
Under review as a conference paper at ICLR 2024

A MODELS, DATASETS, AND IMPLEMENTATIONS

We present the details of our experiments and measurements.

A.1 PRETRAINED MODELS

Except for NanoGPT and models in Section E, we download and use pretrained models from Hug-
gingface.

• GPT-2 (Radford et al., 2019): 12-layer, 12-head, 768-dim, 124M parameters, autoregres-
sive, absolute positional encoding at 0th-layer, pretrained on OpenWebText;

• BERT (Devlin et al., 2018): 12-layer, 12-head, 768-dim, 124M parameters, masked pre-
diction, absolute positional encoding at 0th-layer, pretrained on BooksCorpus and English
Wikipedia;

• BLOOM (Scao et al., 2022): 24-layer, 16-head, 1024-dim, 560M parameters, ALiBI posi-
tional encodings (Press et al., 2021) at each layer, pretrained on 45 natural languages and
12 programming languages;

• Llama2-7B (Touvron et al., 2023): 32-layer, 32-head, 4096-dim, 7B parameters, autore-
gressive, Rotary positional embedding (Su et al., 2021) at every layer, pretrained on a
variety of data.

Note that (i) the training objective for pretraining BERT is different from the other models, and
(ii) Llama 2 uses rotary positional encoding for each layer and BLOOM uses ALiBI positional
encoding—which is different from absolute positional encoding that is added at the 0-th layer
(Vaswani et al., 2017).

A.2 TRAINING SMALL TRANSFORMERS

We train a few smaller transformers in this paper. Models are based on the GPT-2 architecture with
adjusted parameters, and we adopt the implementation of the GitHub Project by Andrej Karpathy.
The hardware we use is mainly RTX3090ti. The following experiments take 2 hours, 3 hours, and 3
hours to train respectively.

• NanoGPT in Table 1 and 2: The model is a Transformer with 6 layers, 6 heads, 384
dimensional embeddings, residual/embedding/attention dropout set to 0.1, weight decay
set to 0.1, and a context window of 128. The dataset is Shakespeare with character-level
tokenization. We train 100K iterations using the AdamW optimizer, with a batch size of 64
and a cosine scheduler (1000 step warmup) up to a learning rate of 5e-5;

• Randomization: Similarly, we use a Transformer with 8 layers, 8 heads, 512 dimensional
embeddings, residual/embedding/attention dropout set to 0.1, weight decay set to 0.1, and
a context window of 256. We train the model on the first 10K samples of OpenWebText
dataset, which is tokenized using the same tokenizer as in GPT2. We train 100K itera-
tions using the AdamW optimizer, with a batch size 64 and a cosine scheduler (1000 step
warmup) up to a learning rate of 5e-5;

• Addition: Similarly, we use a Transformer with 8 layers, 8 heads, 512 dimensional embed-
dings, residual/embedding/attention dropout set to 0.1m and weight decay set to 0.1. The
context window is set as the length of the longest sequence, i.e., 32 for the 10-digit addition
task here. We train 100K iterations using the AdamW optimizer, with a batch size 64 and
a cosine scheduler (1000 step warmup) up to a learning rate of 5e-5.

A.3 REMOVING ARTIFACTS

There are two likely artifacts in the measurements and visualization that we removed in the paper.

1. First token in a sequence. We find that a large proportion of attention is focused on the first
token, which usually distorts visualization significantly. It has been known that the first
token functions as a “null token”, which is removed in analysis (Vig & Belinkov, 2019).
We also adopt removing the first token in our measurements and visualization.

13

https://github.com/karpathy/nanoGPT

Under review as a conference paper at ICLR 2024

Table 3: ScreeNOT Rank Estimate for models, datasets and at each layer.
Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12

BERT
GitHub 15 16 16 16 14 11 11 9 10 10 11 11 12
OpenWebText 15 16 18 16 11 11 9 9 11 11 11 11 13
WikiText 15 16 18 16 12 11 9 9 11 11 11 12 12

BLOOM
GitHub 8 9 9 8 9 10 10 11 10 10 10 10 10
OpenWebText 6 10 10 11 11 10 11 11 11 11 10 10 11
WikiText 6 8 9 10 10 11 11 11 11 11 11 10 11

