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ABSTRACT

Li et al. (2023) used the Othello board game as a test case for the ability of GPT-
2 to induce world models, and were followed up by Nanda et al. (2023). We
briefly discuss the original experiments, expanding them to include more language
models with more comprehensive probing. Specifically, we analyze sequences of
Othello board states and train the model to predict the next move based on previous
moves. We evaluate six language models (GPT-2, T5, Bart, Flan-T5, Mistral, and
LLaMA-2) on the Othello task and conclude that these models not only learn
to play Othello, but also induce the Othello board layout. We find that all models
achieve up to 99% accuracy in unsupervised grounding and exhibit high similarity
in the board features they learned. This provides considerably stronger evidence
for the Othello World Model Hypothesis than previous works.

1 INTRODUCTION

Li et al. (2023) used the Othello board game to probe the ability of LLMs to induce world models.
Their network had a 60-word input vocabulary, corresponding to the 64 tiles of an Othello board,
except for the four that are already filled at the start. They trained the network on two datasets:
one on about 140,000 real Othello games and another on millions of synthetic games. They then
trained 64 independent non-linear probes (two-layer MLP classifiers) to classify each of the 64 tiles
into three states: black, blank, and white, using internal representations from Othello-GPT as input.
The error rates of these non-linear probes dropped from 26.2% on a randomly-initialized model to
only 1.7% on a trained model, while linear probes performed close to random. Li et al. (2023) saw
this as evidence that LLMs can induce (non-linear) world models, at least for Othello board games,
supporting the Othello World Model Hypothesis – – the hypothesis that LLMs trained on Othello
move sequences can induce a relevant world model, including the Othello board layout.

Nanda et al. (2023) did a follow-up study in which they found that linear probes also work if trained
slightly differently. Instead of focusing on tile color, they probed the board state relative to the
current player at each timestep, using labels such as MINE, YOURS, and EMPTY. This reduced the
error rate of the probes to less than 10%. They speculated that world knowledge is often linearly
represented in language models, since ‘matrix multiplication can easily extract a different subset of
linear features for each neuron.’

Now, training a probe as a research methodology comes with several weaknesses, including: a)
Probing classifiers can be prone to spurious correlations (Barrett et al., 2019). b) They do not
tell us how information is arranged globally in LLMs.1 c) They therefore only detect a subset of
the interesting properties of world models, e.g., excluding the spatial relations that would enable
analogical reasoning (Mikolov et al., 2013).

Contributions We therefore revisit the Othello World Model Hypothesis, reevaluating it
using a methodology that does not suffer from weaknesses a)–c) (see Figure 1), in or-
der to reassess the ability of LLMs to induce world models. If our results are pos-
itive, they will significantly strengthen the case for the hypothesis that LLMs induce

1Li et al. (2023) tried to compensate for this by using PCA to plot the probing classifiers in three dimen-
sions. The PCA plots suggest that the induced global structure is meaningful, but the probing paradigm cannot
quantify its meaningfulness.
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world models; if not, they will suggest that the evidence cited in Li et al. (2023)
and Nanda et al. (2023) was perhaps a (spurious) effect of the probing paradigm itself.
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Figure 1: Experimental protocol. We re-train
the Transformer-based models to predict the next
move in Othello and see whether the board game
layout is induced (up to isomorphism).

