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A APPENDIX

This appendix provides more details about the experiments and its results.

A.1 MORE EXPERIMENTAL RESULTS AND DETAILS

A.1.1 DETAILS OF THE SEARCH SPACE DEFINITION

We adopt the following 7 operations in all our experiments: 3 × 3 and 5 × 5 separable convolutions,
3 × 3 and 5× 5 dilated separable convolutions, 3 × 3 max pooling, 3 × 3 average pooling, identity,
and zero.

The network is formed by stacking convolutional cells multiple times. Cell k takes the outputs of cell
k − 2 and cell k − 1 as its input. Each cell contains seven nodes: two input nodes, one output node,
and four intermediate nodes inside the cell. The input of the first intermediate node is set equal to
two input nodes, and the other intermediate nodes take all previous intermediate nodes’ output as
input. The output node concatenates all intermediate nodes’ output depth-wise. There are two types
of cells: the normal cell and the reduction cell. The reduction cell is designed to reduce the spatial
resolution of feature maps located at 1/3 and 2/3 of the total depth of the network. Architecture
parameters determine the discrete operation value between two nodes. All normal cells and all
reduction cells share the same architecture parameters αn and αr, respectively. By this definition, our
method alternatively optimizes architecture parameters (αn, αr) and model weight parameters w.
Besides the search space, the other details of the system design can be found in our source code.

A.1.2 DETAILS OF THE HETEROGENEOUS DISTRIBUTION ON EACH CLIENT (NON-IID)

In this work, we performed experiments on CIFAR10 and gld23k datasets. For CIFAR10, we explored
two types of non-IIDness, label-skewed and lda distribution. Table 3 shows the lda data distribution
used in our experiment of global model search Via FedNAS. We can see that the sample number of
each class in each worker is highly unbalanced. Some classes in a worker even have no samples, and
some classes take up most of the proportion (highlighted in the table). For personalized experiments,
we used two types of heterogeneity settings shown in Figures 4 and 7. As it can be seen that the
distribution setting of 7 is challenging given not that the number of images per client varies but also
the number of images belonging to a specific class.

Besides CIFAR10, we also evaluated personalized experiments on gld23k dataset. Since gld23k
dataset have 203 clients data and some client’s can have as low as 30 images and splitting it further
in training and test dataset would make it insufficient for efficient training. Therefore, out of 203
clients, we only use those client’s data which have images greater than 200. This condition would
provide us sufficient data to perform search/training at each client and further test local inference to
record client’s validation accuracy. Figure 8 plots the image and label allocation per client for gld23k
federated dataset under this setting. As it can be seen the distribution is non-IID especially in terms
of label allocation per client.

A.1.3 RESULTS FOR CIFAR10 (LDA) AND GLD23K

Figure 9 illustrates the results of comparison of FedNAS with FedAvg (with local adaptation),
perFedAvg, Ditto and FedNASwith lda distribution of cifar10 (which is given in Figure 7). It can
be seen that FedNAS outperforms all these methods. Since the number of rounds of convergence were
for these methods, we plotted these figures separately for clarity. The best accuracy for this setting
of FedNAS is 90.64% whereas FedAvg yields accuracy of 86.1%. On the other hand, we achieve
88.0% and 89.4% average validation accuracies of all the clients with Ditto and perFedAvg,
respectively. Likewise, for gld23k we obtain 56.45%, , 45.28%, 43.92% and 34.5% accuracies with
FedNAS, Ditto, FedAVg with Local Adaptation and MAML, respectively. The accuracy
gap for gld23k between Ditto and FedNAS is more than 10%.

A.1.4 HYPERPARAMETER SETTING

We report important well-tuned hyperparameters used in our experiments. For global search experi-
ments, FedNAS searches 50 communication rounds using five local searching epochs, with a batch
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Client ID Numbers of samples in the classes Distribution
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

k=0 144 94 1561 133 1099 1466 0 0 0 0
k=1 327 28 264 16 354 2 100 20 200 3
k=2 6 6 641 1 255 4 1 2 106 1723
k=3 176 792 100 28 76 508 991 416 215 0
k=4 84 1926 1 408 133 24 771 0 0 0
k=5 41 46 377 541 7 235 54 1687 666 0
k=6 134 181 505 720 123 210 44 58 663 221
k=7 87 2 131 1325 1117 704 0 0 0 0
k=8 178 101 5 32 1553 10 163 9 437 131
k=9 94 125 0 147 287 100 23 217 608 279

k=10 379 649 106 90 35 119 807 819 3 85
k=11 1306 55 681 227 202 34 0 648 0 0
k=12 1045 13 53 6 77 70 482 7 761 494
k=13 731 883 15 161 387 552 4 1051 0 0
k=14 4 97 467 899 0 407 50 64 1098 797
k=15 264 2 93 266 412 142 806 2 243 1267

Table 3: Heterogeneous data distribution (non-IID) used in FedNAS for Global Model experiments

(a) Image Allocation per Client (b) Label Allocation per Client

Figure 7: Heterogeneous data distribution (non-IID) used in FedNAS for Personalized Model
experiments

(a) Image Allocation per Client (b) Label Allocation per Client

Figure 8: Heterogeneous data distribution (non-IID) with Federated gld23k used in FedNAS for
Personalized Model experiments

size of 64. For FedAvg, DenseNet201 is used for training, with 100 communication rounds, 20 local
epochs, a learning rate of 0.08, and a batch size of 64. Both methods use the same data augmentation
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(a) Average Validation Accuracy all clients for
FedNAS and Local Adaptation

(b) Average Validation Accuracy Clients for
Ditto and PerFedAvg

Figure 9: Average Validation Accuracy for CIFAR10 LDA Partition (α = 0.5)

techniques that are used in image classification, such as random crops, flips, and normalization. More
details and other parameter settings can be found in our source code.

For personalized models search, we explored CIFAR10 with label skewed and lda distribution. For
label skew distribution, we searched over 500 communication rounds with batch size 32 for FedNAS
and Local Adaptation, and 3000 rounds for Ditto and perFedAvg. We searched hyperparameters over
the lr set of {0.1,0.3, 0.01, 0.03, 0.003, 0.001} and found the best lr to be 0.01, 0.01, 0.001, 0.003 for
FedAvg with local adaption, FedNAS, Ditto, perFedAvg, respectively, for both label skewed
and lda distribution with cifar10. For gld23k, we searched over the same hyperparameters and found
the best performing hyperparameters to be 0.1, 0.1, 0.001, 0.003 for FedAvg with local adaption,
FedNAS, Ditto, perFedAvg, respectively.

A.1.5 VISUALIZATION OF THE SEARCH ARCHITECTURE
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Figure 10: Normal Cell Architecture
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Figure 11: Reduction Cell Architecture
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We report the architecture searched based on the above given non-IID dataset and hyper-parameter
setting for global experiments of FedNAS. Figures 10 and 11 show the normal cell architecture and
the reduction cell architecture, respectively. We can see that the reduction cell uses more pooling
operations while the normal cell has more convolutional operations.

B FUTURE WORKS

Our future work aims to improve the FedNAS framework from form the following perspectives.

• Local NAS under Resource Constraint. Our current search space fits cross-organization
federated learning, where the edge device can be equipped with powerful GPU devices.
But when used in resource-constrained environments such as smartphones or IoT devices,
the memory of our search space is too large. Searching on compact search space or using
sampling methods are potential solutions to this challenge.

• Privacy-preserved FedNAS. In this work, we explored neural architecture search where
client communicates its architecture parameters α and model parameters w with the server.
We also showed that FedNAS has the potential to yield personalization benefits. Given this
context, revealing both α and w to adversary may provide more information than sharing
only w to server with a predetermined model. Therefore, exploration of privacy preserved
FedNAS can be an interesting but a challenging direction to investigate.

• Transferability and Federated Learning with Weight Sharing. Another interesting di-
rection would be transferring the searched architectures on each client. It is important to note
that after the transfer, each client may have a different architecture, therefore, conventional
FL weight aggregation may not work. To train this transferred models, one can explore
weight sharing to train these models in federated setting.
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