GPT2
GitHub 15 14 13 12 12 11 11 10 10 10 11 11 10
OpenWebText 15 13 14 12 13 11 10 10 10 10 9 9 12
WikiText 15 14 14 12 11 11 11 11 11 11 9 10 12

Llama2
GitHub 6 10 9 8 10 8 8 9 9 9 9 8 10
OpenWebText 7 10 10 11 11 10 9 10 9 8 9 8 10
WikiText 8 10 10 10 9 8 8 8 8 8 8 8 10

Table 4: Stable rank for models, datasets and at each layer.
Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12

BERT
GitHub 9.19 7.79 5.26 4.73 4.34 3.84 3.48 3.20 2.70 2.45 2.04 1.84 1.91
OpenWebText 9.19 7.63 5.25 4.73 4.10 3.53 3.16 2.84 2.46 2.30 2.18 2.22 2.15
WikiText 9.19 7.78 5.03 4.58 3.99 3.48 3.14 2.82 2.42 2.27 2.13 2.16 2.12

BLOOM
GitHub 8.39 1.25 1.20 1.21 1.21 1.23 1.29 1.29 1.28 1.25 1.21 1.02 1.00
OpenWebText 8.33 1.27 1.30 1.24 1.24 1.27 1.32 1.34 1.33 1.26 1.16 1.01 1.00
WikiText 8.42 1.27 1.28 1.30 1.31 1.34 1.41 1.43 1.41 1.32 1.22 1.01 1.00

GPT2
GitHub 2.05 1.92 1.91 1.89 1.90 1.90 1.92 1.94 1.98 2.03 2.05 1.70 1.11
OpenWebText 2.05 1.92 1.91 1.89 1.88 1.88 1.88 1.90 1.91 1.96 2.02 2.24 1.49
WikiText 2.05 1.92 1.91 1.89 1.88 1.88 1.88 1.90 1.91 1.97 2.03 2.19 1.56

Llama2
GitHub 24.87 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.02 1.03 1.17
OpenWebText 52.23 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.02 1.02 1.03 1.05 1.44
WikiText 24.70 1.00 1.00 1.01 1.01 1.02 1.03 1.05 1.09 1.16 1.20 1.26 1.30

2. Final-layer embeddings. We find that the embeddings of the final layer typically do not
have a significant positional basis component. It is likely that positional information is no
longer needed since last-layer embeddings are directly connected to the loss function.

A.4 POSITIONAL BASIS CALCULATION

We calculate positional bases based on sampled sequences of length T from a subset of the cor-
pus, which includes OpenWebText, WikiText, and GitHub. The implementation and weights of the
pretrained models are obtained from HuggingFace.

For the curated corpus subset, we utilize the streaming version of the HuggingFace datasets and
extract the first 10K samples from the train split. Then we tokenize the dataset using the same
tokenizer employed by the pretrained model. The size of the final datasets vary across tasks and
datasets, and we ensure that there are at least 1M tokens in each case to prevent the occurrence of
overlapping sequences.

We set the context window T = 512 for BERT, BLOOM, and GPT-2, as this maintains the maximum
context window utilized during pretraining. For Llama2, we set T = 512 instead of the maximum
context sequence due to computational resource limitations.

B ADDITIONAL EMPIRICAL RESULTS FOR SECTION 2

B.1 PCA VISUALIZATION

See Figure 7—Figure 11. Note: BERT displays a more complex circular shape, likely because its
training objective is different from the others.

B.2 LOW RANK MEASUREMENTS

Rank estimate. We report the rank estimate for all pretrained models and datasets in Table 3.
Additionally, we include the Stable rank estimate in Table 4.

Relative norm. We report the relative norm for all pretrained models and datasets in Table 5.

