Published as a conference paper at ICLR 2025

FULLY-INDUCTIVE NODE CLASSIFICATION
ON ARBITRARY GRAPHS

Jianan Zhao'**, Zhaocheng Zhu'*, Mikhail Galkin®>', Hesham Mostafa*
Michael Bronstein®®, Jian Tang!’3

'Mila - Québec Al Institute, ZUniversité de Montréal, 3Google Research “Intel Labs

SUniversity of Oxford, ’AITTHYRA, "HEC Montréal, 3CIFAR AI Chair

ABSTRACT

One fundamental challenge in graph machine learning is generalizing to new graphs.
Many existing methods following the inductive setup can generalize to test graphs
with new structures, but assuming the feature and label spaces remain the same
as the training ones. This paper introduces a fully-inductive setup, where models
should perform inference on arbitrary test graphs with new structures, feature
and label spaces. We propose GraphAny as the first attempt at this challenging
setup. GraphAny models inference on a new graph as an analytical solution to a
LinearGNN, which can be naturally applied to graphs with any feature and label
spaces. To further build a stronger model with learning capacity, we fuse multiple
LinearGNN predictions with learned inductive attention scores. Specifically, the
attention module is carefully parameterized as a function of the entropy-normalized
distance features between pairs of LinearGNN predictions to ensure generalization
to new graphs. Empirically, GraphAny trained on a single Wisconsin dataset with
only 120 labeled nodes can generalize to 30 new graphs with an average accuracy
of 67.26%, surpassing not only all inductive baselines, but also strong transductive
methods trained separately on each of the 30 test graphs.

INTRODUCTION
One of the most important requirements for ma- s 5 Graﬁ:ﬁ ny.
chine learning models is the ability to generalize & .GVL?SE;'::Y
to new data. Models with better generalization "g’ GAT
abilities are able to perform better on unseen data ;¢
and tasks, which is a key property for foundation ~ © Trained on:
models (Achiam et al., 2023} [Team et al., [2023; 8 M 1Greph GCN
Touvron et al. |2023) that are designed to accom- 3 005 31 Graphs
plish a wide range of downstream tasks. For graphs,
generalization is challenging since different graphs >3 MLP
usually have different structures and associated at- >~ . 10 100 1000
tributes. Ideally, graph machine learning models Total training labeled nodes (k)
are expected to accommodate this difference and
learn functions that are applicable to all graphs. Figure 1: Average performance on 31 datasets.

Many previous works on graphs (Hamilton et al.|
2017;|Hang et al.,2021;|Qu et al., 2022; Jang et al.,
2023)) consider generalization in the inductive setup,

. be trained on each dataset.
where models are supposed to perform inference

GraphAny is trained on a single dataset (Wis-
consin or Arxiv) and performs inductive infer-
ence on any graph. The other methods have to

on test graphs with new structures different from the training ones. However, these works rely on the
assumption that the training and test graphs share the same feature and label spaces, which limits their
applications to graphs in a fixed domain (e.g. social networks, citation networks). Ideally, we would
like to have a model that generalizes to arbitrary graphs, involving new structures, new dimensions

*Equal contribution. Code release: https://github.com/DeepGraphlLearning/GraphAny

tWork done while at Intel Labs

https://github.com/DeepGraphLearning/GraphAny

Published as a conference paper at ICLR 2025

Structure Features Observed Labels Unobserved Labels
predict
Pre-training G = (V,¢€) X e RIVIxd Y, € RVelxe Yy e RIVulxe
predict
Inference G’ = (V',&') X' e RIVIxd Y] € RIVEI<e Y, € RVoIx

Figure 2: Fully-inductive node classification: Trained on a graph G, a fully-inductive model should
generalize to any new graph G’ with new feature and label spaces without additional training.

and semantics for their feature and label spaces without additional training. We name this more
general and practical setting as the fully-inductive setup (visualized in Figure[2).

The fully-inductive setup is particularly challenging for existing graph machine learning models for
two reasons: (1) Existing models learn transformations specific to the dimension, type, and structure
of the features and labels used in the training, and cannot perform inference on feature and label
spaces that are different from the training ones. This requires us to develop a new model architecture
for arbitrary feature and label spaces. (2) Existing models learn functions specific to the training
graph and cannot generalize to new graphs. This calls for an inductive function that can generalize to
any graph once it is trained. Despite these challenges, it is always possible to cheat the fully-inductive
setup by training a separate instance of existing models for each test dataset. We emphasize that this
solution does not solve the fully-inductive setup. However, this cheating solution can be regarded as
a strong baseline for fully-inductive models, since it additionally leverages back propagation on the
labeled nodes and hyperparameter tuning on the validation data of the test datasets.

