments should be conducted to confirm the finding.
E.g. on datasets provided by [1].
[1] Ding, Frances, Moritz Hardt, John Miller, and Ludwig Schmidt. ”Retiring
adult: New datasets for fair machine learning.” Advances in neural information
processing systems 34 (2021): 6478-6490.

4.2 QUESTIONS

Can you discuss more about why the proposed approach can achieve good EO
results? This finding is both interesting and suspicious to me. Given that ”It is only
possible to achieve both DP and EO when the sensitive attributes Z are independent
of the labels Y,” it is not likely that good EO should be achieved when optimizing
with the constraint ξ(X) ⊥ Z.
Answer: Our statement: EO will be improved when optimizing the model
max

θ
P (ϕθ(X) = Y ), s.t. ϕθ(X) ⊥ Z.

In Section 3.3, we try to think about the connections between DP and EO and find:
Model max

θ
P (ϕθ(X) = Y ), s.t. ϕθ(X) ⊥ Z suggests that the objective goes

beyond achieving independence between the predictions ϕθ(X) and the sensitive
attribute Z.
Intuitively, samples sharing the same sensitive attribute, regardless of their target
classes, have a tendency to cluster together due to shared characteristics or patterns
within those groups. Conversely, the fitting term related to the target attribute places
greater emphasis on accurately classifying the majority group. This is because
capturing the patterns and characteristics of the majority group is often more crucial
for optimizing the model’s overall performance.
Suppose Y = y is a majority class in the sensitive class Z = Zi, but not a
majority class in Z = Zj . The worst case is P (Ŷ = y|Y = y, Z = Zi) = 1

and P (Ŷ = y|Y = y, Z = Zj) = 0 since Y = y is not a majority class in
Z = Aj , which implies strong dependence between Y and Z. The introduction
of independence seeks to break this dependence, leading to an increase in P (Ŷ =
y|Y = y, Z = Zj), and resulting in a smaller EO value.
We also provide numerical illustrations on the connection between DP and EO in
the Appendix B.
In Figure 2, we showcase the model’s performance on the test set of the CelebA
dataset across various values of the parameter λ. As the value of λ increases, both
the accuracy (Acc) and the differential privacy gap (∆DP) decrease. Conversely,
the equal opportunity gap (∆EO) exhibits a V -shaped or increasing trend. Based on
these observations, we can numerically select an optimal parameter value such that
both DP and EO are smaller while maintaining a high level of predictive accuracy.
We also provide detailed insights into the UTKFace dataset. Despite manually
introducing imbalances in the dataset, we observed that both DP and EO met-
rics decrease simultaneously as the number of epochs increases, while accuracy
improves.
In our setting for each sensitive attribute class, the ratio of the majority class to the
minority class in relation to the target classes is the same. This observation can
possibly be attributed to the fact that we maintained a consistent imbalance factor
across all sensitive attribute classes.
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E.g. can you also calculate the empirical distance covariance between Y and Z for
your datasets?
Answer: The empirical distance covariance is based on Definition 3.1 in our
paper. Let Y = [Y1, · · · , Yn] and Z = [Z1, · · · , Zn] be the sample matrices,
where n is the sample number. Then we can calculate akl = ∥Yk − Yl∥2, āk· =
1
n

∑n
l=1 akl, ā·l = 1

n

∑n
k=1 akl, ā·· = 1

n2

∑n
l,k=1 akl and bkl = ∥Zk − Zl∥2,

b̄k· =
1
n

∑n
l=1 bkl, b̄·l =

1
n

∑n
k=1 bkl, b̄·· =

1
n2

∑n
l,k=1 bkl. The empirical distance

covariance Vn(Y, Z) is

Vn(Y,Z) =
1

n2

n∑
k,l=1

AklBkl, (1)

where Akl = akl − āk· − ā·l + ā··, Bkl = bkl − b̄k· − b̄·l + b̄··.
The non-negativity of empirical distance covariance can be guaranteed by Theorem
1 in [1].
[1] G. J. Székely, M. L. Rizzo, and N. K. Bakirov. Measuring and testing depen-
dence by correlation of distances. The Annals of Statistics, 2769-2794, 2007.
I would also suggest the authors to consider adding more baselines and experiment
on more datasets to further confirm this finding (as discussed in my weaknesses).
Answer: Thanks for your suggestion, we add numerical experiments about new
dataset in our revised paper.

In Table 2, why are the results for EO and DP separated (and Acc for α=2 are
different for Col 2 and Col 8)? Table 1 shows those results together.
Answer: For the UTKFace dataset, we conducted experiments for 90 epochs using
all the methods listed in Table 2. The results reported in Table 2 is the optimal
performance achieved during the last 10 epochs. That is the reason why there is a
slight difference. We will modify this part (see our revised paper).
In comparing the submitted and revised papers, it is important to note that there are
a few differences concerning the FSCL and Dist-Fair algorithms. This is primarily
due to the unavailability of the results for these algorithms in the revised paper, as
we were unable to retrieve the previous results and rerun the code.

W2. Most of the baselines optimize for DP (only FSCL optimizes for EO and
is primarily tailored for image datasets). More baseline methods specifically
optimizing for EO should be included.
Answer: Thanks for your comment. Except for FSCL, both FairMixup and HGR
in baselines actually optimize for EO for all experiments but two Accuracy-DP
trade-off curves on tabular datasets.
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