Spectral analysis. Recall that in Figure 2 (left), we showed the singular values plot for P =

[pos1, . . . ,posT], Cvec = [cvec1,1, . . . , cvecc,T], R = [resid1,1, . . . , residc,T]. Note that P

14

Under review as a conference paper at ICLR 2024

Figure 7: Top-2 principal components of positional basis; GitHub, GPT2

Figure 8: Top-2 principal components of positional basis; WikiText, GPT2

Figure 9: Top-2 principal components of positional basis; OpenWebText, BLOOM

Figure 10: Top-2 principal components of positional basis; OpenWebText, BERT

15

Under review as a conference paper at ICLR 2024

Figure 11: Top-2 principal components of positional basis; OpenWebText, Llama2

Figure 12: Top-2 principal components of positional basis; GitHub, Llama2

Table 5: Relative norm for models, datasets and at each layer.
Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12

BERT
GitHub 0.325 0.267 0.246 0.242 0.234 0.229 0.232 0.248 0.248 0.215 0.211 0.173 0.162
OpenWebText 0.361 0.302 0.265 0.265 0.263 0.249 0.245 0.266 0.273 0.215 0.170 0.117 0.122
WikiText 0.356 0.293 0.267 0.265 0.263 0.250 0.246 0.269 0.278 0.217 0.172 0.118 0.122

BLOOM
GitHub 0.009 0.079 0.123 0.147 0.170 0.181 0.173 0.158 0.145 0.138 0.137 0.182 0.140
OpenWebText 0.008 0.092 0.108 0.143 0.164 0.173 0.158 0.143 0.131 0.135 0.153 0.278 0.385
WikiText 0.009 0.098 0.123 0.152 0.166 0.174 0.159 0.143 0.133 0.134 0.147 0.250 0.358

GPT2
GitHub 0.758 0.447 0.396 0.359 0.338 0.316 0.287 0.266 0.237 0.207 0.172 0.140 0.100
OpenWebText 0.807 0.463 0.411 0.371 0.344 0.324 0.301 0.271 0.232 0.196 0.150 0.095 0.030
WikiText 0.815 0.470 0.416 0.375 0.345 0.325 0.299 0.270 0.229 0.197 0.152 0.098 0.030

Llama2
GitHub 0.025 0.221 0.221 0.221 0.222 0.222 0.222 0.223 0.224 0.225 0.226 0.226 0.158
OpenWebText 0.031 0.146 0.146 0.146 0.146 0.147 0.147 0.148 0.150 0.152 0.153 0.154 0.118
WikiText 0.035 0.067 0.067 0.067 0.067 0.068 0.068 0.069 0.071 0.073 0.077 0.080 0.146

16

Under review as a conference paper at ICLR 2024

has T columns while Cvec and R has CT columns. In Figure 2 (left), we downsampled Cvec
and R to match the number of columns of P . Alternatively, we also tried multiplied P by

p
C and

got similar results.

B.3 FOURIER ANALYSIS

See Figure 13—Figure 18. Compared with Figure 2 (right), for completeness we also include in the
plots 0-th coefficients (often not informative).

We find that BERT contains considerable higher-frequency components, likely due to its non-
autoregressive training; see also Wang & Chen (2020).

C ADDITIONAL EMPIRICAL RESULTS FOR SECTION 3

See Figure 19—Figure 23. Note that there are progressive cluster compactness changes across layers
in BLOOM and Llama 2. It is likely that pretraining on heterogeneous datasets creates multiscale
cluster structure. An investigation of this phenomenon is left as future work.

Measuring cluster compactness. We define ⌃W and ⌃B as the within-cluster and between-
cluster covariance matrix respectively, and we use Tr(⌃B⌃

�1
W) to measure how well the samples

are separated into clusters (bigger value is better). To compare the performance of cvec and raw
embeddings in the downstream clustering tasks, we calculate them based on four documents of
OpenWebText. In Figure 24, Figure 25, and Figure 26, we show the first two principal components
for the cvec (left) and raw embeddings (right), with samples from documents shown in different
colors. Based on the metric of Tr(⌃B⌃

�1
W) in the title and the PCA plot, we can see that cvec-s are

better separated than the raw embeddings, indicating that the removal of positional basis is good for
clustering tasks.

D ADDITIONAL EMPIRICAL RESULTS FOR SECTION 4

D.1 ON QK MATRIX DECOMPOSITION AND INDUCTION HEADS

On global mean vector. We show the QK matrix decomposition with global mean (Figure 28),
and without global mean (Figure 27). Note that adding a constant to all entries of the QK matrix will
not change the attention matrix, because softmax computes the ratio. We conclude that the global
mean vector µ has little effects on interpretations.

See Figure 29—Figure 35 for more QK plots at various layers and heads on GPT-2 and BLOOM
model.

