Under review as a conference paper at ICLR 2021

APPENDICES

A DETAILS ON uRTS AS A REINFORCEMENT LEARNING ENVIRONMENT

For all of our experiments in this paper, we use the gym-microrts (Huang & Ontafion, 2019) li-
brary which provides a reinforcement learning interface of 4RTS similar to OpenAl Gym’s inter-
face (Brockman et al.,[2016). In this section, we hope to provide details on the implementation of
gym-microrts as well as its limitations.

A.1 OBSERVATION AND ACTION SPACE OF uRTS
Here is a description of gym-microrts’s observation and action space:

o Observation Space. Given a map of size i x w, the observation is a tensor of shape (h,w,ny),
where ny is a number of feature planes that have binary values. The observation space used in
this paper uses 27 feature planes as shown in Table [2| A feature plane can be thought of as a
concatenation of multiple one-hot encoded features. As an example, if there is a worker with hit
points equal to 1, not carrying any resources, owner being Player 1, and currently not executing
any actions, then the one-hot encoding features will look like the following:

[07 17 0? 07 0}7 [17 O’ 07 07 0]7 [17 0? 0}7
[0,0,0,0,1,0,0,0],1,0,0,0,0,0]
The 27 values of each feature plane for the position in the map of such worker will thus be:
[07 ]" 0’ 0’ 07 17 0’ 07 07 0’ 17 07 07 0’ 07 07 07 17 0’ 07 0’ 17 0’ 07 0’ 07 0]

e Action Space. Given a map of size h X w, the action is an 8-dimensional vector of discrete values
as specified in Table[2] The first component of the action vector represents the unit in the map to
issue actions to, the second is the action type, and the rest of components represent the different
parameters different action types can take.

A.2 LIMITATIONS

In general, there are two limitations associated with gym-microrts’s reinforcement learning interface
that could hinder the trained agents from competing against existing uRTS bots. As a result, the
agent trained in this paper would subject to these limitations.

Frame-skipping Each action in yRTS takes some internal game time, measured in ticks, for the
action to be completed. gym-microrts sets the time of performing harvest action, return action, and
move action to be 10 game ticks. Once an action is issued to a particular unit, the unit would be
considered as a “busy” unit and would take additional 9 game ticks for the actions to be finalized.
To speed up training, gym-microrts by default performs frame skipping of 9 frames such that from
the agent’s perspective, once it executes the harvest action, return action, or move action given the
current observation, those actions would be finished in the next observation.

Limited Unit Action per Tick In general, the game engine of uRTS allows the bots to issue
actions to as many units as the bots own at each game tick. This means the action space will have
“varied size” depending on the number of units available for control. For simplicity, gym-microrts
only allows the agent to issue one action to one unit at each tick.

B DETAILS ON THE TRAINING ALGORITHM PROXIMAL POLICY OPTIMIZATION

The DRL algorithm that we use to train the agent is Proximal Policy Optimization (PPO) [Schul-
man et al.| (2017), one of the state of the art algorithms available. The hyper-parameters of our
experiments can be found in Table [3] There are three important details regarding our PPO im-
plementation that warrants explanation. The first detail concerns how to generate an action in the
MultiDiscrete action space as defined in the OpenAl Gym environment (Brockman et al.,[2016)
of gym-microrts (Huang & Ontafion, 2019)), the second details involves the implementation of in-
valid action masking (Vinyals et al.,[2017} |Berner et al., |2019; |Huang & Ontanodn, 2020) with PPO,
and the third detail is about the various code-level optimizations utilized to augment performance.
As pointed out by Engstrom, Ilyas, et al. (Engstrom et al.l 2019), such code-level optimizations
could be critical to the performance of PPO.

11



Under review as a conference paper at ICLR 2021

Table 2: The descriptions of observation features and action components.

Observation Features Planes Description

Hit Points 5 0,1,2,3,>4

Resources 5 0,1,2,3,>4

Owner 3 player 1, -, player 2

Unit Types 8 -, resource, base, barrack,worker, light, heavy, ranged
Current Action 6 -, move, harvest, return, produce, attack

Action Components Range Description

Source Unit 0,h x w—1]  the location of unit selected to perform an action
Action Type 0, 5] NOOP, move, harvest, return, produce, attack

Move Parameter 0, 3] north, east, south, west

Harvest Parameter 0, 3] north, east, south, west

Return Parameter 0, 3] north, east, south, west

Produce Direction Parameter [0, 3] north, east, south, west

Produce Type Parameter 0, 5] resource, base, barrack, worker, light, heavy, ranged
Attack Target Unit 0,h x w—1] the location of unit that will be attacked

B.1 MULTI DISCRETE ACTION GENERATION

To perform an action a; in uRTS, according to Table[2] we have to select a Source Unit, Action Type,
and its corresponding action parameters. So in total, there are hw X 6 X 4 X 4 X 4 X 4 X 6 X hw =
9216(hw)? number of possible discrete actions (including invalid ones), which grows exponentially
as we increase the map size. If we apply the PPO directly to this discrete action space, it would be
computationally expensive to generate the distribution for 9216(hw)? possible actions. To simplify
this combinatorial action space, openai/baselines |Dhariwal et al|(2017) library proposes an
idea to consider this discrete action to be composed from some smaller independent discrete actions.
Namely, a; is composed of smaller actions
a?ource Unit) a?CtiOH Type7 alt\/love Parameter7 alt{arvest Parameter7

Return Parameter _ Produce Direction Parameter _ Produce Type Parameter _ Attack Target Unit
ay ) Ay ) Ay y A

And the policy gradient is updated in the following way (without considering the PPO’s clipping for
simplicity)

T—1
Z Vo logmg(at|s:) Gt = Z Vo (Z log g at|st)>
t=0 deD
= ZV@log (H o at|st )
deD

D = {Source Unit, Action Type7 Move Parameter, Harvest Parameter, Return Parameter,
Produce Direction Parameter, Produce Type Parameter, Attack Target Unit, }

Implementation wise, for each Action Component of range [0, = — 1], the logits of the corresponding
shape = is generated, which we call Action Component logits, and each a¢ is sampled from this
Action Component logits. Because of this idea, the algorithm now only has to generate hw + 6 +
4444444+ 6+ hw = 2hw + 36 number of logits, which is significantly less than 9216(hw)?.
To the best of our knowledge, this approach of handling large multi discrete action space is only
mentioned by Kanervisto et, al [Kanervisto et al.| (2020).

B.2 INVALID ACTION MASKING
Invalid action masking is a technique that “masks out” invalid actions and then just sample from

those actions that are valid (Vinyals et al., 2017; Berner et al., 2019). Huang & Ontanon| (2020)
show invalid action masking is crucial in helping the agents explore in uRTS

12



Under review as a conference paper at ICLR 2021

Table 3: The list of hyperparameters and their values.

Parameter Names Parameter Values
Niotqr Total Time Steps 10,000,000

Np.p» Number of Mini-batches 4

Nepnvs Number of Environments 8

Nteps Number of Steps per Environment 128

v (Discount Factor) 0.99

A (for GAE) 0.95

e (PPO’s Clipping Coefficient) 0.1

1 (Entropy Regularization Coefficient) 0.01

w (Gradient Norm Threshold) 0.5

K (Number of PPO Update Iteration Per Epoch) 4

« Learning Rate 0.00025 Linearly Decreased to 0

over the Total Time Steps
c1 (Value Function Coefficient, see Equation 0.5
c2 (Entropy Coefficient, see Equation 0.01
Nuypdates (Total Number of Updates) Niotat/ (NmbpNenvs)

B.3 CODE-LEVEL OPTIMIZATIONS

Here is a list of code-level optimizations utilized in this experiments. For each of these optimiza-
tions, we include a footnote directing the readers to the files in the openai/baselines (Dhariwal et al.}
2017) that implements these optimization.

1. Normalization of Advantageﬂ After calculating the advantages based on GAE, the ad-
vantages vector is normalized by subtracting its mean and divided by its standard deviation.

2. Normalization of Observatimﬂ: The observation is pre-processed before feeding to the
PPO agent. The raw observation was normalized by subtracting its running mean and
divided by its variance; then the raw observation is clipped to a range, usually [—10, 10].

3. Rewards Scalini]: Similarly, the reward is pre-processed by dividing the running variance
of the discounted the returns, following by clipping it to a range, usually [—10, 10].

4. Value Function Loss Clippinéir]: The PPO implementation of openai/baselines clips the
value function loss in a manner that is similar to the PPO’s clipped surrogate objective:

Vvloss = max |:(Vv9t - Vvtarg>2 s (Vet,l + C]lp (‘/Gt - Vetfla —-&, E))2i|

where V4,4 is calculated by adding Vp, , and the A calculated by General Advantage
EstimationSchulman et al.| (2015)).

5. Adam Learning Rate Annealinﬂ: The Adam |Kingma & Baf(2014)) optimizer’s learning
rate is set to decay as the number of timesteps agent trained increase.

6. Mini-batch update§ ’t The PPO implementation of the openai/baselines also uses mini-
batches to compute the gradient and update the policy instead of the whole batch data such
as in open/spinningup. The mini-batch sampling scheme, however, still makes sure that

5https://github.Com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3c:f974143998/
baselines/ppo2/model .py#L139

%https://github.com/openai/baselines/blob/ea25b%e8b234ebeeclbcadl3083f8f3¢f974143998/
baselines/common/vec_env/vec_normalize.py#L4

'"https://github.com/openai/baselines/blob/ea25b9%e8b234e6eelbcad3083f8f3cf974143998/
baselines/common/vec_env/vec_normalize.py#L4

®https://github.com/openai/baselines/blob/ea25b9%e8b234e6eelbcad3083f8f3¢f974143998/
baselines/ppo2/model ..py#L68-L75

https://github.com/openai/baselines/blob/ea25b%e8b234e6eelbcad3083£8£3¢£974143998/
baselines/ppo2/ppo2.py#L135

Ynttps://github.com/openai/baselines/blob/ea25b9%e8b234ebeelbcad3083f8£f3cf974143998/
baselines/ppo2/ppo2.py#L160-L162

13


https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/ppo2/model.py#L139
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/ppo2/model.py#L139
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/common/vec_env/vec_normalize.py#L4
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/common/vec_env/vec_normalize.py#L4
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/common/vec_env/vec_normalize.py#L4
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/common/vec_env/vec_normalize.py#L4
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/ppo2/model.py#L68-L75
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/ppo2/model.py#L68-L75
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/ppo2/ppo2.py#L135
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/ppo2/ppo2.py#L135
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/ppo2/ppo2.py#L160-L162
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/ppo2/ppo2.py#L160-L162

Under review as a conference paper at ICLR 2021

= action guidance - mixed policy - action guidance - long adaptation — action guidance - long adaptation w/ PLO
- sparse reward w/ PLO shaped reward — action guidance - short adaptation w/ PLO
action guidance - short adaptation action guidance - mixed policy w/ PLO  — sparse reward

1.0

10.0

0.5
7.5
5.0 0.0

2.5

-0.5

0.0

Average Episode Reward
o

-1.0

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Time Steps le7 Time Steps le7 Time Steps le7
(a) LearnToAttack (b) ProduceCombatUnit (c) DefeatRandomEnemy

Figure 4: The learning curves of agents. The x-axis shows the number of time steps and y-axis
shows the average sparse return gathered.

every transition is sampled only once, and that the all the transitions sampled are actually
for the network update.

7. Global Gradient Clippindzl: For each update iteration in an epoch, the gradients of the
policy and value network are clipped so that the “global /5 norm” (i.e. the norm of the
concatenated gradients of all parameters) does not exceed 0.5.

8. Orthogonal Initialization of weightsE|: The weights and biases of fully connected lay-
ers use with orthogonal initialization scheme with different scaling. For our experiments,
however, we always use the scaling of 1 for historical reasons.

B.4 NEURAL NETWORK ARCHITECTURE

The input to the neural network is a tensor of shape (10,10, 27). The first hidden layer convolves
16 3 x 3 filters with stride 2 with the input tensor followed by a rectifier nonlinearityNair & Hinton
(2010). The second hidden layer similarly convolves 32 2 x 2 filters followed by a rectifier nonlin-
earity. The final hidden layer is a fully connected linear layer consisting of 128 rectifier units. The
policy’s output layer is a fully connected linear layer with 2hw + 36 = 236 number of output and
the value output layer is a fully connected linear layer with a single output.

C LEARNING CURVES

The learning curves of all experiments are shown in Figure 4]

Algorithm 1 PPO with Action Guidance

Let S be the set of policies and reward functions = {(7g,.,, Zm), (7o, 2a,)}
for update = 1,2, ..., Nypdates do
for step=1,2,..., Nyseps do
With probability € select a policy (7g,, R) € S > Action Guidance
Perform rollouts under current policy 7y, and store rewards based on R, R 4,

for policy and their reward function (74, R) € S do
if PLO is used and the sum of rewards according to R in rollouts is O then

continue
for epoch=1,2,..., K do
Optimize LEEP (9) — e; LYF(0) + coS[me, ] > Policy Epochs

111’1ttps ://github.com/openai/baselines/blob/ea25b9%e8b234e6eelbcad3083f8f3¢f974143998/
baselines/ppo2/model ..py#L107

“https://github.com/openai/baselines/blob/ea25b9%e8b234ebeelbcad3083f8£f3cf974143998/
baselines/a2c/utils.py#L58

14


https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/ppo2/model.py#L107
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/ppo2/model.py#L107
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/a2c/utils.py#L58
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/a2c/utils.py#L58