Our Contributions. We propose GraphAny to solve node classification in the fully-inductive setup.
GraphAny consists of two components: LinearGNNs that perform inference on new feature and
label spaces without training steps, and an inductive attention module based on entropy-normalized
distance features that ensure generalization to new graphs. Specifically, our LinearGNN models the
mapping between node features and labels as a non-parameteric graph convolution followed by a
linear layer, whose parameters are determined in analytical form without requiring explicit training
steps. While a single LinearGNN model may be far from optimal for many graphs, we employ
multiple LinearGNN models with different graph convolution operators and learn an attention vector
to adaptively fuse their predictions. The attention vector is carefully parameterized as a function
of distance features between the predictions of LinearGNNs, which guarantees the model to be
invariant to the permutations of feature and label dimensions. To further improve the generalization
ability of our model, we propose entropy normalization to rectify the distance feature distribution to a
fixed entropy, which reduces the effect of different label dimensions. By combining both modules,
GraphAny learns to combine the LinearGNNs’ predictions for each node based on their prediction
distributions, which reflects statistics of its local structure, and generalizes to new graphs.

To summarize, the contribution of GraphAny are four folds:

* We introduce the fully-inductive setup for generalization across arbitrary graphs. Fully-inductive
setup is more general and practical than the conventional inductive setup, allowing knowledge
transfer across diverse domains, such as from knowledge graphs to e-commerce graphs.

* We devise LinearGNN, an analytical solution for node classification that enables efficient inductive
inference on any new graph without the need for gradient descent.

Published as a conference paper at ICLR 2025

» We identify two necessary properties for fully-inductive generalization: permutation invariance
and dimensional robustness w.r.t. the feature and label spaces. Towards these goals, we design an
inductive attention module that satisfies these properties and generalizes to new graphs.

* By combining LinearGNN and the inductive attention module, we present GraphAny, the first
fully-inductive model for node classification. Across 31 datasets, GraphAny outperforms strong
transductive baselines trained separately on each test dataset and achieves a 2.95x speedup.

2 RELATED WORK

Inductive Node Classification. Depending on the test graphs which models generalize to, tasks on
graphs can be categorized into transductive and inductive setups. In the transductive (semi-supervised)
node classification setup (Kipf and Welling}, 2017)), test nodes belong to the same training graph the
model was trained on. In the inductive setup (Hamilton et al., | 2017), the test graph might be different.
The majority of GNNs aiming to work in the inductive setup use known node labels as features. [Hang
et al.|(2021) introduced Collective Learning GNNs with iterative prediction refinement. Jang et al.
(2023)) applied a diffusion model for such prediction refinement. Structured Proxy Networks (Qu et al.|
2022) combined GNNs and conditional random fields (CRF) in the structured prediction framework.
However, the train-test setup in all those works is limited to different partitions of the same bigger
graph, that is, they cannot generalize to unseen graphs with different input feature dimensions and
number of classes. To the best of our knowledge, GraphAny is the first approach for fully-inductive
node classification, which generalizes to unseen graphs with arbitrary feature and label spaces.

Labels as Features. |Addanki et al.| (2021) demonstrated that node labels used as features yield
noticeable improvements in the transductive node classification setup on MAG-240M in OGB-
LSC (Hu et al, |2021a). [Sato| (2024)) used labels as features for training-free transductive node
classification with a specific GNN weight initialization strategy mimicking label propagation (hence
only applicable to homophilic graphs). In homophilic graphs, node label largely depends on the
labels of its close neighbors whereas in heterophilic graphs, node label does not depend on the
neighboring nodes. GraphAny supports both homophilic and heterophilic graphs in both transductive
and inductive setups.

Connections to Graph Foundation Models. Graph foundation models (GFMs), which aim to
develop a single model transferable to new graphs and diverse graph tasks, have garnered significant
attention in the graph learning community. The core challenge in designing a GFM is achieving
generalization across graphs with varying input and output spaces, which requires identifying an
invariant feature space that transfers effectively across graphs (Mao et al.,2024). While fine-tuning a
pre-trained model on a new graph is feasible (Zhu et al., |2024)), we focus on the more challenging
fully-inductive setting, where the model must generalize to unseen graphs without additional training.

In scenarios where graphs share a common feature space, such as in molecular learning (Kliser et al.
2024; [Kovacs et al.|, 2023} Zhang et al., 2023 [Sypetkowski et al., 2024} |Shoghi et al., [2024) and
material design (Batatia et al., |2024), GNNs can be applied to the shared feature space of atoms,
acting as GFMs. For non-featurized graphs, GNNs equipped with labeling tricks (Zhang et al.| [2021)
have shown promise as generalizable link predictors in homogeneous graphs (Dong et al., [2024) and
multi-relational knowledge graphs (Galkin et al.,|2024). Another line of research (Zhao et al., 2023
Tang et al.| 2023} |Chai et al.| 2023} |[Fatemi et al., [2024; [Perozzi et al., [2024; Liu et al.| [2024) focuses
on fext-attributed graphs (Yan et al.,2023)), where features are represented as, or converted into, text.
Here, large language models (LLMs) serve as universal featurizers by verbalizing the (sub)graph
structure and the associated task in natural language. However, it is unclear whether the sequential
nature of LLMs is suitable for graphs with permutation invariance.

In summary, while existing GFMs have shown promising results, their generalization capabilities
often rely on strong assumptions over the training and test graphs, particularly the presence of a
shared input space. In contrast, GraphAny is the first attempt to the more general and challenging
problem of generalizing across arbitrary graphs. This broader scope opens up new possibilities
for transferring knowledge between different graph domains, such as from knowledge graphs to
e-commerce graphs. Additionally, we believe our proposed model, along with essential generalization
properties like permutation invariance and dimensional robustness, provide a solid foundation for
future research on powerful and versatile GFMs.