D.2 ON ATTENTION WEIGHT MATRIX

See Figure 36—Figure 41 for more plots on rotated W = W q
(W k

)
>
/
p
dhead at various layers

and heads for BERT and GPT-2 model.

E ADDITIONAL EMPIRICAL RESULTS FOR SECTION E

Full results on the Randomization experiment. We apply three noise levels (regular, partially
random, fully random) in both of the training and inference process. We give the 3 ⇥ 3 = 9 results
in Figure 42—Figure 50.

Addition experiment. We have manually generate the addition dataset for the carry and no-carry
tasks, with training set and validation set containing 100K and 10K additions of length ranging from
5 to 10 respectively. The models achieve 100% and 72% accuracy on the validation set in the no-
carry and carry experiments, respectively. However, the model does not generalize: they get 5.02%
and 0.00% accuracy on 1K samples of additions with length from 1 to 4. See Figure 51—Figure
56 for the QK plots at various layers and heads under carry and no-carry addition tasks. Notice the

17

Under review as a conference paper at ICLR 2024

Figure 13: Fourier transformed positional basis; Openwebtext, GPT2

Figure 14: Fourier transformed positional basis; Openwebtext, BERT

Figure 15: Fourier transformed positional basis; Openwebtext, BLOOM

Figure 16: Fourier transformed positional basis; Openwebtext, Llama2

18

Under review as a conference paper at ICLR 2024

Figure 17: Fourier transformed positional basis; GitHub, GPT2

Figure 18: Fourier transformed positional basis; WikiText, GPT2

Figure 19: Gram matrix of positional basis and context basis; Openwebtext, GPT2

Figure 20: Gram matrix of positional basis and context basis; Openwebtext, BLOOM

19

Under review as a conference paper at ICLR 2024

Figure 21: Gram matrix of positional basis and context basis; Openwebtext, Llama2

Figure 22: Gram matrix of positional basis and context basis; GitHub, Llama

Figure 23: Gram matrix of positional basis and context basis; Wikitext, GPT2

20

Under review as a conference paper at ICLR 2024

Figure 24: Top-2 principal components; GPT2, OpenWebText, L7. Left shows cvecs and right
shows raw embeddings.

Figure 25: Top-2 principal components; GPT2, OpenWebText, L9. Left shows cvecs and right
shows raw embeddings.

21

Under review as a conference paper at ICLR 2024

Figure 26: Top-2 principal components; GPT2, OpenWebText, L11. Left shows cvecs and right
shows raw embeddings.

Figure 27: GPT2 L10H7 QK Decomposition; Global mean removed

Figure 28: GPT2 L10H7 QK Decomposition; Global mean not removed

Figure 29: QK Decomposition; BLOOM L10H1

Figure 30: QK Decomposition; BLOOM L6H12

Figure 31: QK Decomposition; BLOOM L7H10

22

Under review as a conference paper at ICLR 2024

Figure 32: QK Decomposition; BLOOM L0H5

Figure 33: QK Decomposition; GPT2 L0H1

Figure 34: QK Decomposition; GPT2 L10H1

Figure 35: QK Decomposition; GPT2 L4H11

Figure 36: Dissecting attention weights, GPT2 L0

Figure 37: Dissecting attention weights, GPT2 L6

23

Under review as a conference paper at ICLR 2024

Figure 38: Dissecting attention weights, GPT2 L10

Figure 39: Dissecting attention weights, BERT L0

Figure 40: Dissecting attention weights, BERT L6

Figure 41: Dissecting attention weights, BERT L10

24

Under review as a conference paper at ICLR 2024

Figure 42: Training: regular; Inference: regular

Figure 43: Training: regular; Inference: partially random

25

Under review as a conference paper at ICLR 2024

Figure 44: Training: regular; Inference: fully random

Figure 45: Training: partially random; Inference: regular

26

Under review as a conference paper at ICLR 2024

Figure 46: Training: partially random; Inference: partially random

Figure 47: Training: partially random; Inference: fully random

27

Under review as a conference paper at ICLR 2024

Figure 48: Training: fully random; Inference: regular

Figure 49: Training: fully random; Inference: partially random

28

Under review as a conference paper at ICLR 2024

Figure 50: Training: fully random; Inference: fully random

Figure 51: Addition without carry, L2H3

Figure 52: Addition without carry, L3H0

Figure 53: Addition without carry, L3H1

Figure 54: Addition with carry, L1H0

Figure 55: Addition with carry, L1H4

29

Under review as a conference paper at ICLR 2024

unsmoothness in the positional basis gram matrix that are pervasive across different layers, heads,
and tasks.

