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Table 1: Model configurations for optical Transformers. M = 106.

Model n d h L Non-emb. Params

Tiny 1024 192 12 12 15M
Small 1024 384 12 12 40.6M
Base 1024 768 12 12 123.7M
Large 1024 1536 12 12 416.3M

Table 2: Pretraining hyperparameters for optical Transformer models. All models were trained with
the AdamW [15] optimizer.

Model Steps Batch lr β1 β2 ϵ Weight decay Dropout Schedule Warmup Stop

Tiny 90000 32 2e-4 0.9 0.999 1e-8 0.02 0.1 Cosine 2500 -
Small 90000 32 2e-4 0.9 0.999 1e-8 0.02 0.1 Cosine 2500 -
Base 90000 32 2e-4 0.9 0.999 1e-8 0.02 0.1 Cosine 2500 -
Large 90000 32 2e-4 0.9 0.999 1e-8 0.02 0.1 Cosine 2500 82500

A Optical Transformer Training Hyperparameters1

The optical Transformer models were pretrained on the Wikitext-103 [16] dataset and used the same2

tokenizer as GPT2 [20]. All models used Xavier uniform initialization [10]. The architectures are3

in Table 1. Embedding layers were initialized with a normal distribution with σ = 0.02. We used the4

AdamW [15] optimizer, with weight decay applied to parameters which were not embedding, gains,5

or biases. Dropout was applied after every linear layer (including those in attention), as well as on the6

attention matrix and after the softmax(QKT

√
dh

)V product in the attention calculation. The values of the7

parameters used for the training scheme are in Table 2.8

After pretraining the models were quantized via our 8-bit QAT scheme. For QAT we used the9

RMSProp optimizer [26]. The parameters we used for the training are in Table 3. To clamp weights10

and activations we employ two different approaches: first, we kept running statistics of minimum11

and maximum values with an exponential moving average (EMA, with parameter α) for every12

layer and use those to clamp. Second, we recorded the minimum/maximum statistic throughout13

the network for a forward pass to apply a clipping scheme. Specifically, we clamped weights and14

activations to percentiles of the maximum values collected for each layer. The outputs were either15

rounded to the nearest integer during QAT, or stochastically rounded to nearby values. Finally, for the16

Base-sized model we used to run the experiments, we directly used the lookup tables (LUT) instead17

of “simulating” the quantization of inputs and weights (though outputs are still quantized). Table 418

details our use of these various techniques in the models.19

For evaluation we used the perplexity (PPL) metric to measure the language modelling performance20

on Wikitext-103. We evaluated the perplexity over the entire validation set, and ran the model with21

context length 1024 (the same as in training) and a 1024-token stride length.22

B ONN Experimental Procedure23

B.1 Experimental Setup24

Our setup is a SLM-based matrix-vector/vector-vector multiplier. The setup is shown in Figure 125

with a simplified illustration in Figure 2, and works as follows: Vectors corresponding to the inputs26

and weights are rearranged into squares of pixels and loaded onto the display and SLM respectively.27

They are aligned such that the light from display pixels will reach the corresponding pixels on the28

SLM. First, light from the display enters into the polarizing beam splitter (PBS), and reaches the29

SLM through a half-wave plate (HWP) which rotates its polarization. The phase is then modified30

by the SLM and reflected back through the half-wave plate, rotating the polarization again based31

on the phase difference. Then, the PBS only admits light of a certain polarization along one of its32

arms, aimed at a camera for detection. Summation of the output pixels is performed digitally. This33

SLM–HWP–PBS arrangement effectively creates an amplitude modulating SLM, where the output at34

each pixel is the element-wise product of the input pixel and corresponding weight pixel.35
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Table 3: Quantization aware training hyperparameters for optical Transformer models. All models
were trained with the RMSProp [26] optimizer. Quantization parameters are in Table. 4.

Model Steps Batch lr α ϵ Weight decay Dropout Schedule Warmup Stop

Tiny 7327 64 1e-5 0.99 1e-8 1e-5 0.1 Cosine 2500 -
Small 7327 64 1e-5 0.99 1e-8 1e-5 0.1 Cosine 2500 -
Base 7327 64 1e-5 0.99 1e-8 1e-5 0.1 Cosine 2500 5500
Large 7327 32 1e-5 0.99 1e-8 1e-5 0.1 Cosine 2500 5500

Table 4: Hyperparameters for optical Transformer Quantization. We perform QAT with both a
percentile-clipping approach and by clamping based on an exponential moving average (EMA) of
model statistics with factor γ. For the Base-sized model that is used in our experiments (LUT-Base),
we use lookup tables (LUT) for inputs and weights instead of quantization.