Published as a conference paper at ICLR 2025

F Pt v Inductive Attention
txc 1xe
(A, X,Y;) Graph Conv. Pseudo-inverse Predictions Y
tx1
. Pairwise ;
Input graph LinearGNNs Disltar:ce Flha!
. Prediction
with features txt txt
and observed non-learnable
labels Entropy Attention f
GraphAny learnable Normalization

The GraphAny Architecture

Figure 3: Overview of GraphAny: LinearGNNs are used to perform non-parametric predictions and
derives the entropy-normalized distance features. The final prediction is generated by fusing multiple
LinearGNN predictions on each node with an attention learned based on the distance features.

3 GRAPHANY: FULLY-INDUCTIVE NODE CLASSIFICATION ON ANY GRAPH

Our goal is to devise a fully-inductive model that can perform inductive inference on any new graph
with arbitrary feature and label spaces, typically different from the ones associated with the training
graph (Figure[2). Here we propose such a solution GraphAny, which consists of two main components
(Figure[3): a LinearGNN and an attention module. Each LinearGNN provides a basic solution to
inductive inference on new graphs with arbitrary feature and label spaces, while the attention module
learns to combine multiple LinearGNNs based on inductive features that generalize to new graphs.

Formally, in a semi-supervised node classification task, we are given a graph G = (V, £), typically
represented as an adjacency matrix A, and node features X € RIVIXd 3 et of labeled nodes %3
and their labels Y7, € RIVEIX¢ where ¢ is the number of unique label classes. The goal of node
classification is to predict the labels Y for all the unlabeled nodes Vi = V \ V¢ in the graph. In
the conventional transductive learning setup, this is performed by training a GNN (e.g. GCN (Kipf
and Welling, |2017), GAT (Velickovic et al., 2018])) on the subset of labeled nodes using standard
backpropagation requiring multiple gradient steps. Such a GNN assumes the full graph to be given
and typically does not generalize to a new graph out of the box without some forms of re-training or
fine-tuning. Conversely, a fully-inductive model is expected to predict the labels Y for any graph
without expensive gradient steps. Furthermore, when a new graph is provided, it might have different
dimensionality d’ of the features and number of class labels, ¢/, which can also appear in an arbitrary
permuted order.

3.1 INDUCTIVE INFERENCE WITH LINEARGNNS

A key idea of this paper is to use simple GNN models whose parameters can be expressed analytically.
Following existing works that simplifies GNN (Wu et al.| [2019; Zhu and Koniusz, 2021} Yoo et al.|
2023)) by removing non-linearity, we leverage graph convolutions to process node features, followed
by a linear layer to predict the labels,

Y = softmax(FW), (H

where F = AFX ¢ RIVI*? s the processed features and W € R?*¢ is the weight of the linear
layer. Originally, the parameters of most existing GNNss are trained to minimize a cross-entropy loss
on node classification, which does not have analytical solution and requires gradient descent to learn
the weights. Alternatively, we propose to use a mean-squared error loss for optimizing the weights:

W* = argmin || Y, — Yz ||?,)
\%%

where we use Y7, to denote model predictions on the set of labeled nodes. The benefit of this
approximation is that now we have an analytical solution for the optimal weights W*:

W*=F/"Yy, 3)
where FLJr is the pseudo inverse of F,, and the model prediction is given by:

Y = FF;Yy. ()

Published as a conference paper at ICLR 2025

We term this architecture LinearGNN, as it approximates the prediction of linear GNNs (like SGC (Wu
et al.,2019)) with a single forward pass. Its main advantage is that it requires no training, which
makes it significantly more computationally efficient (see Section[3.3). Note that the derivation of
LinearGNNs is independent of the graph convolution operation, and can be applied to other linear
convolution operations as well. We stress that while we do not expect LinearGNNs to outperform
existing transductive models on node classification, they provide a simple basic module for inductive
inference. In Section[3.2] we will see how to combine multiple LinearGNNS to create a stronger
model with inductive attention that generalizes to new graphs.

3.2 LEARNING INDUCTIVE ATTENTION OVER LINEARGNN PREDICTIONS

Although LinearGNNs provide basic solutions to inductive inference on new graphs, the learned
weights are still transductive, i.e. specific to the training graph, and do not capture transferable
knowledge that can be applied to unseen graphs. Besides, our experiments (Figure[/) suggest that
different graphs may require LinearGNNs with convolution operations. Hence, a natural way to
incorporate fully-inductive learning is to add an inductive attention module over a set of multiple

LinearGNNSs. Let a&l), af), ey an) denote the node-level attention over ¢ LinearGNNs. We generate
the final prediction as a combination of all LinearGNN predictions:

Ju = oy, ©)

While there are various ways to parameterize this

attention module, finding an inductive solution is Permutation Masking
non-trivial since neural networks can easily fit the

information specific to the training graph. We no-

tice a necessary property for fully-inductive func-

tions is that it should be robust to transformations : -

on features and labels, such as permutation or VI xd VIxd Vxe M d
masking on some dimensions (Figure f). This

requires our attention module, to be permutation ~Figure 4: Transformations on graph features and
invariant and robust to dimension changes, which ~labels: permutation (left), masking (right).
motivates our design of distance features and en-

tropy normalization respectively.