F PROOFS FOR THEORETICAL RESULTS

We introduce some additional notations. Denote the indicator function by 1. We denote by 1N the
vector (1, 1, . . . , 1)> 2 RN . For a complex matrix A, we denote the conjugate transpose by A⇤.
For convenience, for a matrix A, we will write �A instead of �(1,1)A. For a vector x 2 CN , we
also write �x to denote the finite difference vector N · (x1�x0, x2�x1, . . . , xN �xN�1)

> (where
xN = x0). We will say that a Hermitian matrix A 2 CN⇥N is positive semidefinite (PSD) if and
only if x⇤Ax � 0 for every x 2 CN . Denote by <(x) the real part of a complex number x 2 C.

F.1 PROOF OF THEOREM 1

In this subsection, we denote a generic dimension by N and ! = exp(�2⇡i/N). We need some
standard definitions and properties; see Broughton & Bryan (2018) for example.

The discrete Fourier transform (DFT) matrix F 2 CN⇥N is given by Ftt0 = !
(t�1)(t0�1) for

1  t, t
0  N . The inverse discrete Fourier transform (IDFT) matrix is N

�1F ⇤. Both the DFT
matrix and the IDFT matrix are symmetric (not Hermitian). Sometimes we prefer to write F>

instead of F simply for formality. For a generic matrix A 2 RN⇥N , we denote by Â 2 CN⇥N the
matrix after its 2-d DFT. It satisfies

Â = FAF>
,

A = N
�2F ⇤Â(F ⇤

)
>
.

(13)

The following simple lemma is a consequence of integration-by-parts for the discrete version. For
completeness we include a proof.
Lemma 1. Let x 2 RN be a vector, and x̂ = Fx be its DFT. Then for t = 1, . . . , N ,

x̂t = �t(F�x)t + 1{t = 1} ·
NX

t0=1

xt0 , where (14)

�t := N
�1

✓
1� exp

⇣�2⇡i(t� 1)

N

⌘◆�1

for t > 1 and �1 := 1. (15)

Proof. If t = 1, then (Fx)t =
PN

t0=1 xt0 , and (F�x)t = N
PN

t0=1(xt0 � xt0�1) = 0. For t 6= 1,

(F�x)t = N

NX

t0=1

!
(t�1)(t0�1)

(xt0 � xt0�1) = N

NX

t0=1

�
!
(t�1)(t0�1) � !

(t�1)t0
�
xt0

= N
�
1� !

(t�1)
� NX

t0=1

!
(t�1)(t0�1)

xt0 = �
�1
t (Fx)t.

This shows x̂t = �t(F�x)t for t 6= 1 and completes the proof.

A simple bound on the modulus |�t| is given by the following lemma.
Lemma 2. Let �t be defined by Equation 15. For positive integer 1 < t  N/2, we have

|�N�t+2| = |�t| 
1

8(t� 1)
.

Proof. The equality part is obvious. For any ✓ 2 (�⇡,⇡), we have
|1� exp(i✓)|2 = (1� cos ✓)

2
+ sin

2
✓ = 4 sin

2
(✓/2) = 4 sin

2
(|✓|/2)

Since sin ✓/✓ is monotone decreasing in (0,⇡/2), we have sin(|✓|/2) � sin(⇡/2)|✓|/(⇡/2), Thus,
|1� exp(i✓)| � 4|✓|/⇡ .

Setting ✓ = �2⇡(t� 1)/N , we obtain the desired upper bound on |�t|.

30

Under review as a conference paper at ICLR 2024

Denote � = diag{�1, . . . , �N}. By Lemma 1, for any vector x 2 RN ,

Fx = �F�x+

0

BB@

x>1N

0

...
0

1

CCA .

Below we will assume that the generic matrix A 2 RN⇥N is symmetric and satisfies A1N = 0.
Observe that

FA = [FA:,1, . . . ,FA:,N] = �F [�A:,1, . . . ,�A:,N],

FAF>
= �F (�A)F>�

where we used A1N = 0 and (�A)1N = 0. Repeating the second equality m times, we obtain

Â = FAF>
= �mF (�

(m,m)A)F>�m
.