We begin by re-modeling Othello using a range
of model sizes (GPT-2, BART, T5, Flan-T5,
LLaMA-2, Mistral), as prior research has pre-
dominantly focused on smaller models like
GPT-2. We retrain these models using game
data of varying scales from the two datasets
presented by Li et al. (2023). Our analysis
extends beyond previous studies by consider-
ing both pretrained and non-pretrained models
(based on upstream language tasks), evaluating
two-hop generation capabilities, and compar-
ing models of varying sizes. To assess whether
these models capture similar underlying game
strategies, state representations, or other key
aspects, despite differences in architecture and
size, we employ representation alignment tools
inspired by the literature on cross-lingual word
embeddings (Søgaard et al., 2019). Finally, we
visualize these results through latent move pro-
jections, enabling a deeper analysis of the internal mechanisms of models trained on the Othello
game. Through these probing methods, we show that the language models – exhibit solid one-hop
performance when trained on large amount of game sequence moves. We find that in some cases,
all models can achieve up to 99% accuracy in unsupervised grounding, which means that absent any
cross-modal supervision, a model trained to play Othello can identify the right positions on a board.
More importantly, the alignment similarity score of the board features learned by these models is
surprisingly high. Additionally, the latent move projection demonstrates that the models can learn
the spatial structure of the chessboard. This provides a direct counter-example to previous claims
that mono-modal models cannot solve visual question answering problems (Bender & Koller, 2020)
– or, more generally, symbol grounding problems (Harnad, 1990). These results are significantly
stronger than those in Li et al. (2023); Nanda et al. (2023) and, in our view, provide more direct
evidence of the Othello World Model Hypothesis.

2 RELATED WORK

Past work on Othello Most past works on Othello (Chang et al., 2018; van der Ree & Wiering,
2013) use reinforcement learning to search for moves. The first attempt to model Othello with deep
neural networks dates back to 2018 (Liskowski et al., 2018), focusing on using CNNs to train a
strong player. Based on it, Noever & Noever (2022) focus on designing an effective Othello player
with LLMs. Motivated by Toshniwal et al. (2021), Li et al. (2023) shift the focus to treating the
game as a diagnostic tool for inducing world models from text. Following this, Nanda et al. (2023)
provide evidence of a closely related linear representation of the board and propose a simple yet
powerful way to interpret the model’s internal state. Takizawa (2024) recently presents a provably
optimal strategy for playing Othello, exploring the complexity of these strategies and whether LLMs
adopt similar ones. Hua et al. (2024) adopt the idea of Othello sequence generation and introduce a
Multilingual Othello task to aid in cross-lingual representation alignment.

World models The success of language models in NLP tasks, to many, seems to turn on their
ability to simulate, predict, and reason about dynamic environments as portrayed in text (Hao et al.,
2023; Huh et al., 2024; Patel & Pavlick, 2022; Xiang et al., 2023). The seminal work of Li et al.
(2021) presents an example of fine-tuning LLMs on synthetic NLP tasks to find evidence that world
states are weakly encoded in their activations. Wang et al. (2024) evaluate how well LLMs can serve
as text-based world simulators with a benchmark. Inspired by Othello-GPT, research have explored
more detailed probing (Yun et al., 2023; Hazineh et al., 2023) and more complex scenarios to assess
the ability of LLMs to understand board states, including for games like chess, checker and maze
navigation (Karvonen, 2024; Joshi et al., 2024; Ivanitskiy et al., 2023). Our work aims to revisit the
Othello World Hypothesis using a novel probing method across a number of different LLMs.
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Method Type P CHAMPIONSHIP SYNTHETIC
2k 20k full 2k 20k 200k 2M full

GPT-2 D % 49.8 17.7 5.6 49.2 26.8 13.6 10.4 <0.1
Bart E-D % 25.2 16.6 4.7 73.6 31.7 14.2 16.3 <0.1
T5 E-D % 20.9 15.2 4.3 65.8 28.7 15.7 10.1 <0.1
Flan-T5 E-D % 23.4 4.8 3.6 35.6 23.7 21.2 7.7 <0.1
LlaMa-2 D % 27.8 16.5 5.7 57.1 35.4 16.9 10.2 <0.1
Mistral D % 22.1 14.8 4.2 48.2 34.4 17.7 8.3 <0.1
GPT-2 D ! 52.6 19.7 13.6 74.4 32.4 19.9 14.1 <0.1
Bart E-D ! 54.0 14.6 13.7 77.2 35.8 24.4 16.6 <0.1
T5 E-D ! 45.5 19.6 3.8 69.4 36.9 32.6 13.9 <0.1
Flan-T5 E-D ! 31.7 4.8 3.7 70.3 25.4 45.0 8.7 <0.1
LlaMa-2 D ! 43.1 14.7 7.0 74.6 41.5 33.4 7.6 <0.1
Mistral D ! 16.8 15.0 3.3 33.8 30.6 18.2 7.7 <0.1