Overall Config EMA Attention Clipping Feed-Forward Clipping
Model Precision Rounding γ Input1 Input2 Output Input Weights Output

Tiny 8-bit Stochastic - 99.99% 99.9% 99.9999% 99.99% 99.9% 99.9999%
Small 8-bit Stochastic - 99.99% 99.9% 99.9999% 99.99% 99.9% 99.9999%
Base 8-bit Stochastic - 99.99% 99.9% 99.9999% 99.99% 99.9% 99.9999%
Large 8-bit Stochastic - 99.99% 99.9% 99.9999% 99.99% 99.9% 99.9999%

LUT-Base LUT Stochastic - 99.99% 98% 99.9999% 99.99% 99% 99.9999%
Tiny 8-bit Deterministic 0.999 - - - - - -
Small 8-bit Deterministic 0.999 - - - - - -
Base 8-bit Deterministic 0.999 - - - - - -
Large 8-bit Deterministic 0.999 - - - - - -

The OLED display has multiple color channels and a broad spectrum. For easier modulation by the36

SLM, we used a band-pass filter and only green light.37

The components we used are:38

• Organic light-emitting diode (OLED) display (Google Pixel 2016)39

• Reflective liquid-crystal modulator (1920-500-1100-HDMI, Meadowlark Optics)40

• Half-wave plate (PH10ME-532, Thorlabs)41

• Polarizing beam splitter (CCM1-PBS251, Thorlabs)42

• Zoom lens for imaging onto SLM (Resolv4K, Navitar)43

• Zoom lens and objective lens for imaging onto detector (1-81102, Navita and44

XLFLUOR4x/340, Olympus)45

• Band-pass filter (FF01-525/15-25, Semroc)46

• Camera for detection (Prime 95B Scientific CMOS Camera, Teledyne Photometrics)47

This setup works as a good bench for testing the precision of optical Transformers by performing48

optical dot products involved in attention and feed-forward layers. Even though the optical dot49

products were performed one at a time, it is sufficient for showing that Transformer operations50

can run with the accuracy of ONNs, since matrix-vector and matrix-matrix products are merely51

collections of many dot products run in parallel.52

B.2 Calibration and Lookup Tables53

We used several techniques to reduce errors, map inputs to SLM/display values, and to convert54

detected outputs back to neural network values.55

First, we developed a specialized data-pixel encoding scheme to reduce systematic errors. We noticed56

that a large source of error was with a limitation of our hardware—in particular the SLM pixels have57

cross-talk (pixels may affect their neighbors if they have very different values) and misalignment58

in the experimental setup may lead to corrupted outputs. To help with these issues, we created59

“macropixels”—each input element (and weight) does not occupy one pixel on the display (SLM) but60

rather is mapped to a 3x3 grid of pixels, all with the same value. For the attention layers, we used 5x561

macropixels for the results we report, but later discovered that with 3x3 the performance is essentially62

the same. We also rearranged vectors into square blocks of pixels so that significantly nonzero63
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Figure 1: Photo of experimental setup used for running Transformer dot-product operations. Inset:
simplified illustration of the experimental system. Spatial light modulator (SLM) + half-wave plate
(HWP) + polarizing beam splitter (PBS) arrangement is effectively an amplitude-modulating SLM.
The system works as follows: in our experiments, a vector is loaded as pixels on the organic light-
emitting diode (OLED) display, and weights on the SLM. The input light enters through the PBS
towards the SLM, passing through the HWP twice as the SLM reflects it. The SLM and HWP together
rotate the polarization of the light, such that the amount reflected by the PBS towards the detector for
each pixel is roughly the product between the pixel value and the corresponding weight on the SLM.
The summation of these element-wise products by the detector yields the dot product.

Display Amplitude SLM

Input Vector Weights

Rearrange to block Element-wise products summed
at detector

Output

Calibration Curve

Convert measurement to
neuron value

Figure 2: Simplified illustration of experimental setup operation. Weights are loaded and rearranged
into a block on spatial light modulator (SLM) to prevent crosstalk between pixels of drastically
different values. Data is rearranged on display accordingly. Measurements are looked up against
calibration curve to obtain the final output value.

weights are nearby each other Figure 2. For the vectors to better fit in the center of the field of view64

(where there is less distortion/misalignment) we computed the dot products using only the 400 largest65

weight elements (the corresponding input elements are loaded). While this may introduce some66

inaccuracy in the final results, we found that the benefits of computing the element-wise products67

more accurately outweigh the drawbacks of pruning the weights; the outputs were still quite accurate68

to the ground-truth dot-product values (see main text, Figure 3). We suspect that this was the case69

because:70

• Transformer weights are not entirely dense; some weights were already zero.71

• Because our setup only supports non-negative data anyway, we use the four-pass approach72