Now fix a generic nonempty index sets I ⇢ {1, 2, . . . , N} and denote J = {1, . . . , N}\I. Consider
the block matrix form of Â:

Â =

✓
ÂI,I ÂI,J
ÂJ ,I ÂJ ,J

◆
.

Using the block matrix notation, we derive

kÂI,J kop = k�m
I,I

�
F (�

(m,m)A)F>�
I,J�m

J ,J kop  max
t2I,t02J

|�t�t0 |mkF (�
(m,m)A)F>kop .

Similar inequalities hold for other three blocks. By Lemma 2 we have |�t|  1 for all t. Adding the
three inequalities that involve at least one index set J , we get

����Â�
✓

ÂI,I 0
0 0

◆����
op

 3max
t2J

|�t|mkF (�
(m,m)A)F>kop .

Since FF ⇤
= N , we have kF kop = kFF ⇤k1/2op = N

1/2. Denoting

A(res)
:= N

�2F ⇤
h
Â�

✓
ÂI,I 0
0 0

◆i
(F ⇤

)
>
,

we find

kA(res)kop  3max
t2J

|�t|mN
�2kF k4opk�(m,m)Akop  3max

t2J
|�t|mNk�(m,m)Akmax (16)

where the first inequality is due to Lemma 2 and the second inequality is due to the inequality
between matrix operator norm and max norm.

To finish the proof, let us make some specification: we identify N with T̃ (namely 2T), identify A
with G̃, and identify I = {1, . . . , k} [{T̃ � k + 1, . . . , T̃}. These choices satisfy the requirement
for A because G̃ is symmetric and it satisfies G̃1T̃ = 2G1T = 0 due to the assumption pos1 +
. . .+ posT = 0.

By Lemma 2, maxt2J |�t|  1/(8k), so Equation 16 gives

kA(res)kop  6(8k)
�m

Tk�(m,m)G̃kmax

By the definition of A(res) and the identities in 13,

G̃ = A(res)
+N

�2F ⇤
✓

ÂI,I 0
0 0

◆
(F ⇤

)
>
.

We make the following claim.
Lemma 3. There exists B 2 Rk⇥k such that

N
�2


F ⇤

✓
ÂI,I 0
0 0

◆
(F ⇤

)
>
�

1:T,1:T

= FkB(FkB)
> (17)

31

Under review as a conference paper at ICLR 2024

While the DFT matrix is complex, the above lemma claims that the left-hand side is a Gram ma-
trix of real low-frequency vectors. Once this lemma is proved, we can combine this lemma with
Equation 16 and G = G̃1:T,1:T to obtain the desired inequality 6 in Theorem 1.

Proof of Lemma 3. Recall ! = exp(�2⇡i/2T). We further introduce some notations. Denote
I1 = {1, . . . , k} and I2 = {T � k + 1, . . . , T} so that I = I1 [I2. Let qt = !

t�1 for positive
integer t, matrix Q 2 RT⇥k and matrix D 2 Rk⇥k be given by

Qt,s = <(qs�0.5
t), where t  T, s  k, D = diag(q

1/2
1 , . . . , q

1/2
k)

For t, t0 2 I,

Ât,t0 = (FAF T
)t,t0

=

TX

s,s0=1

Ft,sGs,s0Ft0,s0 +

TX

s,s0=1

Ft,2T+1�sGs,s0Ft0,s0

+

TX

s,s0=1

Ft,sGs,s0Ft0,2T+1�s0 +

TX

s,s0=1

Ft,2T+1�sGs,s0Ft0,2T+1�s0

= q
1/2
t q

1/2
t0

TX

s,s0=1

Gs,s0

⇣
q
s�0.5
t q

s0�0.5
t0 + q

�s+0.5
t q

s0�0.5
t0 + q

s�0.5
t q

�s0+0.5
t0 + q

�s+0.5
t q

�s0+0.5
t0

⌘

= 4q
1/2
t q

1/2
t0

TX

s,s0=1

Gs,s0<(qs�1/2
t)<(qs

0�1/2
t0) .

If t, t0 2 I1, the above equality leads to

ÂI1,I1 = 4DQ>GQD;

and more generally ÂI,I is given by symmetrically extending ÂI1,I1 as in the definition of G̃.
Since 4Q>GQ is a PSD, we can find B0 2 Rk⇥k such that

4Q>GQ = B0B
>
0 .

We want to simplify F ⇤
:,IÂI,IF ⇤

I,:, namely

F ⇤
:,I1

ÂI1,I1F
⇤
I1,: + F ⇤

:,I1
ÂI1,I2F

⇤
I2,: + F ⇤

:,I2
ÂI2,I1F

⇤
I1,: + F ⇤

:,I2
ÂI2,I2F

⇤
I2,: (18)

For any t, t
0 2 I1,

(F ⇤
)t,I1ÂI1,I1(F

⇤
)I1,t0 = (F ⇤

)t,I1DB0B
>
0 D(F ⇤

)I1,t0

and similar equations hold for other three cases. Observe that

(F ⇤
)t,I1D = (q̄

1�0.5
t , . . . , q̄

k�0.5
t), (F ⇤

)t,I2D = (q̄
2T�0.5
t , . . . , q̄

2T�k+0.5
t) .

When we add the four terms in 18, the imaginary part cancels out. Thus,

F ⇤
t,IÂI,IF

⇤
I,t0 = 4

�
<(q̄1�0.5

t), . . . ,<(q̄k�0.5
t)

�
B0B

>
0

�
<(q̄1�0.5

t), . . . ,<(q̄k�0.5
t)

�>
.

Note that <(q̄s�0.5
t) = cos(⇡(t � 1)(s � 0.5)/T) = (Fk)t,s. Expressing F ⇤

:,IÂI,IF ⇤
I,: in the

matrix form and denote B = B0/N , we find that Equation 17 holds.

F.2 PROOF OF THEOREM 2

First we note that

KW (xq
,xk

) = KW11(x
q
,xk

)KW12(x
q
,xk

)KW21(x
q
,xk

)KW22(x
q
,xk

) . (19)

We will prove that
KW11(x

q
,xk

) =
�
1 +O(incoh)

�
·KW11(c

q
, ck) . (20)

32

Under review as a conference paper at ICLR 2024

To prove this, it suffices to show that

max
�
KW11(c

q
, tk),KW11(t

q
, ck),KW11(t

q
, tk)

= 1 +O(incoh) . (21)

We decompose W11 as in Equation 11 and find

log
�
KW11(c

q
, tk)

�
= (cq)>W11t

k
=

sX

k=1

ak(u
>
k c

q
)(v>

k t
k
) .

By mutual incoherence, |v>
k t

k|  incoh since vk 2 B1 and tk 2 B2; and trivially |u>
k c

k|  1, so

��log
�
KW11(c

q
, tk)

��� 
sX

k=1

|u>
k c

k| · |v>
k t

q|  s · incoh .

Since by assumption s = O(1) and exp(incoh) = 1 +O(incoh), we derive

KW11(c
q
, tk) = 1 +O(incoh) .

The other two terms in Equation 21 follow a similar argument and thus are all bounded by 1 +

O(incoh). We can prove similarly that

KW12(x
q
,xk

) =
�
1 +O(incoh)

�
·KW12(c

q
, tk) ,

KW21(x
q
,xk

) =
�
1 +O(incoh)

�
·KW21(t

q
, ck) ,

KW21(x
q
,xk

) =
�
1 +O(incoh)

�
·KW22(t

q
, tk) .

and together with Equation 20 and Equation 19, this leads to the desired Equation 12.

Below we prove the “moreover” part. By standard properties of independent subgaussian random
variables (Vershynin, 2018, Sect. 2), (cq)>Z11tk is still a subgaussian random variable, and with
probability at least 1�O(exp(�incoh

2 · d)), for certain constant C > 0,
���log

⇣
KW11+Z/

p
d(c

q
, tk)

⌘���  s · incoh + Cincoh = O(incoh).

Similar high-probability bounds hold for other terms. By the union bound over all possible choice
of vectors in B0

1 and B0
2 , we arrive at our claim.

33

Under review as a conference paper at ICLR 2024

Figure 56: Addition with carry, L1H7

34