Table 1: The error rate (%) of 1-hop game state generation in terms of different size of training
data. ‘Type’ refers to the model type, ‘P’ denotes if the model is pretrained with upstream language
modeling tasks or not. Numbers in bold represent best-performing models.

3 MODELING OTHELLO WITH LLMS

Following previous works (Liskowski et al., 2018; Li et al., 2023; Nanda et al., 2023), we formulate
the problem of playing the board game as a sequence generation problem. Specifically, we fine-tune
generative pretrained models in an autoregressive manner to predict the next move given the current
Othello board state. Each game is a sequence, with each move represented as a token, and in each
round, we predict the next move. Our vocabulary consists of 60 words, each representing one of the
60 playable tiles where players place discs, excluding the 4 center tiles, which are already occupied
at the start of the game. See Figure 1 for an example move. Our modeling of Othello, in brief, can
be represented as:

pθ(Xi+k|X<i) =

k∏
m=0

pθ(Xi+m|X<i) =

k∏
m=0

softmax (fi+m(x1, x2, ..., xi+m−1)) (1)

where x1, x2, ..., xi−1 represent history moves, Xi+k represents the sequence after k generation
steps. During inference, we input the previously generated game moves X<i at step i into the model
and prompt it to generate the next steps. Unlike previous works, we not only prompt the model
to generate the next move (k = 1) but also introduce a new test where the model generates two
consecutive moves (k = 2).

3.1 EXPERIMENTAL SETUP

We use two datasets in our experiments, CHAMPIONSHIP and SYNTHETIC. Both of them were
collected by Li et al. (2023). CHAMPIONSHIP comes from real online Othello gaming sources,
whereas SYNTHETIC is artificially generated according to the rules of Othello game play. Detailed
statistics see Appendix A. We use the last 20,000 games from each dataset for testing and validation
(10,000 games each). Following Li et al. (2023), we report the top-1 error rate, including both
1-hop and 2-hop generation. This involves verifying whether the top-1 prediction is legal when
the model is prompted to generate 1 and 2 moves at a time. We present the average error rate
across all game sequences. We implement all of the baselines under the Pytorch framework and the
HuggingFace model repository. We conduct all of our experiments using 8 A100 GPUs. We use all
the default parameters in the repository when fine-tuning.

We perform our experiments using several existing baselines, with both Encoder-Decoder or
Decoder-only structures. We first adopt some popular PLMs such as GPT-2 (Radford et al., 2019),
T5 (Raffel et al., 2019), and Bart (Lewis et al., 2019). We adopt several LLMs to see the their per-
formance on this task, including Flan-T5 (Chung et al., 2022), LlaMa-2 (Touvron et al., 2023), and
Mistral (Jiang et al., 2023). Details see Appendix B.
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Method Type P CHAMPIONSHIP SYNTHETIC
2k 20k full 2k 20k 200k 2M full