Permutation-Invariant Attention with Distance Features. We would like to design an attention
module that is permutation invariant (Bronstein et al., 2021)) along the data dimensionm Consider a
new graph generated by permuting feature and label dimensions of the training graph. We expect our
attention output to be invariant to these permutations in order to generate the same prediction as for
the unpermutated training set.

Our idea is to construct a set of permutation-invariant features, such that any attention module we
build on top of these features becomes permutation-invariant. Formally, if the permutation matrices
for feature and label dimensions are P € R?*? and Q € R°*¢ respectively, a function f is (data)

permutation-invariant if:

In our LinearGNN, the prediction Y, as a function of the new graph, is invariant to the feature
permutation and equivariant to the label permutation since it has the following analytical form:

Y(XP,Y:Q) = FFY.Q.)

Deriving a feature that is invariant to the label permutation requires us to cancel @ with its inverse
Q. A straightforward solution is to use a dot product feature for predictions on each node:

YY' = FF'Y,Y, (F})TFT,)

'Tt is important to distinguish between domain symmetry (in this case, permutation of the nodes of the graph)
and data symmetry (permutation of the feature and label dimensions). Invariance to domain symmetry (node
permutations) is provided by design in our LinearGNN.

Published as a conference paper at ICLR 2025

which is invariant to both feature and label-permutation matrices P and Q. Generally, any feature
that is a linear combination of dot products between LinearGNN predictions is also permutation
invariant, e.g. Euclidean distance or Jensen-Shannon divergence. For a set of ¢ LinearGNN predictions
g)f}), g](f), . 71319) on a single node u, we construct the following ¢(¢ — 1) permutation-invariant
features to capture their squared distances:

195 = g2 1580 = g2 1%, - 98 — 98V ©)
We include detailed proofs in Appendix [A] An advantage of such permutation-invariant features is

that any model taking them as input is also permutation invariant, allowing us to use a simple model,
such as multi-layer perceptrons (MLP), to predict the attention scores over different LinearGNNs.

Wisconsin (5 classes) Cora (7 classes) o Roman (18 classes) o Arxiv (40 classes) o Product (47 classes) o FullCora (70 classes)
1 1 1 1
LinearSGC2 v.s.: LinearSGC2 v.s.: LinearSGC2 v.s. LinearSGC2 v.s.: LinearsGC2 v.s. LinearSGC2 v.s.:
=3 Linear 3 Linear [Linear 3 Linear 3 Linear 3 Linear
8 LinearSGC1 8 LinearsGC1 8 LinearSGC1 8 LinearSGC1 8 LinearsGC1 8 LinearSGC1
[LinearHGCL [LinearHGC1 [LinearHGC1 [LinearHGC1 [LinearHGC1 [LinearHGC1
[LinearHGC2 [LinearHGC2 [LinearHGC2 [LinearHGC2 [LinearHGC2 [LinearHGC2
z* z° z S z° z°® z
2 2 2 2 2 2
& & & § 5 &
0 4 O 24 0 a4 2 ° 4
|
2 2 2 2 2 L 2
0 o 0 0 0
0.00 0.25 050 0.75 1.00 0.00 025 050 075 1.00 0.00 025 050 0.75 1.00 0.00 025 050 075 1.00 0.00 025 050 075 1.00 0.00 0.25 050 0.75 1.00
Value Value Value Value Value Value
0 Wisconsin (5 classes) 10 Cora (7 classes) 10 Roman (18 classes) 10 Arxiv (40 classes) 10 Product (47 classes) 10 FullCora (70 classes)
LinearSGC2 v.s.: LinearSGC2 v.s.: LinearSGC2 v.s. LinearSGC2 v.s.: LinearSGC2 v.s. LinearSGC2 v.s.:
[Linear 3 Linear 3 Linear [Linear 3 Linear =3 Linear
8 LinearsGC1 8 LinearSGC1 8 | LinearsGC1 8 LinearSGC1 8 LinearSGC1 8 LinearsGC1
[LinearHGC1 [LinearHGC1 | =2 tnearrccl [LinearHGC1 [LinearHGC1 [0 LinearHGC1
[LinearHGC2 [LinearHGC2 [LinearHGC2 [LinearHGC2 [LinearHGC2 [LinearHGC2
> 6 > 6 > 6 > 6 > 6 > 6
3 § G § 5 g
) e 4 S 4 e 4 e 4 S 4
2 2 2 /\ 2 2 2
0 0 o - 0 /_J\ 0 J\ 0 -
0.00 0.25 050 0.75 1.00 0.00 025 050 075 1.00 0.00 0.25 050 0.75 1.00 0.00 0.25 050 0.75 1.00 0.00 025 050 075 1.00 0.00 0.25 050 0.75 1.00

Value Value Value Value Value Value

Figure 5: Comparison of Euclidean distances (the first row) and entropy-normalized (the second
row) features between five channels: ' = X (Linear), F = AX (LinearSGCI1), F = A%X
(LinearSGC2), F = (I — A)X (LinearHGCI1) and F = (I — A)%2X (LinearHGC2) with A
denoting the row normalized adjaceny matrix. Entropy-normalized features are on the same scale and
exhibit transferrable patterns across datasets.

