
Supplementary Material

This supplementary material contains the proofs and results omitted from the main body. In Ap-
pendix A we recall the appropriate version of the Stokes’ theorem and discuss its applicability for
Lipschitz functions on B

d
1 . In Appendix B we provide the proof of Lemma 3. Finally, in Appendix C

we provide the proofs of Theorems 1, 2, 3, 4.

Additional notation For two functions g, ⌘ : Rd
! R, we denote by ⌘ ? g their convolution defined

point-wise for x 2 Rd as

�
⌘ ? g

�
(x) =

Z

Rd

⌘(x� x0)g(x0) dx0
.

The standard mollifier ⌘✏ : Rd
! R is defined as ⌘✏(x) = ✏

�d
⌘1(x/✏) for ✏ > 0 and x 2 R, where

⌘1 : Rd
! R is defined as

⌘1(x) =

(
C exp

⇣
1

kxk2
2�1

⌘
if kxk2  1

0 otherwise
,

with C chosen so that
R

Rd ⌘1(x) dx = 1.

A Integration by parts

We first recall the following result that can be found in [34, Section 13.3.5, Exercise 14a].
Theorem 5 (Integration by parts in a multiple integral). Let D be an open connected subset of Rd

with a piecewise smooth boundary @D oriented by the outward unit normal n = (n1, . . . , nd)>. Let

g be a continuously differentiable function in D [ @D. Then

Z

D
rg(u) du =

Z

@D
g(⇣)n(⇣) dS(⇣) .

Remark 2. We refer to [34, Section 12.3.2, Definitions 4 and 5] for the definition of piecewise smooth

surfaces and their orientations respectively.

The idea of using the instance of Theorem 5 (also called Stokes’ theorem) with D = B
d
2 to obtain

`2-randomized estimators of the gradient belongs to Nemirovsky and Yudin [22]. It was further
used in several papers [5, 16, 31, 33] to mention just a few. Those papers were referring to [22]
but [22] did not provide an exact statement of the result (nor a reference) and only tossed the idea in a
discussion. However, the classical analysis formulation as presented in Theorem 5 does not apply to
Lipschitz continuous functions that were considered in [5, 16, 31, 33]. We are not aware of whether
its extension to Lipschitz continuous functions, though rather standard, is proved in the literature.

In this paper, we apply Theorem 5 with the `1-ball D = B
d
1 . Our aim in this section is to provide

a variant of Theorem 5 applicable to a Lipschitz continuous function g : Rd
! R, which is

not necessarily continuously differentiable on D [ @D = B
d
1 [ @B

d
1 . To this end, we will go

through the argument of approximating g by C
1(⌦) functions, where ⌦ ⇢ Rd is an open bounded

connected subset of Rd such that D [ @D ⇢ ⌦. Let gn = ⌘1/n ? g, where ⌘1/n is the standard
mollifier. Let g : Rd

! R be a function satisfying the Lipschitz condition w.r.t. the `1-norm:
|g(u) � g(u0)|  Lku� u0

k1. Since g is continuous in ⌦ and, by construction D [ @D ⇢ ⌦, then
using basic properties of mollification [see e.g., 15, Theorem 4.1 (ii)] we have

gn �! g

uniformly on D [ @D (in particular, uniformly on @D). Furthermore, let rg be the gradient of g,
which by Rademacher theorem [see e.g., 15, Theorem 3.2] is well defined almost everywhere w.r.t.
the Lebesgue measure and

krg(u)k1  L a.e.
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It follows that @g
@uj

is absolutely integrable on ⌦ for any j 2 [d]. Furthermore, since

@gn

@uj
= ⌘1/n ?

✓
@g

@uj

◆
,

we can apply [15, Theorem 4.1 (iii)] that yields
Z

D
krgn(u) �rg(u)k2 du �! 0 .

Combining the above remarks we obtain that the result of Theorem 5 is valid for functions g that are
Lipschitz continuous w.r.t. the `1-norm. Thus, it is also valid when the Lipschitz condition is imposed
w.r.t. any `q-norm with q 2 [1,1]. Specifying this conclusion for the particular case D = B

d
1 , we

obtain the following theorem.
Theorem 6. Let the function g : Rd

! R be Lipschitz continuous w.r.t. the `q-norm with q 2 [1,1].
Then Z

Bd
1

rg(u) du =
1
p

d

Z

@Bd
1

g(⇣) sign(⇣) dS(⇣) ,

where rg(·) is defined up to a set of zero Lebesgue measure by the Rademacher theorem.

B Proof of Lemma 3

To prove Lemma 3, we first recall the weighted Poincaré inequality for the univariate exponential
measure (mean 0 and scale parameter 1 Laplace distribution).
Lemma 5 (Lemma 2.1 in [9]). Let W be mean 0 and scale parameter 1 Laplace random variable.

Let g : R ! R be continuous almost everywhere differentiable function such that

E[|g(W )|] < 1 and E[|g0(W )|] < 1 and lim
|w|!1

g(w) exp(�|w|) = 0 ,

then,

E[(g(W ) �E[g(W )])2]  4E[(g0(W ))2].

We are now in a position to prove Lemma 3. The proof is inspired by [7, Lemma 2].

Proof of Lemma 3. Throughout the proof, we assume without loss of generality that E[G(⇣)] = 0.
Indeed, if it is not the case, we use the result for the centered function G̃(⇣) = G(⇣) � E[G(⇣)],
which has the same gradient.

First, consider the case of continuously differentiable G. Let W = (W1, . . . , Wd) be a vector of i.i.d.
mean 0 and scale parameter 1 Laplace random variables and define T (w) = w/ kwk1. Introduce
the notation

F (w) , kwk
1/2
1 G(T (w)) .

Lemma 1 in [30] asserts that, for ⇣ uniformly distributed on @B
d
1 ,

T (W )
d
= ⇣ and T (W ) is independent of kW k1 . (4)

In particular,

Var(F (W )) = d Var(G(⇣)) .

Using the Efron-Stein inequality [see e.g., 11, Theorem 3.1] we obtain

Var(F (W )) 
dX

i=1

E [Vari(F )] ,

where

Vari(F ) = E

�
F (W ) �E[F (W ) | W�i]

�2
| W�i

�
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with W�i , (W1, . . . , Wi�1, Wi+1, . . . , Wd). Note that on the event {W�i
6= 0} (whose comple-

ment has zero measure), the function
w 7! F (W1, . . . , Wi�1, w, Wi+1, . . . , Wd) ,

satisfies the assumptions of Lemma 5. Thus,

d Var(G(⇣)) = Var(F (W ))  4
dX

j=1

E

"✓
@F

@wj
(W )

◆2
#

= 4EkrF (W )k22 . (5)

In order to compute rF (W ), we observe that for every i 6= j 2 [d] we have for all w 6= 0 such that
wi, wj 6= 0

@Ti

@wj
(w) = �

wi sign(wj)

kwk21

and
@Ti

@wi
(w) =

1

kwk1
�

wi sign(wi)

kwk21

.

Thus, the Jacobi matrix of T (w) has the form

JT (w) =
I

kwk1
�

w(sign(w))>

kwk21

=
1

kwk1

⇣
I� T (w)

�
sign(w)

�>⌘
.

It follows that almost surely

rF (W ) =
1

2kW k
1/2
1

G(T (W )) sign(W ) +
1

kW k
1/2
1

✓
I� T (W )

�
sign(W )

�>
◆
rG(T (W )) .

Observe that since hsign(W ), T (W )i = 1 almost surely, we have
�
sign(W )

�>
✓
I� T (W )

�
sign(W )

�>
◆
rG(T (W )) = 0 almost surely .

The above two equations imply that almost surely

4krF (W )k22 =
d

kW k1
G

2(T (W )) +
4

kW k1

����

✓
I� T (W )

�
sign(W )

�>
◆
rG(T (W ))

����
2

2


d

kW k1
G

2(T (W )) +
4

kW k1
krG(T (W ))k22 (1 +

p

dkT (W )k2)
2

,

where we used the fact that the operator norm of I�ab> is not greater than 1+kak2kbk2. Combining
the above bound with (5), and using the facts that E[kW k

�1
1 ] = 1

d�1 , E[G(T (W ))] = E[G(⇣)] = 0
and the independence of kW k1 and T (W ) (cf. (4)) yields

d

✓
1 �

1

d � 1

◆
Var(G(⇣)) 

4

d � 1
E
h
krG(T (W ))k22(1 +

p

dkT (W )k2)
2
i

.

Rearranging, we deduce the first claim of the lemma since T (W )
d
= ⇣.

To prove the second statement of the lemma regarding Lipschitz functions, it is sufficient to apply the
first one to Gn—the sequence of smoothed versions of G such that Gn 2 C

1(R) and
Gn �! G ,

uniformly on every compact subset, and supn�1 krGn(x)k2  L for almost all x 2 Rd. A sequence
Gn satisfying these properties can be constructed by standard mollification due to the fact that G is
Lipschitz continuous [see e.g., 15, Theorem 4.2]. Finally, to obtain the value EkT (W )k22 = Ek⇣k22
we use Lemma 6 below.

Lemma 6. Let ⇣ be distributed uniformly on @B
d
1 . Then, E k⇣k22 = 2

d+1 .

Proof. We use the same tools as in the proof of Lemma 2. Let W = (W1, . . . , Wd) be a vector of
i.i.d. random variables following the Laplace distribution with mean 0 and scale parameter 1. By (4)
we have that ⇣ d

= W
kW k1

and ⇣ is independent of kW k1. Therefore,

Ek⇣k22 =
E kW k

2
2

E kW k
2
1

. (6)
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Here,

E kW k
2
2 =

dX

j=1

E[W 2
j ] = dE[W 2

1 ] = 2d . (7)

Furthermore, kW k1 follows the Erlang distribution with parameters (d, 1), which implies

E kW k
2
1 =

1

�(d)

Z 1

0
x
d+1 exp(�x) dx =

�(d + 2)

�(d)
. (8)

The lemma follows by combining (6) – (8).

C Upper bounds

The proofs of Theorems 1, 2, 3, 4 resemble each other. They only differ in the ways of handling the
variance terms depending on kgtk

2
p⇤ and in the choice of parameters. For this reason, we suggest the

interested reader to follow the proofs in a linear manner starting from the next paragraph.

Common part of the proofs of Theorems 1, 2. We start with the part of the proofs that is common
for Theorems 1, 2. Fix some x 2 ⇥. Due to Assumption 1, we can use Lemma 1, which implies

E

"
TX

t=1

hE [gt | xt] , xt � xi

#
= E

"
TX

t=1

hrft,h(xt), xt � xi

#
� E

"
TX

t=1

�
ft,h(xt) � ft,h(x)

�
#

,

where ft,h(x) = E[ft(x + hU)] with U uniformly distributed on B
d
1 . Furthermore, by the ap-

proximation property derived in Lemma 1 and the standard bound on the cumulative regret of dual
averaging algorithm [see e.g., 26, Corollary 7.9.] we deduce that

E

"
TX

t=1

�
ft(xt) � ft(x)

�
#
 E

"
TX

t=1

hE [gt|xt] ,xt � xi

#
+ Lbq(d)

TX

t=1

ht


R

2

⌘
+

⌘

2

TX

t=1

E kgtk
2
p⇤ + Lbq(d)

TX

t=1

ht ,

(9)

where in the last inequality we used the identity ⌘1 = . . . = ⌘T = ⌘. The results of Theorems 1, 2
follow from the bound (9) as detailed below.

Proof of Theorem 1. Here h1 = . . . = hT = h, and we work under Assumption 2. In this case,
bounding Ekgtkp⇤ in (9) via Lemma 4 yields

E

"
TX

t=1

�
ft(xt) � ft(x)

�
#


R
2

⌘
+ 6(1 +

p
2)2L2

· ⌘Td
1+ 2

q^2�
2
p + LhTbq(d) .

Minimizing the the right hand side of the above inequality over ⌘ > 0 and substituting ⌘ =

R
L(

p
6+

p
12)

q
d
�1� 2

q^2
+ 2

p

T we deduce that

E

"
TX

t=1

�
ft(xt) � ft(x)

�
#
 2

⇣p
6 +

p
12
⌘

RLd
1
2+

1
q^2�

1
p

p

T + LhTbq(d) .

Taking h 
7R

100bq(d)
p
T

d
1
2+

1
q^2�

1
p makes negligible the second summand in the above bound. This

concludes the proof.

Proof of Theorem 2. Here again h1 = . . . = hT = h, but we work under Assumption 3. Then,
bounding Ekgtkp⇤ in (9) via Lemma 4 yields

E

"
TX

t=1

�
ft(xt) � ft(x)

�
#


R
2

⌘
+ ⌘T

 
d
4� 2

p �
2

h2
+ 6

⇣
1 +

p
2
⌘2

L
2
d
1+ 2

q^2�
2
p

!
+ LhTbq(d) .
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Minimizing the right hand side of the above inequality over ⌘ > 0 and substituting the optimal value

⌘ =
R
p

T

 
d
4� 2

p �
2

2h2
+ 6

⇣
1 +

p
2
⌘2

L
2
d
1+ 2

q^2�
2
p

!� 1
2

,

results in the following upper bound on the regret

E

"
TX

t=1

�
ft(xt) � ft(x)

�
#
 2R

p

T

 
d
4� 2

p �
2

2h2
+ 6

⇣
1 +

p
2
⌘2

L
2
d
1+ 2

q^2�
2
p

! 1
2

+ LhTbq(d)

 2
⇣p

6 +
p

12
⌘

RL

q
Td

1+ 2
q^2�

2
p +

p
2R

p

T
d
2� 1

p �

h
+ LhTbq(d) ,

where for the last inequality we used the fact that
p

a + b 
p

a +
p

b for a, b � 0. Minimizing over

h > 0 the last expression and substituting the optimal value h =
⇣ p

2R�
Lbq(d)

⌘ 1
2

T
� 1

4 d
1� 1

2p we get

E

"
TX

t=1

�
ft(xt) � ft(x)

�
#
 11.9RL

q
Td

1+ 2
q^2�

2
p + 2.4

p

RL�T
3
4

q
bq(d)d

1
2�

1
2p .

Common part of the proofs of Theorems 3, 4. Here, we state the common parts of the proofs for
Theorems 3, 4. Similar to the first inequality in (9), we have

E

"
TX

t=1

�
ft(xt) � ft(x)

�
#
 E

"
TX

t=1

hgt,xt � xi

#
+ Lbq(d)

TX

t=1

ht .

Note that without loss of generality, we can assume that
Pt

k=1 kgkk
2
p⇤ 6= 0, for all t � 1. This is

a consequence of the fact that if
Pt

k=1 kgkk
2
p⇤ = 0, then the first term on the r.h.s. of the above

inequality will be zero up to round t. Thus, we can erase these iterates from the cumulative regret,
only paying the bias term for those rounds. In what follows we essentially use [27, Corollary 1],
which we re-derive for the sake of clarity. Assume that ⌘t = �qPt�1

k=1kgkk2
p⇤

for t 2 {2, . . . , T} and

� > 0. Then, applying [27, Theorem 1] we deduce that

E

"
TX

t=1

�
ft(xt) � ft(x)

�
#


✓
R

2

�
+ 2.75 · �

◆
E

2

4

vuut
TX

t=1

kgtk
2
p⇤

3

5

+ 3.5D ·E[max
t2[T ]

kgtkp⇤ ] + Lbq(d)
TX

t=1

ht ,

where we introduced D = supu,w2⇥ ku�wkp. By [27, Proposition 1], we have D 
p

8R. More-

over, by Jensen’s inequality, using the rough bound E[maxt2[T ] kgtkp⇤ ] 

r
PT

t=1 E
h
kgtk

2
p⇤

i
, and

substituting � = Rp
2.75

, we deduce that

E

"
TX

t=1

�
ft(xt) � ft(x)

�
#


⇣
2
p

2.75 + 3.5
p

8
⌘

R

vuut
TX

t=1

E
h
kgtk

2
p⇤

i
+ Lbq(d)

TX

t=1

ht . (10)

Proofs of Theorems 3, 4 provided below follow from the above inequality by properly selecting
ht > 0.

Proof of Theorem 3. The bound of Lemma 4 under Assumption 2 applied to (10) yields

E

"
TX

t=1

�
ft(xt) � ft(x)

�
#
 2

⇣
2
p

2.75 + 3.5
p

8
⌘⇣p

3 +
p

6
⌘

RL

q
Td

1+ 2
q^2�

2
p + Lbq(d)

TX

t=1

ht

 110.53 · RL

q
Td

1+ 2
q^2�

2
p + Lbq(d)

TX

t=1

ht .
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Taking ht 
7R

200bq(d)
p
t
d

1
2+

1
q^2�

1
p makes negligible the last summand in the above bound. This

concludes the proof.

Proof of Theorem 4. Using (10), the bound of Lemma 4 under Assumption 3 and the fact that
p

a + b 
p

a +
p

b for a, b � 0, we deduce that

E

"
TX

t=1

�
ft(xt) � ft(x)

�
#


⇣
2
p

2.75 + 3.5
p

8
⌘

R

 
TX

t=1

d
4� 2

p �
2

h2
t

+ 12(1 +
p

2)2L2
T · d

1+ 2
q^2�

2
p

! 1
2

+ Lbq(d)
TX

t=1

ht

 110.6 · RL

q
Td

1+ 2
q^2�

2
p + 13.3R · d

2� 1
p �

 
TX

t=1

1

h2
t

! 1
2

+ Lbq(d)
TX

t=1

ht .

Since ht =
⇣
6.65

p
6 ·

R
bq(d)

⌘ 1
2

t
� 1

4 d
1� 1

2p and
PT

t=1 t
1
2 

2
3T

3
2 and

PT
t=1 t

� 1
4 

4
3T

3
4 , we get

E

"
TX

t=1

�
ft(xt) � ft(x)

�
#
 110.6 · RL

q
Td

1+ 2
q^2�

2
p + 5.9 ·

p

R (� + L) T
3
4

q
bq(d)d

1
2�

1
2p .

D Definition of `2-randomized estimator

In this section we recall the algorithm of Shamir [33]. Let ⇣�
2 Rd be distributed uniformly on @B

d
2 .

Instead of the gradient estimator that we introduce in Algorithm 1, at a each step t � 1, Shamir [33]
uses

g�
t , d

2h
(y0

t � y
00
t )⇣�

t ,

where y
0
t = ft(xt + ht⇣

�), y
00
t = ft(xt � ht⇣

�
t ), and ⇣�

t ’s are independent random variables with
the same distribution as ⇣�.
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