GPT-2 D % 78.5 34.7 28.1 76.3 70.8 43.6 29.0 5.2
Bart E-D % 54.2 31.1 23.4 86.5 67.2 44.8 35.7 4.2
T5 E-D % 48.8 28.7 24.4 88.2 67.7 46.9 35.9 3.4
Flan-T5 E-D % 51.8 20.8 21.9 79.6 63.1 48.6 26.7 2.8
LlaMa-2 D % 60.9 36.3 26.4 87.3 67.8 45.2 36.3 5.5
Mistral D % 51.4 31.7 22.3 71.2 77.1 47.9 26.4 3.0
GPT-2 D ! 92.2 43.4 37.2 99.6 72.6 45.5 34.4 6.2
Bart E-D ! 87.0 34.5 27.1 97.8 76.9 64.0 44.5 5.1
T5 E-D ! 86.5 36.4 27.0 99.6 78.8 59.9 46.9 4.6
Flan-T5 E-D ! 67.9 31.8 26.5 98.6 80.8 79.7 35.3 3.9
LlaMa-2 D ! 66.9 33.4 33.0 94.2 77.6 62.1 33.2 5.2
Mistral D ! 52.0 40.8 25.4 80.3 76.0 42.3 35.0 3.8

Table 2: The error rate (%) of 2-hop game state generation.
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Figure 2: Othello 1-hop generation performance under different model sizes. All models are non-
pretrained versions fine-tuned with 20k game sequences.

3.2 EVALUATION OF LLM PERFORMANCE IN OTHELLO MOVE GENERATION

We perform experiments using various methods and present the results in Tables 2 and 3. From our
observations, several key findings emerge. Firstly, there is no clear winner between models with an
Encoder-Decoder architecture, such as T5 or Flan-T5, and those with a Decoder-only architecture,
such as GPT-2 or LLaMA-2, in terms of performance on this task. This indicates that the architec-
tural differences between these models do not significantly impact their ability to generate Othello
game steps. However, one consistent trend is the positive correlation between the amount of training
data and overall model performance. As we increase the scale of the training data, all models tend
to improve, underscoring the importance of data availability in mastering complex tasks like Othello
move generation. In comparison to smaller language models, LLMs such as Mistral and Flan-T5
demonstrate clear superiority in this task, suggesting that model size and capacity are critical fac-
tors in understanding Othello game step generation. Larger models are better equipped to capture
the intricate patterns and strategies within the game, likely due to their increased representational
capacity. Interestingly, we also find that pretrained language knowledge, while generally beneficial
for a wide range of natural language tasks, sometimes negatively impacts a model’s ability to under-
stand and generate game steps. Specifically, the pretrained versions of many models perform worse
than their non-pretrained counterparts in this task, which could indicate that knowledge learned from
upstream language tasks introduces biases or distracts from learning the specific structure and rules
of Othello. Furthermore, while fine-tuning models on a large amount of data leads to reasonable
performance in generating a single step (1-hop) , generating more than one step consecutively re-
mains a significant challenge. Even with large-scale data, models struggle to accurately predict two
or more consecutive moves.
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Figure 3: Analysis of 1-hop error rates on the SYNTHETIC dataset with varying data scales.

3.3 IMPACT OF MODEL SIZE ON OTHELLO MOVE GENERATION

To further explore the impact of model size on the ability to model Othello moves, we analyze the
performance of various models across different size configurations, as depicted in Figure 2. For
each model, we evaluate performance in small, medium, and large size versions, allowing us to
compare how scaling up model capacity affects accuracy in generating game moves. The results
show a clear trend: as model size increases, the error rate consistently decreases across both
datasets. This trend is particularly pronounced in the SYNTHETIC dataset, where larger models
achieve significantly lower error rates compared to their smaller counterparts. The stronger improve-
ment in the SYNTHETIC dataset suggests that larger models are better at capturing the structured
patterns present in the synthetic data, likely due to their enhanced capacity for learning complex
representations and generalizing across more varied scenarios. These findings highlight the impor-
tance of model scaling, showing that increasing the model size can lead to substantial performance
gains in Othello move generation, especially in environments where the data is highly structured or
synthetic in nature. Furthermore, the results emphasize that larger models are not just marginally
better, but often significantly outperform smaller models, reinforcing the need to consider model
capacity as a critical factor when tackling tasks that require a deep understanding of game strategies
and sequential decision-making processes.