Robust Dimension Generalization with Entropy Normalization. While the distance features for
inductive attention ensure a permutation-invariant attention module, the distance features are known
to suffer from the curse of dimensionality, where distances between vectors with larger dimensions
have smaller scales (Beyer et al.,[1999). This will hamper the generalization performance when the
dimensions of label spaces vary across training and inference graphs (e.g. training on 7 classes for
Cora and inference on 70 classes for FullCora). Empirically, as shown in the first row of Figure[5] the
scale of Euclidean distance distributions decreases drastically when the number of classes increases,
hampering the generalization ability of the attention module trained on a single graph.

A naive approach is to normalize the distance-feature distributions using a hyperparameter (e.g.,
temperature). However, due to the varying neighbor patterns across graphs (or even nodes (Luan
et al.| 2022)), a single hyperparameter may not be suitable for all nodes and graphs. Instead, we
propose an adaptive solution that normalizes distance features to a consistent scale. To achieve this,
we employ entropy normalization, a technique commonly used in manifold learning (Hinton and
Roweis, [2002; van der Maaten and Hinton, [2008) to adaptively determine the similarity features. For
node u, the asymmetric similarity feature between LinearGNN predictions ¢ and j is defined as:

exp(— g1 — 97 |?/2(01”)?) w0
S oxp(— g8 — 97112/ (0)2)

where aq(f) is the standard deviation of an isotropic multivariate Gaussian, determined by matching
the entropy of distance distributions Pl = {pu(j | 7) | j € [1,1]} to a fixed hyperparameter H.
Since the similarity features are derived from distance features, they are also permutation-invariant
to the feature and label dimensions of the graph. Intuitively, this imposes a soft constraint on the

pu(Jli) =

Published as a conference paper at ICLR 2025

number of LinearGNN predictions considered similar to gfj), significantly reducing the gap between
training and test features. As shown in the second row of Figure [5] entropy-normalized feature
distributions are on consistent scales across datasets. Additionally, we observe that different types
of homophilic graphs (e.g., the citation graph Cora and the e-commerce graph Product) exhibit
similar entropy-normed features. We will further verify the effectiveness of entropy normalization
empirically in Section[4.4]

3.3 EFFICIENT TRAINING AND FULLY-INDUCTIVE INFERENCE

In this section, we summarize how GraphAny utilizes the techniques introduced in the previous
section and derive an efficient fully-inductive node classification model. As shown in Figure[3] given
any graph, GraphAny first utilizes ¢ LinearGNNS to provide basic predictions with different channels.
Then, entropy-normalized features are computed based on the distances between these predictions,
leading to ¢(¢ — 1)-dimensional features. Further, an inductive attention module fy (e.g. MLP) is used
to compute the attention scores for fusing different predictions into a final prediction (Eq. [3)). Since
the only trainable module of GraphAny lies in the inductive attention module f, : R{(t=D — R?,
which is independent to feature dimension d and label dimension ¢, GraphAny enjoys fully-inductive
inference on any graph with arbitrary feature and label dimensions.

One advantage of GraphAny is that it is more efficient than conventional graph neural networks
(e.g. GCN (Kipf and Welling, [2017), which is due to two reasons. First, LinearGNN leverages
non-parameteric graph convolution operations, which can be preprocessed and cached for all nodes
on a graph, reducing the optimization complexity to O(|Vr,|) compared with the complexity of O(|£])
for standard GNNs. Second, once trained, GraphAny is ready to generalize to arbitrary graphs,
eliminating the need for gradient descent on test graphs.

Table |1 shows the time complexity and total wall time of GCN, LinearGNN and GraphAny. The
total wall time considers all training and inference time on 31 graphs. Even without any speed
optimization in our implementation, GraphAny is 2.95x faster than the optimized DGL’s (Wang
et al., 2020) GCN implementation in total time. We believe the speedup can be even larger with
dedicate implementations of GraphAny.

Table 1: Comparison of time complexity and wall time. Note that GCN has to be trained individually
on each of the 31 graphs while GraphAny only needs 1 training graph.

. s Total Wall Time
Model Pre-processing Optimization Inference (31 graphs)
GCN 0 O(|€)) O(|€)) 18.80 min
LinearGNN o(&]) o(|vel) O(|Vul]) 1.25 min (15.04x)
GraphAny o€l o(|Vr|) O([Vu]) 6.37 min (2.95x%)

4 EXPERIMENTS

In this section, we evaluate the performance of GraphAny against both transductive and inductive
methods on 31 node classification datasets (details in Appendix [B). We visualize the attention of
GraphAny on different datasets, shedding light on what inductive knowledge our model has learned
(Section.3). To provide a comprehensive understanding of the proposed techniques of GraphAny,
we further conduct ablation studies on the entropy-normalized feature and attention parameterization
in Section[d.4] More training and implementation details are provided in Appendix [C]

4.1 EXPERIMENTAL SETUP

Datasets. We have compiled a diverse collection of 31 node classification datasets from three sources:
PyG (Fey and Lenssen, 2019), DGL (Wang et al.l 2020), and OGB (Hu et al., | 2021b). These datasets
encompass a wide range of graph types including academic collaboration networks, social networks,
e-commerce networks and knowledge graphs, with sizes varying from a few hundreds to a few
millions of nodes. The number of classes across these datasets ranges from 2 to 70. Detailed statistics
for each dataset are provided in Appendix [B]

Published as a conference paper at ICLR 2025

o
]

i AT Model
80 dfl A B GraphAny (Wisconsin) | 120 training nodes I GCN | 511,673 training nodes
[GAT | 511,673 training nodes BN MLP | 511,673 training nodes
>
o
© 60
5
Q
o
©
w 40
(]
Q@
20
0
2858 2 g8 2 e 2P EFEYT T =L S5k T8 ETRHSES
S 2 3 2 25 2 L8 EzT s e@my eSS ZE 3 ¥z S5 L0
2 2 & O O S T SR g0 g 3 g T e g5 g <o
o i N N T ©° S 2 =2 2 = 0 JI S S Q X o = z
=] £ E 2 F > o =) L s N < <
g o < < 2 & o = 5 £
= - o <
=
Dataset

Figure 6: Inductive test accuracy (%) of GraphAny pre-trained using 120 labeled nodes of the
Wisconsin dataset on 30 diverse graphs. Baseline methods are trained individually on each graph
(511k labeled nodes in total). GraphAny is slightly better than the baselines in average performance.

Implementation Details. For GraphAny, we employ 5 LinearGNNs with different graph convolution
operations: F' = X (Linear), F = AX (LinearSGC1), F = A?X (LinearSGC2), F = (I — A)X
(LinearHGC1) and F = (I — A)ZX (LinearHGC2) with A denoting the row normalized adjaceny
matrix, which cover identical, low-pass and high-pass spectral filters. In our experiments, we
consider 4 GraphAny models trained separately on 4 datasets respectively: Cora (homophilic, small),
Wisconsin (heterophilic, small), Arxiv (homophilic, medium), and Products (homophilic, large). The
remaining 27 datasets are held out from these training sets, ensuring that the evaluations on these
datasets are conducted in a fully-inductive manner. More implementation details can be found at

Appendix [C]

Baselines. As there are no existing fully-inductive node classification baselines, we include non-
parametric methods (models without learnable parameters) like label propagation (Zhu and Ghahra
mani, 2002) and the five LinearGNNs used in GraphAny. While these methods perform inductive
inference, they do not transfer knowledge across graphs. Additionally, we compare GraphAny
with transductive models, including MLP, GCN (Kipf and Welling, 2017), and GAT (Velickovic
et al.,2018). These models are trained separately on each dataset and serve as strong baselines for
inductive models, as they benefit from backpropagation on labeled nodes and hyperparameter tuning
on validation sets of the test dataset.

4.2 PERFORMANCE OF INDUCTIVE NODE CLASSIFICATION

Table [2] presents the results of GraphAny and various baselines on 31 node classification datasets
(complete results for each dataset are provided in Appendix D). Our proposed LinearGNNSs, despite
being non-parametric, demonstrate competitive performance. Notably, LinearSGC2, a linear model
with a two-hop graph convolution layer, achieves only 2.1% lower accuracy than GCN, which
aligns with previous findings that SGC performs comparably to GCN (Wu et al., 2019). Moreover,
LinearSGC2 leverages an analytical solution for inference, making it approximately 15x faster than
training a GCN from scratch on each dataset (see Table[I)). Additionally, we observe that the optimal
LinearGNN model differs across datasets, highlighting that no single graph convolution kernel is
universally effective for all graphs.

As for GraphAny, which is trained on just 1 of the 31 graphs, it significantly outperforms Lin-
earGNN’s and even slightly surpasses transductive baselines that are individually trained on all 31
graphs. This improvement is primarily driven by inductive generalization, as GraphAny achieves
its strongest performance on the 27 held-out (fully-inductive) datasets rather than the 4 training
(transductive) datasets. A closer examination of Figure [6| shows that GraphAny performs well on
both homophilic and heterophilic graphs in an inductive manner. We attribute this to the inductive
attention module, which adaptively fuses predictions from different graph convolution kernels for
each node. Interestingly, we also observe minimal performance differences between GraphAny when
trained on small datasets (e.g., Cora and Wisconsin) and large datasets (e.g., Arxiv and Products). We
hypothesize that even small datasets contain sufficiently diverse local node patterns (e.g., homophily

Published as a conference paper at ICLR 2025

Table 2: Main experiment results (test accuracy %).

Held Out Avg. Total Avg.

Category Method Cora Wisconsin Arxiv Products (27 graphs) (31 graphs)
MLP 48.42+063 66.67+351 55.50+023 61.06+0.08 57.09 57.20
Transductive GCN 81.40+070 37.25+164 T1.74+020 75.79+0.12 65.55 66.55
GAT 81.70+143 52.94+3.10 73.65+011 79.45+0.59 65.31 67.03

LabelProp 60.30+000 16.08+2.15 0.98+000 74.50+0.00 50.73+031 49.01+0.27

Linear 52.80+000 80.00+215 46.79+0.00 42.10+0.00 57.91+043 57.59+0.42

Non-parameteric LinearSGC1 74.30+000 454941396 55.33+000 56.58+0.00 62.69+0.24 62.08+0.48

P LinearSGC2 78.20+000 57.64+1.07 59.58+000 62.92+0.00 64.38+0.48 64.41+039

LinearHGC1 22.50+000 64.32+215 22.92+000 15.00-+0.00 37.01+0.20 36.26+0.23

LinearHGC2 23.80+000 56.08+429 20.65+0.00 13.39+0.00 35.62+0.68 34.70+0.55

GraphAny (Cora) 80.18 +0.13 61.18+508 58.62+005 61.60+0.10 67.24+0.23 67.00+0.14

Inductive GraphAny (Wisconsin) ~ 77.82+1.15 71.77+598 57.79+056 60.28+0.80 67.31+038 67.26+0.20

(training set) GraphAny (Arxiv) 79.38+0.16 65.10+322 58.68+0.17 61.31+0.20 67.65+031 67.46+0.27

GraphAny (Products) 79.36+023 65.89+223 58.58+0.11 61.19+023 67.66+0.39 67.48+0.33

Normalized LinearGNN Results

Arxiv 038 0.35

Cora 029 0.30

FCora 023 027
Citeseer 0.35 0.34
DBLP 046 0.46
Pubmed [10.52 | 0.54
WKCS 031 0.29
Products
LastFMAsia
Chameleon
AmzRatings
Tolokers

GraphAny-Wisconsin Attention - Hits@1=0.52, Hits@2=0.65 GraphAny-Arxiv Attention - Hits@1=0.55, Hits@2=0.77
Arxiv. 0.09 0.10 ¥ 021 kA Arxiv. 0.04 0.03 0.16 [CE 43
Cora 0.09 Cora 004 0.04
FCora 0.12 FCora 005 0.05
Citeseer 0.08 0.40 Citeseer 0.04 0.04
DBLP 0.1 DBLP 0.04 0.04
Pubmed 0.09 Pubmed 0.04 0.04
WkCS 0.10 WKCS 0.04 0.04
Products 0.13 Products 0.05 0.04
LastFMAsia 0.10 LastFMAsia 0.04 0.04
Chameleon 0.14 Chameleon 0.03 0.03
AmzRatings 0.07 AmzRatings 0.03 0.03
07 Tolokers 0.08 Tolokers 0.03 0.03
Questions 0.09

1.0

0.9

0.8

Questions Questions 0.03 0.03

CoPhysics CoPhysics 0.12 CoPhysics 0.03 0.03
3 AmzComp % AmzComp 011 5 AmzComp 004 004
S AmzPhoto 06 & AmzPhoto 0.11 & AmzPhoto 0.04 0.04
= CoCS = CoCS 0.10 025 & CoCS 004 003

Wiki Wiki 0.12 Wiki 0.05 0.05
Reddit

AirBrazil

Reddit 0.14

05 AirBrazil 0.14
AirUs = 0.16

AIrEU 0.14

Squirrel 0.13

04 Minesweeper 0.07 0.
BlogCatalog BlogCatalog 0.12 0.14
Cornell Cornell _0.13 0.12
Wisconsin Wisconsin 0.11
Texas X ; -03 Texas 014 0.12 .
Deezer 95 Deezer 017 019 0.19
Actor 0.89

Reddit 0.04 0.04
AirBrazil 0.05 0.05

020 ArUS 005 0.05
AEU 006 0.05

Squirel 0.04 0.04

Minesweeper 0.03 0.03

-0.15 BlogCatalog 0.05 0.04
Cornell 0.04 0.04

Wisconsin 0.04 0.04

Texas 0.04 0.04

-0.10 Deezer 0.03 0.03
Actor 0.04 0.04

-0.2

AIrEU
Squirrel
Minesweeper

-0.1

Actor 0.12 OPLE 0.15

e 00 098 099 i Roman 0.09 0.0 0.12 Roman 0.04 0.04
HGC1 HGC2 Linear SGC1 SGC2 HGC1 HMGC2 Linear SGC1 SGC2 HGC1 HGC2 Linear SGC1 SGC2
LinearGNNs LinearGNNs LinearGNNs

Figure 7: Normalized performance of LinearGNNs (left; best as 1.00) and attention weights of
GraphAny trained on Wisconsin (middle) and Arxiv (right) respectively. The best and second best
LinearGNN performance and attention weights for each dataset are highlighted with red and purple
rectangles respectively. The learned inductive attention of GraphAny successfully identifies the
best-performing LinearGNN for most datasets.

and heterophily) (Luan et al.| 2022), enabling GraphAny to learn an effective node-level attention
mechanism that generalizes well with a limited number of nodes (e.g., 120). A detailed analysis of
the attention module is provided in Section[4.3]

4.3 VISUALIZATION OF THE INDUCTIVE ATTENTION

To understand how LinearGNNs are combined in GraphAny by the inductive attention, we visualize
the attention weights of GraphAny (Wisconsin) and GraphAny (Arxiv) on all datasets, averaged
across nodes. For reference, we also visualize the performance of each individual LinearGNN on all
datasets. As shown in Figure[7] we can see that half of the datasets are homophilic with LinearSGC2
being the optimal LinearGNN, while the other half prefers LinearHGC1, Linear or LinearSGCI1.
In most cases, GraphAny successfully identifies the optimal LinearGNN within its top-2 attention
weights, with Hits@2 being 0.65 and 0.77 for GraphAny trained on Wisconsin and Arxiv respectively.

We hypothesis that this amazing inductive performance comes from the inductive entropy-normed
distance feature we derived, where homophilic and heterophilic graphs share different patterns (see
the second row in Figure [5)). Interestingly, there is a distinction between the attention distributions
when training on different datasets: GraphAny-Wisconsin leads a relatively balanced distribution of
attention across 5 LinearGNNs, while Graph-Arxiv prefers a more focused distribution of attention,
favoring low-pass filters like LinearSGC1 and LinearSGC2. This reflects the nature of these training
sets: As shown in the left part of Figure[7] all LinearGNN channels in Wisconsin are reasonably good,

Published as a conference paper at ICLR 2025

— EntNorm-4 — EntNorm-3 EntNorm-2 EntNorm-1
EntNorm-0.5 EntNorm-0.25 Euc. Distance —— JS-Divergence
Transductive Test Accuracy Inductive Test Accuracy Transductive Test Accuracy Inductive Test Accuracy

59.5 antiatul 59 67
67 Ly 588
59 // ’W/"’W’ 58.6 M 6
/ N 66 \ 58.4 Mf'
/ M\ N My M
58.5 y J IMp - f ~~ 582 65

58
57.8 64
57.6
57.4\//”/ 63\/,/
57.2

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
Training Batch Training Batch Training Batch Training Batch

— Node Graph — Transductive

Accuracy %
-
a
}m\

Figure 8: Performance of different distance fea- Figure 9: Performance of different attention pa-
tures with and without entropy normalization. ~ rameterizations.

indicating diverse message-passing pattern exists, but Arxiv is a homophilic dataset where Linear,
LinearSGC1 and LinearSGC2 have better performance (Table[2). These different message-passing
patterns are learned and used by GraphAny to generate inductive attention scores.

4.4 ABLATION STUDIES

Entropy Normalization. A key component of GraphAny is the entropy normalization technique
applied to distance features. As discussed in Figure [5] entropy normalization ensures that the
generated features are of a consistent scale. Here, we further evaluate entropy normalization from
a performance perspective. Figure [8| demonstrates that unnormalized features, such as Euclidean
distance and Jensen-Shannon divergence, yield better test performance in the transductive setting.
However, their performance in the inductive setting decreases as training progresses, indicating that
the model overfits to transductive information in the features, such as feature scale. In contrast,
distance features normalized to the same entropy H (denoted as EntNorm-H in the figure) achieve
stable convergence in both transductive and inductive settings. Additionally, entropy normalization
shows robustness to the choice of the hyperparameter entropy value H, with different selections
resulting in similar convergence rates and performance.

Attention Parameterization. It is known that the optimal message-passing patterns vary for different
graphs (Zhu et al.,[2020) or even different nodes (Luan et al., 2022). Therefore, GraphAny utilizes
a node-level attention to adaptively combine different LinearGNN predictions. Here we consider
two variants of attention parameterization: (1) Graph-level attention uses distance features averaged
over all nodes in a training batch, which results in the same attention for all nodes in a training batch,
losing the personalization for each node. (2) Transductive attention directly parameterizes attention
weights as a t-dimensional vector and assumes they can transfer to new graphs. Figure [9]plots the
transductive and inductive test performance curves for different attention parameterizations. We
notice that transductive attention does not even learn anything useful, given its performance is worse
than a single LinearSGC2 model (see Table [2). Comparing node-level attention and graph-level
attention, we can see that node-level attention converges slower than graph-level attention, but results
in better performance in both transductive and inductive settings. This suggests the effectiveness of
learning fine-grained attention based on the local information of each node.

5 CONCLUSION

In this paper, we propose GraphAny, the first fully-inductive node classification model capable of
performing inference on any graph with arbitrary feature or label space. GraphAny is composed of
two core components: LinearGNNs and an inductive attention module. LinearGNNs enable efficient
inductive inference on unseen graphs, while the inductive attention module learns to adaptively
aggregate predictions from multiple LinearGNNSs. Trained on a single graph, GraphAny demonstrates
strong generalization to 30 new graphs, even surpassing the average performance of transductive
models that are trained separately on each dataset.

10

Published as a conference paper at ICLR 2025

ACKNOLEDGEMENT

The authors would like to thank Dinghuai Zhang for his helpful discussions and comments. This
project is supported by the Intel-MILA partnership program, the Natural Sciences and Engineering
Research Council (NSERC) Discovery Grant, the Canada CIFAR Al Chair Program, collaboration
grants between Microsoft Research and Mila, Tencent Al Lab Rhino-Bird Gift Fund and a NRC
Collaborative R&D Project (AI4DCORE-06). This project was also partially funded by IVADO
Fundamental Research Project grant PRF-2019-3583139727. M.B. is partially supported by the
EPSRC Turing Al World-Leading Research Fellowship No. EP/X040062/1 and EPSRC AI Hub No.
EP/Y028872/1. The computation resource of this project is supported by Mila, Calcul Québec and
the Digital Research Alliance of Canada.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Ravichandra Addanki, Peter W Battaglia, David Budden, