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A IMPLEMENTATION DETAILS

A.1 OBJECTS

DaXBench models a variety of deformable objects of different dimensionalities, ranging from 0-
dimensional liquid, 1-dimensional rope, to 2-dimensional cloth. The underlying deformation and the
dynamics vary distinctly for each dimension. In general, the lower the dimension is, the higher the
degrees of freedom (DoFs) of the system, thus the more complex modeling that system becomes. We
use two different representations to model the deformable objects to balance the modeling capacity
with its complexity: water and rope are modeled using Material Point Method (MPM), while the
cloth is modeled using a mass-spring system.

Modelling Water and Rope using MPM Material Point Method (MPM) demonstrates strong mod-
eling capacity and flexibility. MPM models the deformable objects as a set of particles; each particle
is represented by its position and some properties such as mass. The dynamics and the deformation
of the object are computed by simulating the interactions among all individual particles, conforming
to some pre-defined physics rules. This Particle-level representation and the dynamics simulation
allow MPM to model the object under severe deformation. We, therefore, choose to use MPM to
model water and rope that can undergo severe deformation, for they can exploit the model capacity
of MPM to its full potential.

Modelling Cloth using Mass-Spring System Cloth only undergoes limited deformation as it has
to conform to the canonical shape of the initial cloth through manipulation. This limited deformable
does not require the strong modeling capacity of MPM, which is computationally expensive. There-
fore, rather than modeling the deformation on the Particle-level, we choose to model the cloth using
the mass-spring system, which is a simpler model that uses the physical constraints as a prior.

A.2 CODE EXAMPLE

1 import numpy as np
2 from core.envs.registration import env_functions
3

4 env = env_functions["fold_cloth3"](batch_size=32, seed=1)
5 obs, state = env.reset(env.simulator.key_global)
6

7 actions = np.random.uniform(0, 1, (env.batch_size, env.action_size))
8 obs, reward, done, info = env.step_diff(actions, state)

Listing 1: Example of Running Cloth Environment

1 import jax
2 import numpy as np
3 from core.envs.registration import env_functions
4

5 env = env_functions["fold_cloth3"](batch_size=32, aux_reward=True)
6 obs, state = env.reset(env.simulator.key_global)
7 actions = np.random.uniform(0, 1, (env.batch_size, env.action_size))
8

9 @jax.jit
10 @jax.grad
11 def compute_grad(actions, state):
12 obs, reward, done, info = env.step_diff(actions, state)
13 return -reward.sum()
14

15 print("action gradients", compute_grad(actions, state))

Listing 2: Example of Computing Action Gradients via DaX

A.3 JAX TO PARALLELIZE

One major limitation of the existing simulators is the lack of support for highly paralleled sampling.
The key challenges for Deformable Object Manipulation are the complex governing equations and
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(a) Detect the active
region.

(b) Update the defor-
mation.

(c) Shift back the up-
date active region.

Figure 6: We demonstrate how to use the active region to reduce the computation complexity for the
simulation. Taking rope for example, the original environment, denoted as the black background, is
of size 128⇥ 128⇥ 128, while the active region, where the region that will be actively changed due
to the current deformation highlighted in red, is of size 32 ⇥ 6 ⇥ 32, as illustrated in (a). To avoid
updating all the particles in the environment, in ( b), we shift the active region to the top corner, the
origin of the environment, and update the dynamic and observation. Finally, in ( c), we shift the
updated active region back to align its original coordinates.

the enormous state space. The complex governing equations invalidate most of the analytical ap-
proaches since solving the complex governing equations is intractable. On the other hand, the suc-
cess of the sampling-based methods hinges on the reasonable coverage of the state space. The lack
of support for highly paralleled sampling to better cover the state space is a major impediment to
the works on Deformable Object Manipulation. DaXBench fills in this gap by implementing its
simulator using JAX, which supports highly paralleled sampling with great automatic differentia-
tion. Using our implementation, we can finish an iteration (both forward and backward pass) for
128 rollouts with 80 timesteps on a server with 4 2080-Ti GPUs in 3 seconds.

A.4 SAVING MEMORY

Lazy Dynamic Update DaXBench optimizes the time and memory consumption of MPM by only
updating the dynamic of a small region affected by the manipulation at each step. MPM models
and updates the state and dynamics on the Particle-level; its time and memory consumption is pro-
portional to the size of the environment, which can be arbitrarily large. Our insight is that, though
the deformable object can potentially interact with the entire environment, only a small region will
be affected at each time. This inspires DaXBench to optimize the time and memory consumption
of running MPM by exclusively considering the active region during the interactions. Using this
trick, DaXBench effectively reduces the computation time by two orders of magnitude on average.
Taking the rope for example, the original environment is of size 128⇥ 128⇥ 128. However, a grid
of size 32⇥ 6⇥ 32 is sufficient to cover the region of interaction between the environment and the
rope. Therefore, we first detect the active region of size 32 ⇥ 6 ⇥ 32, then we perform a linear
transformation to shift the active region to the origin, perform the update due to deformation and
interaction, finally we shift the updated active region to align with its original coordinates.

Checkpointing method DaXBench only stores the values of a few states (i.e. checkpoints), and
re-evaluates the sub-step gradients online during the back-propagation to reduce the memory con-
sumption for long horizon problems. The checkpointing method has been proven useful in saving the
memory consumption for differentiable simulations in many prior works (Qiao et al., 2021; Chen
et al., 2016; Griewank & Walther, 2000). To make the simulator end-to-end differentiable, every
value in the neural network that is computed during the forward pass has to be saved, as they are
needed to compute the gradient during the backward pass. The computation complexity scales up
quickly w.r.t. the length of the task horizon. This is a significant problem for our simulator for high
DoFs deformable object manipulation, as the memory required for each timestep’s update is enor-
mous compared to its rigid body counterpart. To overcome the large memory consumption issue,
DaXBench trade-offs the computation complexity slightly for large memory consumption improve-
ment: DaXBench only stores the values of a few states (i.e. checkpoints) at the forward pass; during
the backward propagation, DaXBench re-compute segments of the forward values starting from ev-
ery stored state in the reverse order sequentially for the overall gradient. With this trick, DaXBench
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Task Type Task PPO APG SHAC

High-level

Fold Cloth 1 0.40±0.13 0.36±0.06 0.34±0.07
Fold Cloth 3 0.21±0.11 0.19±0.09 0.22±0.22
Fold T-shirt 0.61±0.08 0.40±0.05 0.44±0.09

Unfold Cloth 1 0.72±0.01 0.42±0.02 0.50±0.03
Unfold Cloth 3 0.56±0.00 0.39±0.02 0.48±0.03

Rope Push 0.75±0.02 0.72±0.02 0.75±0.01

Low-level
Wipe Rope 0.25±0.10 0.83±0.01 0.66±0.03
Pour Water 0.27±0.02 0.27±0.02 0.28±0.00
Pour Soup 0.27±0.08 0.27±0.00 0.32±0.13

Table 4: Reinforcement Learning Methods Task Results. We report the mean and standard error over 20
random seeds for each entry.

now doubles the computation complexity, but saves an arbitrary amount of memory, depending on
the intervals of the states saved.

A.5 DISCONTINUOUS GRADIENT

As an end-to-end differentiable simulator, the effectiveness of DaXBench rests on the accuracy of
the gradient computed. We found that for deformable object manipulation, the action not in contact
with the object will cause the gradient to be discontinuous, which causes the estimate of the gradient
after this action to suffer from high variance and poor accuracy in the backward propagation. To
mitigate this problem, for every action input by the agent or the human user, DaXBench will perform
local adjustment such that the action will always make the gripper in contact with the deformable
objects. This ensures that our gradient is end-to-end continuous therefore improving the accuracy of
the estimated gradient.

B SIM-2-REAL GAP

To verify that the dynamics of our simulated tasks have high fidelity and a small Sim2Real gap, we
carry out a real robot experiment. We deploy CEM-MPC to the PushRope task on a Kinova Gen3
robot. CEM-MPC uses our DaX simulator as the predictive model. Given a state, CEM-MPC plans
the next best push action (x, y, z, x0, y0, z0). The state is estimated from a point cloud image, and
the Cartesian space push action is transformed to the joint space trajectory via an inverse kinematics
module. Note we are not verifying the sim2real gap caused by the inaccuracy of state estimation or
kinematics; we are interested in whether the dynamics of DaX can correctly guide the CEM-MPC
to succeed in the task. The experiment is included in our supplementary video.

C RL ALGORITHMS NUMERICAL EXPERIMENT RESULTS

We report the numerical experiment performance for the RL algorithms in Table 4. This is to sup-
plement the learning curve in the main text. These numerical results report the final performance of
the learning curves in Figure 3.

Imitation Learning

Task Type Task Transporter Transporter-RGB ILD Expert

High-level

Fold-Cloth-1 0.19±0.04 0.86±0.07 0.76±0.04 0.91±0.00
Fold-Cloth-3 0.40±0.05 0.56±0.25 0.82±0.05 0.89±0.00
Fold-T-shirt 0.46±0.02 0.83±0.05 0.59±0.11 0.85±0.00

Unfold-Cloth-1 0.48±0.01 0.76±0.06 0.64±0.03 0.87±0.00
Unfold-Cloth-3 0.30±0.00 0.70±0.06 0.52±0.02 0.87±0.00

Push-Rope 0.70±0.00 0.86±0.09 0.76±0.02 0.93±0.00

Low-level
Whip-Rope — — 0.70±0.06 1.00± 0.00
Pour-Water — — 0.32±0.03 0.91± 0.06
Pour-Soup — — 0.42±0.12 0.85± 0.00

Table 5: Task performance for the planning and imitation learning methods. We report the mean and
standard error for the policy/control sequences evaluated under 20 seeds.
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D TRANSPORTER WITH IMAGE AS INPUT

We reported the performance of two different versions of Transporter in Table 5: Transporter, which
uses 3D particles and projects them onto an image to form a height map; and Transporter-RGB,
which adds RGB channels and projects the particles onto the image plane, giving it white color with
a black background. We have found that an explicit process of rendering particles into RGB images
significantly enhances the performance of Transporter.
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