3.4 IMPACT OF DATA SIZE ON OTHELLO MOVE GENERATION

In Table 2, we observe a sharp decrease in model error rates as the dataset size increases from 2k
to 20k. To investigate this further, we conduct an analysis by gradually enlarging the SYNTHETIC
dataset from 2k to 22k. According to Figure 3, the performance of all models improves gradually as
the dataset size increases. Interestingly, pretrained models demonstrate a more consistent and steady
decrease in error rate compared to non-pretrained models. This suggests that pretrained models are
able to effectively utilize the additional data to refine their representations and decision-making
processes in a more stable manner, benefiting incrementally from larger datasets. In contrast, non-
pretrained models show a more pronounced reduction in error rates within the 2k to 12k data size
range, with diminishing improvements beyond that point. This indicates that while non-pretrained
models experience substantial early gains from additional training data, their performance plateaus at
larger dataset sizes, likely because they have already captured the most critical game strategies from
the smaller datasets. The divergent behavior between pretrained and non-pretrained models suggests
that pretraining on upstream natural language tasks enables models to leverage larger datasets for
gradual improvements, whereas non-pretrained models rely more heavily on immediate learning
from the provided game-specific data. The initial sharp gains for non-pretrained models also imply
that these models are more sensitive to smaller datasets, rapidly improving as they acquire game-
specific knowledge but requiring increasingly larger datasets for further marginal gains.
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4 OTHELLO REPRESENTATION ALIGNMENT ACROSS LANGUAGE MODELS

Drawing inspiration from the literature on cross-lingual word embeddings, we perform Othello rep-
resentation alignment across different models to compare how each model, despite differences in
architecture and size, internalizes and represents game strategies and states. This helps us assess
whether the learned representations in Section 3 are consistent across models and whether they cap-
ture similar underlying patterns essential for accurate Othello move generation.

4.1 ALIGNMENT METHOD

To validate the Othello World Model Hypothesis, we directly evaluate the internal representation of
the Othello board in language models. Using the representations from different models, denoted as
F1, F2 from the same input sequence X<i, we perform mapping training under both supervised and
unsupervised scenarios2. A linear mapping W is learned to map F1 and F2 into the same space:

W ∗ = argmin
W∈Mi(R)

||WF1 − F2|| (2)

where F1, F2 ∈ Ri×h are representations from the final hidden Decoder layer in different language
models trained for Othello generation. Mi(R) is the space of i× i matrices of real numbers.

Supervised training. We consider the internal representations of different models within different
source and target spaces. For supervised training (see Algorithm 13, we use the pairwise data to
learn a mapping from the source to the target space using iterative Procrustes alignment (Gower &
Dijksterhuis, 2004). We use representations from two models as training pairs. Specifically, the
representations of the ith step within the same game from the two models are considered a pair,
denoted as hθ1(X<i) and hθ2(X<i), respectively. In our experiment, we randomly select 1,000
game sequences from the validation set as training pairs.

Algorithm 1: Supervised Training for Othello Representation Alignment
Inputs :
hθ1(·), hθ2(·) representations from the final hidden layer of Decoder in two models: Θ1, Θ2

X<i = {x1, ..., xi−1} input game sequence at time step i
r number of refinement iterations

Output:
s Similarity score of the aligned feature learned from the two models

F1 ← hθ1(X<i), F2 ← hθ2(X<i)
for i = 1 to r do

if i! = 1 then
F1 ← BuildDic(F1), F2 ← BuildDic(F2) // build a dictionary from aligned
embeddings containing best aligned pairs

W ← Procrustes(F1, F2)
F1 ←WF1

s← CosSim(F1, F2)

Unsupervised training. For unsupervised training, without any parallel data or anchor points, fol-
lowing Conneau et al. (2018), we learn the mapping through a combination of adversarial training
and iterative Procrustes refinement (Lample et al., 2018) (see Algorithm 2). The process involves
first learning an initial proxy of the mapping W using an adversarial criterion. Where an additional
Discriminator model is trained to identify the origin of an embedding, yet the target mapping W
aims at preventing the discriminator from doing so. Then, the mapping W is further refined via Pro-
crustes using the same strategy in supervised training. We then report the average cosine similarity
of the aligned features on the test set.

2Both of the algorithms are implemented using MUSE, a library designed for multilingual embedding align-
ment (https://github.com/facebookresearch/MUSE).

3More details (e.g. BuildDict() of Algorithms 1, 2) see Conneau et al. (2018).
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Algorithm 2: Unsupervised Training for Othello Representation Alignment
Inputs :
hθ1(·), hθ2(·) representations from the final hidden layer of Decoder in two models: Θ1, Θ2

X<i = {x1, ..., xi−1} input game sequence at time step i
k, r number of adversarial training iterations, number of refinement iterations

Output:
s Similarity score of the aligned feature learned from the two models

F1 ← hθ1(X<i), F2 ← hθ2(X<i)
RandomInitialize(W )
for i = 1 to k do
D ← TrainDiscriminator(W,F1,F2) // train the discriminator D
W ← FoolDiscriminator(D,F1,F2) // train W to fool the discriminator

F1 ←WF1

for i = 1 to r // refine W
do
F1 ← BuildDic(F1), F2 ← BuildDic(F2)
W ← Procrustes(F1, F2)
F1 ←WF1

s← CosSim(F1, F2)

4.2 MAPPING RESULT

We probe different models by aligning their representations into one joint vector space. We report
the cosine similarity of the aligned features score under both supervised (Conneau et al., 2018) and
unsupervised (Lample et al., 2018) settings in Table 34.

Src. Trg. Supervised Unsupervised
CHAM. SYN. CHAM. SYN.

GPT-2 Bart 81.4 93.1 80.3 91.3
GPT-2 T5 83.0 85.0 76.4 80.1
Bart T5 69.2 84.5 85.2 81.1
GPT-2 Mistral 90.3 77.2 80.3 82.6
Bart Mistral 88.0 79.1 96.1 97.2
LlaMa-2 Mistral 80.1 74.2 76.2 72.6

Table 3: Representation alignment cosine similarity (%) results. Src. and Trg. represent source and
target space. CHAM., SYN represent CHAMPIONSHIP and SYNTHETIC dataset.

From the results, we observe consistently high similarity scores across different language models,
indicating that despite architectural differences, these models capture similar underlying representa-
tions when tasked with the Othello game. For instance, the SYNTHETIC supervised similarity score
between GPT-2 (a Decoder-only model) and Bart (an Encoder-Decoder model) reaches an impres-
sive 93.1%. This suggests that, although these models process information differently due to their
structural variances, they still converge on shared knowledge and representations when learning to
model the Othello task. Such a high similarity score points to the possibility that both model types
learn similar strategic patterns and rules intrinsic to the game, reinforcing the idea that fundamental
aspects of the Othello task are captured across architectures.

4.3 PCA VISUALIZATION

In order to vividly show such alignment, we also demonstrate the dimension-reduced PCA
coordinate of 60 step features hθ(X) within one entire random game in Figure 4. We
also observe highly similar step representations across different models. This suggests
that these models are learning comparable internal representations of the game states, in-
dicating that the models are aligned in how they interpret the sequential nature of Oth-
ello. Even though they may be built differently (e.g., Decoder-only versus Encoder-Decoder),
the core representations they learn about the game states converge to a similar space.

4We use the non-pretrained version based on 20k training data for all models.
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Figure 4: PCA visualization of the 60 steps from
various models within one game.

This result highlights a level of consistency and
robustness in the way generative models pro-
cess game-related information. Despite differ-
ences in architecture or training objectives, the
models seem to internalize and represent Oth-
ello game states in a similar manner. This
convergence suggests that these models, when
trained on the Othello task, are not only learn-
ing task-specific patterns but are also aligning
on a shared understanding of the underlying
problem space. To sum up, such alignment
enhances the interpretability of these models,
as their internal representations become more
comparable.