(Section 3.3, main text). This means that for any given dot product, roughly half the weights73

and activations will be zero before considering the previously mentioned sparsity.74

• Meanwhile, a second consequence of this four-pass approach is that roughly half of activa-75

tions will be zero as well, possibly rendering some of the pruned weights irrelevant.76
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• Transformers still perform well when pruned, and luckily larger models can be pruned more77

heavily [13]. While our pruning method is quite basic, the number of weights pruned was78

light (ie. < 75%) compared to what is possible with more advanced methods.79

This approach was not necessary for attention calculations, since the dot products were sufficiently80

small to fit them entirely (64 elements).81

Next, we consider the lookup tables (LUTs) of the display and SLM in the setup. In order to optimize82

the experimental results, the model used for experiment was trained to be aware of the realistic,83

discrete mappable values supported by the system. The display has a LUT with 256 unique levels84

(1000 levels total, but many are the same as others) and the SLM has roughly 128 unique levels (25685

total). So they are roughly capable of 7 and 8 bit precision. The SLM also cannot fully extinguish86

input light—the minimum modulation is 2% of the maximum transmission. Thus, the minimum87

absolute values of the weights were mapped to 0.02 instead of 0.88

After applying these approaches, we finally collected the calibration curve, which maps the output89

intensity measurements to neuron values in the neural network and allows us to determine the90

experimental setup’s systematic error. To do this we sampled randomly inputs and outputs of91

the layers we wished to run, computed their dot products both digitally and in experiment, and92

created a data set of experimental measurements and ground-truth-digital dot-product outputs. We93

then performed linear regression to find a mapping between experimental output and the correct94

values, effectively creating another lookup table. Then when future dot products were computed95

experimentally, the output was passed to this linear regression model (or it can literally be stored as a96

lookup table) to get the output. We used many photons and averaged outputs across multiple shots97

for each input, eliminating shot noise—any remaining error in this calibration scheme we defined as98

the system’s systematic error.99

It is important to note that in general other optical systems might have different causes of error from100

ours, but the overall accuracy of our system is representative of a typical ONN nowadays.101

B.3 Model Design Optimization102

Transformers tend to have large dynamic ranges in their activations and weights [3]. In particular, we103

found that systematic error is proportional to some characteristic amplitude of the output. So, because104

it scales roughly with the sizes of outputs, having large outlier values can increase the systematic105

error and worsen the calibration for all other values in the representable range. Furthermore, after106

quantization in a naive, linear scheme, large outliers mean that huge ranges of outputs which are107

seldom used are assigned to many of the quantization levels, while the rest of the small, common108

outputs are squashed into few buckets—so the model precision is poor. This can be an issue when109

quantizing any deep learning model, but was exacerbated here by those systematic errors and the110

fact that the lowest levels of the weights are 0.02 and not 0.0. Therefore, we opted for an aggressive111

clipping scheme and the clamped activation ReLU6 when training the model to be run (Appendix112

A, LUT-base model); they reduce the dynamic range of inputs and weights and we found that they113

drastically improved the ONN’s ability to run Transformer operations with smaller error. Having114

fewer values in the 0.02 bucket of the SLM LUT also improved QAT training stability significantly.115

Even though the non-zero light extinction at 0.02 is caused by the specific SLM in our setup, such116

issues may happen with other optical implementations made of elements with finite extinction or117

resolution, and here we described a method to mitigate such issues by modifying training methods.118

B.4 Transformer Dot Product Samples119

While the speed and parallelism limitation of our setup made it intractable to run an entire Transformer120

model on it, we attempted to sample dot products to run that were representative of the range of121

possible activation/weight statistics in the model. That way, our results would be very representative122

of what running the full model would be like. In particular, we found two ways in which statistics123

throughout the model vary: the statistics change with depth (shallow and deep layers behave differ-124

ently) and operation type (matrix-matrix multiplication in attention has different statistics from MLP125

layers). So, given our limited ability to run operations on the setup, we sampled roughly 10000 dot126

products from the first (QKT ) attention operation and second MLP layer of the first and last encoder127

layers of the model. The inputs to the whole model were samples from the Wikitext-103 dataset. Our128

approach captures the range of statistics throughout a model’s different components, over its depth,129
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Table 5: Simulated optical Transformer precision ablation. Input precision is degraded by subsampling
from lookup table (LUT), while output is quantized. Input precision is approximate, as LUT has
1000 levels, not 1024. Bold: most compressed model found in our ablation with performance very
close to the baseline.

Input Precision (LUT) Output Precision Val. Loss

∼ 10 bits 32 bits 3.0059

∼ 9 bits 32 bits 3.0057
∼ 8 bits 32 bits 3.0054
∼ 7 bits 32 bits 3.0039
∼ 6 bits 32 bits 3.0034
∼ 5 bits 32 bits 3.0017
∼ 4 bits 32 bits 3.0111
∼ 3 bits 32 bits 3.1223
∼ 5 bits 8 bits 3.0032
∼ 5 bits 7 bits 3.0074
∼ 5 bits 6 bits 3.0335
∼ 5 bits 5 bits 3.3966

and when processing a real task’s data. The second MLP layer has dot product size 4d, making it the130

hardest to run experimentally.131

In sampling the dot products, we tried to sample from both operands equally. For example, one132

could sample 1000 dot products by taking a single input vector and 1000 weight matrix vectors, and133

vice-versa, but choosing random vector pairs captures dot products involving different tokens and134

weights. This is important because Transformer output sizes, particularly the outlier activation values,135

are token-dependent [3]. To maintain this balance, we sample equal rows/columns for both operands.136

For attention layers we sample 100 from each; For linear layers, we sampled 56 rows from the input137

data and 200 columns from the weight matrix WT , where the product being computed is xWT .138

C Simulated Precision Ablation Study139

To further study how the optical Transformer can perform inference at lower precisions, we conducted140

a simple ablation on the input and output precisions used at inference, on the 8-bit-QAT base-sized141

model with LUT. We opted to leave the weights at 8-bit precision, since in-place weights are not a142

significant energy cost, and do not take more space/memory in these analog optical systems. In Table143

5 is the performance of the model at lower precisions. With 5-bit input and 7-bit output precision, the144

model performs as well as the baseline. The reported precision values for the LUT are approximate,145

since the LUT has 1000 levels instead of 210 = 1024 levels.146

When using the LUT, it is also not possible to directly change the precision of the input. Instead, we147

employed a subsampling scheme where the precision is degraded by rounding to every n’th integer148

level before using the LUT, where n is a power of 2 and represents a reduction in the effective bit149

precision. The LUT of our display has 1000 levels, some levels have the same value, and we simulate150

the model without added noise. So we say that the original precision is initially at most 10 bits151

(210 = 1024).152

D ONN Energy Calculation153

The models we used to estimate the energy use of ONN systems are in Table 6. We used a variety of154

real models that have been introduced by other works, and then designed our family of hypothetical155

future models FUTURE-* in a similar fashion, keeping a reasonable sequence length, increasing the156

embedding dimension drastically, and following the trend of recent large models like PaLM [7] and157

MT-NLG [23] of increasing the ratio d/h, which results in favorable energy calculations due to the158

lower fraction of memory operations in attention.159

The calculation of energy costs for ONNs requires consideration of the entire system design and the160

costs of the surrounding electronics—since the optical computation itself is so cheap the electronics161
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Table 6: Designs of models used for energy estimates. Transformers have embedding dimension d,
process sequence length n, use h attention heads, and have L layers. M = 106 parameters.

Model n d h L Parameters Reference

GPT2 1024 768 12 12 117M [20]
GPT2 1024 1024 16 24 345M
GPT2 1024 1280 20 36 762M
GPT2 1024 1600 25 48 1.5B
Megatron 2048 1536 16 40 1.2B [22]
Megatron 2048 1920 20 54 2.5B
Megatron 2048 2304 24 64 4.2B
Megatron 2048 3072 32 72 8.3B
GPT3 2048 768 12 32 125M [4]
GPT3 2048 1024 16 24 350M
GPT3 2048 1536 16 24 760M
GPT3 2048 2048 24 24 1.3B
GPT3 2048 2560 32 32 2.7B
GPT3 2048 4096 32 32 6.7B
GPT3 2048 5140 40 40 13B
GPT3 2048 12288 96 96 175B
Turing-NLG 1024 4256 28 78 17B [21]
MT-NLG 2048 20480 128 105 530B [23]
Chinchilla 2048 640 10 10 73M [11]
Chinchilla 2048 1024 16 20 305M
Chinchilla 2048 1280 10 24 552M
Chinchilla 2048 1792 14 26 1.1B
Chinchilla 2048 2048 16 28 1.6B
Chinchilla 2048 3584 28 40 6.8B
Chinchilla 2048 8192 64 80 70B
PaLM-like 2048 4096 16 32 8B [7]
PaLM-like 2048 8192 32 64 62B
PaLM-like 2048 18432 48 118 540B

FUTURE 2048 40960 80 120 2.4T This work
FUTURE 2048 81920 128 200 16T
FUTURE 2048 163840 160 400 129T
FUTURE 2048 655360 512 800 4q

account for nearly all of the energy cost. The way the energy is accounted for is as follows: The162

energy Eload can be broken down into three components, related to the energy of the cost of reading163

from memory Eread, digital-to-analog conversion (DAC) EDAC, and modulation to generate the light164

Emod:165

Eload = Eread + EDAC + Emod. (1)

Detection energy consumption Edet can broken down in a similar fashion, where166

Edet = Edetector + Eamp + EADC + Ewrite (2)

represent the costs of detecting a signal, amplifying the detected signal, performing analog-to-digital167

conversion, and writing to memory respectively. There is also a cost of maintaining the weights in168

a weights-in-place system, which we call Emaintain. Because this cost scales per element, it is a169

per-MAC cost. But based on values from efficient commercial SLM systems, it is sufficiently small170

(and amortized by a large clock rate) that even the largest models we do estimations for are not171

bottlenecked. For optical energy, we take 1 eV (single-photon energy at 1240 nm). We started with172

using our measured 8-bit-performance photon count of 1500/MAC for the smallest model (d = 192)173

and rescaled the value for larger ones using the constant-per-dot-product trend which we know our174

simulated models can match or beat.175

The assumptions we used were that weights would be loaded from off-chip memory like DRAM (in176

the case of a chunked-weights strategy; for a full weights-in-place, one-shot approach this cost does177
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not exist), and that the system uses large amounts of SRAM for activations [9]. We assumed that the178

system only needs 5 bits worth of input precision and 7 bits worth of output precision, per the results179

of our ablation on the base-sized model. We still assumed 8-bit memory accesses for convenience.180

The actual costs for the data access and weight maintenance were assumed to be these values:181

• Eread = 1 pJ/bit for off-chip memory [25], and 0.3 pJ/bit for SRAM. The SRAM estimate182

is based on results for DNN accelerator measurements with 9.55 pJ/32-bit access [19, 8],183

and cutting edge/near-future assumptions for data transport from SRAM/cache [9]. [12]184

estimates 14 pJ per 64-bit access, or roughly 0.22 pJ/bit, for a recent TPU architecture.185

• EDAC = 10 pJ per 5-bit sample @ 10GHz—this is achievable with 100mW at 30.1dB186

SFDR [5].187

• Emod = 1 fJ/bit @ 110GHz with thin-film lithium-niobate modulators [28].188

• Eamp = 2.4 pJ per access. A transimpedance amplifier can run at 24 mW at 70 GHz [1]. We189

will just assume 10 GHz. 24mW / 1010 = 2.4 pJ per element.190

• Edetector is negligible compared to Eamp. For example, [17] calculates the cost of detection191

as the capacitive discharge, 1
2CV 2, with capacitance C ∼ 1 fF and voltage V = 0.5 V. This192

results in <500 aJ of energy consumption per detection. The cost is therefore negligible193

compared to amplification (Eamp).194

• EADC = 3.17 pJ per 7-bit sample. 10 Ghz, need 7-bits of precision, so 128 conversion steps195

per sample – Achievable with 24.8 fJ/c-s [14] (24.8 fJ × 128 = 3.17 pJ per 7-bit sample).196

• Ewrite = Eread. Actually, write access was measured to be cheaper than read access in [8],197

but we use Ewrite = Eread as a simple, conservative assumption.198

• Emaintain = 0.002 fJ/MAC. Assuming 2W for operation of a 10MP SLM, with inputs199

shone at 10 GHz (each pixel performs one MAC every cycle). There is not much information200

SLM power consumption for maintenance of a fixed pattern on the LCD panel, though more201

typical LCD displays which update can operate in the ∼1W regime. For example, [24]202

consumes 30mW with 180000 pixels, which would scale to 1.67W with 10MP (at worst,203

multiple SLMs/LCDs could be used in order to scale up).204

E Breakdown-Of-Costs For Estimated ONN Energy Usage205

Figure 3: Breakdown of optical Transformer energy costs by energy type at 8-bit operation. Data
access costs are dominant due to the high costs of DAC/ADC, but weight maintenance becomes
important for large models.
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Figure 4: Breakdown of computing costs for optical Transformer models. Left: fraction of total
compute used by digital operations, attention, and feed-forward components. Feed-forward layers
account for most of the compute. Right: breakdown-of-costs for models by layer. The energy costs
of attention operations is expensive. “Ele *” operations: electrical costs of loading (Ld), detecting
(Dt), or both for data for the operation. Operations related to attention computation (ie. QKT ) are
expensive for little compute. Functions computed digitally have their energy costs estimated as the
cost of reading and writing to memory the required data.

In Figure 3 we see that data access costs, that is costs per element loaded/stored in memory, are most206

expensive. In particular, the cost of ADC and DAC are the leading contributors to the access costs,207

though since their cost is exponential in the bit precision, one might imagine that a future, optimized208

Transformer running at lower precision than our assumptions would have energy costs dominated209

by the actual SRAM memory costs. Also, for very large models, since the energy from weight210

maintenance scales with the number of MACs, it eventually will dominate if model sizes scale past211

that of FUTURE-4q. But future hardware would reduce Emaintain through improved electronics or212

higher clock speeds allowing for lower energy per MAC. Finally, the contribution from optical energy213

is vanishingly small, a consequence of the efficient photon usage scaling that we found Transformers214

can leverage. Were it not for this, the cost of actually performing the MACs would be orders of215

magnitude larger than everything else, resulting in energy usage that scales the same way as digital216

systems’.217

Breaking down the sources of compute and energy costs in Transformer models running optically218

further illustrates how aspects of model/system design affect energy usage. The breakdown of219

compute and energy costs by source is in Figure 4. We find that as models get larger the feed-forward220

layers require most of the computation, but that the energy of data access in attention is still very221

expensive. This is because of the need to save/load many attention matrices from memory, and222

the fact that a weights-in-place scheme cannot be used for the matrix-matrix products because the223

products are between activations. Of course, this also means that there are more activations to load.224

In total, this means that attention layers have high energy costs for small amounts of computation.225

Thankfully, and interestingly, existing model design trends have moved towards focusing much harder226

on feed-forward layers, and so for the largest real (and our hypothetical future) models the fraction of227

energy cost taken by attention is low. Finally, we note that the operations we assume run on digital228

computers - such as nonlinear functions, in gray - do not account for much of the total energy cost229

(though they too are a small fraction of the total compute).230
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Figure 5: Energy usage estimates of forward pass for Transformers running on optical hardware,
under future electronics energy cost assumptions. The energy advantages over our estimate for the
current-day NVIDIA A100 GPU are larger than under our original assumptions (main text, Figure 5).
M = 106, G = 109, T = 1012, q = 1015 parameters.

F Future ONN Energy Consumption231

As optical accelerators are an emerging technology and as Transformer models continue to scale over232

time, it is worth considering how ONNs might improve over the next several years. For example, an233

interesting question to ask is how well future ONNs will do by the time it is possible to run a large234

model like FUTURE-4q. To investigate this, we estimated the energy costs of various Transformer235

models running optically again, but with the following changes and assumptions:236

• Emaintain = 0—Future weights-in-place hardware will need effectively no energy to main-237

tain weight information (for example, one might consider the usage of phase change materials238

[27]).239

• EDAC and EADC are 1/32 the size—we assume that electronics could achieve a 2× improve-240

ment in fJ/c-s efficiency, while future advancements in model compression allow for 4-bit241

Transformer models, which are much cheaper since DAC and ADC costs scale exponentially242

with the number of bits [18].243

• Eread and Estore are 1/5 the size—there is already a growing recognition of the fact that244

AI accelerators will need high efficiency and large quantities of SRAM and DRAM in the245

future [9, 6].246

• Eamp 10× cheaper (there are already cheaper trans-impedance amplifiers than our conser-247

vative estimate here, and receiver-less configuration without any amplifier has also been248

demonstrated [2]).249

Under these assumptions, ONNs become far more efficient, highlighting that improvements to250

electronics will impact ONNs, and not just competing digital hardware. The energy scaling (Figure 5)251

is shifted downward for optics compared to under our previous assumptions, leading to over 1900×252

and 130, 000× advantages over the current A100 GPU for MT-NLG and FUTURE-4q models253

respectively. Of course, by the time this is possible, GPU efficiency will have improved significantly254

as well, and we are comparing a 4-bit accelerator to the 16-bit performance of the A100. It is difficult255

to predict the future efficiency of GPUs at lower precision, but it is clear that ONNs can benefit from256

improvements to electronics and low-precision inference.257
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G Scaling ONNs: System Specifications and Communication Costs in258

Multi-Processor ONN and GPU Setups259

Implementation of a real ONN for large models might be difficult because the amount of hardware260

needed to maintain all the weights is exceedingly large. In Table 7 are the requirements for hardware261

to run the largest future model. To compute the number of weights/elements, we selected the largest262

MLP layer in the model, since that requires the most space for weights and activations. While263

detector and memory requirements are achievable, the number of required cores—each an optical264

component capable of performing 10M multiplications with weights—is enormous. There are some265

approaches to remedy this kind of memory issue in both GPUs and ONNs, and we are interested in266

their hardware-time-energy tradeoffs for ONNs.267

One solution is to introduce chunking, where only a portion of the weights are loaded at a time, and268

the inputs are passed through. Then, the amount of time it takes to run is increased by a factor of269

the number of chunks. This also impacts the optical system’s energy advantage over digital ones in270

two ways. First, the weights must be loaded, but the cost can be amortized via reuse with batched271

inference. This comes at the expense of latency. This is a new kind of tradeoff, since digital systems272

cannot reuse weight data for free. Second, for each weight chunk, all inputs must be reloaded;273

changing the chunk number trades energy efficiency for lower hardware requirements. These energy274

tradeoffs are illustrated in Figure 6; other factors dominate energy usage until the chunk number is275

large and chunking becomes the bottleneck.276

Realizing large models with GPUs will likely also require a multi-GPU strategy, which will incur277

overhead over the peak performance of a single GPU. We find that with a simple model of communi-278

cation costs—modelling the activation reloading in both GPU and ONN systems—that ONNs can279

retain some of their advantages, dependant on how much system memory (or maximum number280

of weight elements) is available per-processor. We created a simple model to estimate the cost of281

this approach in GPU systems. In GPU systems, instead of splitting a model over time, the model282

may instead be split over multiple GPUs. This introduces an analogous tradeoff to the activation283

reloading in ONNs due to communication costs: if each GPU holds some chunk of weights, then284

after every layer, the outputs of multiplying the inputs with each chunk must be broadcasted to every285

GPU in an all-to-all fashion. This is in essence an all-reduce operation—after every layer, the outputs286

from all GPUs must be copied onto all GPUs. In total, this means the total number of activations287

is loaded k times, where k is the number of GPUs. As a crude but conservative estimate of these288

costs, we modeled this by taking the cost of running the entire model on one GPU, and then adding289

the energy cost of loading the activations from DRAM, multiplied by the number of chunks (GPUs).290

This is likely an underestimate, as broadcasting data across GPUs in a real setup requires sending291

data electronically over much longer distances than required for DRAM access, which would be292

expensive.293

To determine the number of chunks, we tested multiple assumptions about device memory. We294

assumed a value for the amount of memory that can be used to store weights and take the total number295

of weights for each model divided by this memory capacity to determine the number of chunks to be296

used.297

With these models, we found that too much chunking is detrimental to ONN performance, but that298

there is still some energy advantage to be had if it is used sparingly (Figure 6). In Figure 7 (top)299

are the energy cost estimates assuming a fixed memory of 100M weights (ie. 100MPixel SLM, or300

RAM with 100MB capacity if each weight is one byte). We assumed that for GPU, the cost of301

communication is at least that of DRAM-level communication due to the physical distances between302

GPUs. The curves for GPUs bend upward as the communication costs begin to take over, as do the303

largest models running optically. The ONNs still maintain an advantage, but the advantage stops304

growing with model size. Looking at the energy advantage illustrates this idea more clearly: up to a305

certain model size the advantage is increasing, then as the model size reaches the memory limit it306

begins to level off, and then the advantage begins to shrink as the cost of chunking takes over. For307

a small range of model sizes near this peak, the advantage is maintained, suggesting that a small308

amount of chunking may be useful before it quickly diminishes the energy advantage.309

The optimal configuration for ONNs, obviously, is to have enough memory (cores which have weights310

fixed in place) so that chunking is not necessary. When plotting the advantages for larger memories311

(and therefore fewer chunks), the advantage gets better, and larger models become worthwhile to312
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Single-Pass

Figure 6: Optical energy advantage vs A100 (FUTURE-4q). When chunking, the cost of loading
weights is amortized by increasing batch size, but the overall performance is limited by large numbers
of chunks because of input data reloading.

run. In hindsight this conclusion makes sense: the benefit of ONNs is their ability to copy data313

(“optical fan-out”) for free for parallel computation, and so reducing this in favor of repeated memory314

accesses removes exactly the mechanism that gives optics-based systems their advantages. This also315

suggests that an “optical memory” from which fixed data can be accessed for free (or significantly less316

than re-access through electronics) may solve this problem, allowing for more scalable ONN design317

without huge amounts of hardware for weights. Currently, optics still has an advantage when using318

multiple cores because in principle the data could be fanned out across cores, while GPUs must pay319

communication costs in multi-processor setups. With a fan-out/fan-in design that can collect/spread320

a vector across cores, the efficiency of an entirely weights-in-place system is fully that of a single,321

large core.322

Table 7: Requirements for optical accelerator running feed-forward layer (embedding dimension d,
sequence length n) without chunking at 8-bit precision. The requirement of many cores to maintain
weights for matrix-vector products (MVM) is high, and we assume the ONN system requires static
RAM (SRAM) for saving and loading activations.

Model Input Vector Elements Detectors MVM Cores (107 weights each) SRAM (activations)

FUTURE-4.1q 2.6 × 106 2.6 × 106 170,000 5.37 GB
FUTURE-129T 6.55 × 105 6.55 × 105 11,000 1.34 GB
FUTURE-16T 3.28 × 105 3.28 × 105 2,700 671 MB
FUTURE-2.4T 1.64 × 105 1.64 × 105 671 336 MB

PaLM-like-540B 7.37 × 104 7.37 × 104 136 151 MB
MT-NLG-530B 8.19 × 104 8.19 × 104 168 168 MB
GPT3-175B 4.91 × 104 4.91 × 104 61 100 MB

General 4d 4d 4d2/107 4nd
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100M Weights Memory 1G Weights Memory 10G Weights Memory 100G Weights Memory

100M Weights Memory

Figure 7: Energy estimates assuming a fixed processor memory size and chunking. Top: estimated
energy scaling plot for Transformer models running on optical and digital hardware with 100MB
of memory. As models get larger, both optical and digital systems have an upward bend in energy
consumption trends, driven by communication/input-reloading-from-chunking costs. Bottom: energy
advantage scaling for different memory sizes. As the memory increases, there is a maximum energy
advantage for optics over NVIDIA A100 and corresponding model size before chunking costs take
over. M = 106, G = 109, T = 1012, q = 1015 parameters.
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Constant photons/MAC 

Constant photon total

Unfavorable Clipping

Figure 8: Behavior of optical Transformer models with varying photon usage with percentile clipping
scheme. Left: Wikitext-103 validation set perplexity (PPL) versus embedding dimension d and total
photons usage. 8-bit quantized digital model performance levels in dashed lines. Middle: Percent
change in perplexity from ideal 10000 photon count performance still exhibits truncated power-law
scaling with photons per multiply-accumulate (MAC) operation for all models. Right: Scaling of
photon usage for maintaining the 8-bit digital performance versus model size. Dashed lines: constant
photons per dot product (optical scaling) and constant photons/MAC analogous to digital scaling.
Note that unlike for our results in the main text, smaller models beat the constant-dot-product-total
scaling, but the largest model exhibits poor efficiency, as the clipping scheme used here was not well
suited for it.

H Effects of Training and Quantization Scheme on Optical Scaling323

Our results demonstrating favorable scaling of photon usage in Transformers show that they can324

be optically efficient, but in general the photon usage is affected by the training scheme and other325

factors like quantization. This is because approaches for optimization quantization, regularization,326

etc. affect the statistics of weights and activations in the network, which unlike digital systems, are327

tied to the resource usage. The main example of this is with weights: they are normalized before328

being loaded onto an ONN accelerator, and so large outliers may lead to many weights being near 0329

after normalization—admitting fewer photons through to the detector. This has a direct impact on the330

output SNR, and so depending on weight statistics more or fewer photons may be needed in order to331

run at the same precision.332

To discover how a different scheme might affect photon usage, we analyzed the optical scaling of our333

quantized optical Transformer models with percentile clipping instead of clamping based on EMA334

statistics. We applied the same clipping to all models (details in Table 4). These clipped models have335

familiar trends in their language modelling performance versus photon numbers, but we notice key336

differences in the photons needed to maintain 8-bit digital performance: first, the absolute number337

of photons needed for the smaller models (120 and 40 versus 340 and 170 of our unclipped scheme338

for d = 192, 384) is much lower—this indicates that clipping of large weight values leads to more339

transmission after normalization. Second, the scaling is inconsistent, with smaller models needing340

significantly fewer photons than the expected 1/d scaling, but then requiring many photons again341

for the largest model. The clipping scheme degraded the performance of the large model. Of course,342

this could be improved by designing a better scheme for the largest model such that it requires few343

photons; these results illustrate how differences in the training and quantization recipe could lead to a344

variety of outcomes, and why efficiency is achievable but not an automatic guarantee for any scheme.345
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