4.4 MAPPING ACROSS DIFFERENT
LAYERS

We compare the mapping similarity across different Decoder hidden layers in GPT-2 and
Flan-T55 to understand how each model progressively learns to represent the Othello
game, evolving from simple board states to more complex strategies. As shown in Fig-
ure 5, despite their structural differences, GPT-2 and Flan-T5 exhibit similar learned rep-
resentations at corresponding layers. Both models, when trained on Othello game se-
quences, seem to converge toward learning comparable internal representations, as high-
lighted by the heatmap. This conclusion is supported by the following observations:
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Figure 5: Decoder feature similarity heatmap
across different layers.

(1) High Similarity in the Upper Right Diag-
onal. The heatmap reveals a prominent diag-
onal pattern where corresponding layers from
GPT-2 and Flan-T5 show high similarity, espe-
cially in the upper half of the heatmap. This
suggests that, despite their differing architec-
tures (GPT-2 being autoregressive and Flan-T5
following an Encoder-Decoder structure), mod-
els eventually learn something in common (par-
ticularly at layer 11, where high similarity is
observed). despite the difference from the be-
ginning. This alignment indicates that their
layer-wise learning processes evolve in com-
parable ways as they both adapt to the Othello
game environment. (2) Layer-Specific Corre-
spondences. We notice that specific layers in
GPT-2 show high similarity with certain layers
in Flan-T5, even though they may not follow a
strict diagonal pattern, this suggests that both models are learning certain shared features or patterns
in game sequences at particular stages of their processing pipelines.

5 LATENT MOVE PROJECTION: WHAT ELSE DOES LLMS LEARN?

To gain deeper insights into how models learn strategies and predict future moves, we project latent
features onto a visual space. For a given game sequence X<i, we highlight the top-5 candidate tile
positions with the highest predicted probabilities for the next move. Additionally, we compare the
embeddings of the top candidate tile with those of the other tiles. We mark the top three tiles whose
embeddings are closest to the top candidate to examine their spatial relationships on the board.

We perform latent move projection on the Othello game steps of two models in Figure 6. It shows
that both models successfully predict legal moves given a game sequence. Moreover, other legal

5We use GPT-2-small and Flan-T5-Base trained on 20k SYNTHETIC dataset, as both have 12 decoder
hidden layers.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

A

B

C

D

E

F

G

H

1 2 3 4 5 6 7 8

(a) T5–1 (white)

A

B

C

D

E

F

G

H

1 2 3 4 5 6 7 8

(b) T5–2 (black)

A

B

C

D

E

F

G

H

1 2 3 4 5 6 7 8

(c) T5–3 (white)

A

B

C

D

E

F

G

H

1 2 3 4 5 6 7 8

(d) Mistral–1 (white)

A

B

C

D

E

F

G

H

1 2 3 4 5 6 7 8

(e) Mistral–2 (black)

A

B

C

D

E

F

G

H

1 2 3 4 5 6 7 8

(f) Mistral–3 (white)

Figure 6: Othello latent move projection from two best performed models. Colors indicate the
likelihood of the position of the next step. Shadows highlight the top three tiles with embeddings
closest to the top candidate, with the darkest color in the black box.

moves are also assigned high prediction scores (tiles with lighter blue) by the models. This proves
that with a large amount of game sequence data, the model learns the policy of the game. To further
investigate whether the models can capture the physical position of each tile, we use shadow marks
to highlight the tiles with the closest embedding distance to the tile in the black box. The intensity of
the shadow reflects the degree of similarity. We observe that the top-1 tile with the highest similarity
(F2 in Figure 6(a), G4 in Figure 6(d)) is the one adjacent to the black box tile in both models.
This indicates that the models not only understand the game mechanics but also capture the spatial
relationships between tiles.

6 LIMITATIONS

Although this work demonstrates the ability of different language models to understand Othello
game rules, several limitations persist that require further investigation:

Challenges in Multi-step Move Generation. While language models can predict the next move
with reasonable accuracy, they struggle to predict entire game sequences. The key question is
whether strong multi-step performance is a reasonable expectation. Due to the influence of dis-
tinct player strategies and the rotational invariance of the board, many game states inherently un-
derdetermine what constitutes the subjectively or objectively best move. As a result, the ability
to accurately predict entire sequences may remain elusive, given the complexity and variability of
decision-making in the game.

Limitations in Data Requirements. Our experiments show that reducing the 1-hop error rate to
less than 0.1% demands a large volume of training data. This reliance on vast datasets presents
a scalability issue, as access to Othello game data is limited. Moreover, training on such large
datasets is computationally expensive and time-consuming, which can be a prohibitive factor for
many researchers or organizations without access to substantial computational resources.
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7 CONCLUSION

We conduct a detailed probing of language models’ ability to predict legal moves in the Othello
board game, based on the settings in Li et al. (2023). We evaluate six language models, training them
to predict the next move based on previous moves. All six models achieve almost ‘perfect’ one-hop
move prediction performance when trained with large amount of data. We then adopt representation
alignment tools to align the learned game state features from different models into one joint space.
We observe high similarity in the board features they learned. In addition, latent move projection is
performed to show the models not only understand the game mechanics but also capture the spatial
relationships between tiles. These results, in our view, provide more solid evidence to date of the
Othello World Model Hypothesis presented in previous works.
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A DATASET STATISTICS

The details of the two datasets are listed in Table 4.
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CHAMPIONSHIP SYNTHETIC
Num. of Games 132,588 23,796,010

Avg. length 59.8 ± 1.5 60.0 ± 0.8
Min. length 4 9

Full length portion(%) 95.0 99.1

Table 4: Dataset statistics of the two Othello datasets.

B COMPARED METHODS

We perform our experiments using several existing baselines, with both Encoder-Decoder or
Decoder-only structures. We first adopt some popular language models such as

GPT-2. We fine-tune GPT-2 to generate the whole game sequence step by step. Specifically, we use
the smallest version of GPT-2.

Bart. We use Bart-base to generate the sequence by feeding the first token into the Encoder and
fine-tuning the model to generate the remaining tokens.

T5. Similar as Bart, we adopt T5-base in our experiment.

We then adopt several LLMs for the task:

Flan-T5. We adopt Flan-T5-XL, which contains 3B parameters in our experiment.

LLaMA-2. We use LlaMa2-7B and only fine-tune the LoRA adapter in our experiment.

Mistral. We use Mistral-7B in our experiments. Similar to LLaMA-2, we also only fine-tune
the LoRA adapter but keep the rest of parameters fixed.

C MODEL SIZE ANALYSIS ON TWO-HOP GENERATION

We present the 2-hop performance across various model sizes in Figure 7. As we scale up the model,
the error rate decreases, suggesting that a larger model size positively affects game understanding.
However, the impact of model size diminishes when compared to the 1-hop performance, indicating
a diminishing return on performance gains with increased model size.

GPT-2 T5 Flan-T50
5

10
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20
25
30
35 s

m
l

(a) CHAMPIONSHIP

GPT-2 T5 Flan-T50
10
20
30
40
50
60
70

(b) SYNTHETIC

Figure 7: Othello 2-hop generation performance under different model sizes. All models are non-
pretrained versions fine-tuned with 20k game sequences.

D DATA SIZE ANALYSIS ON CHAMPIONSHIP DATASET

We also present the data size analysis on the CHAMPIONSHIP dataset (see Figure 8). We see
similar conclusions as in Figure 3. The prediction accuracy gets better when we increase the data
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size. Also, the error rate demonstrates a more steady drop in models pretrained with upstream
language modeling tasks.
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Figure 8: Analysis of 1-hop error rates on the CHAMPIONSHIP dataset with varying data scales.
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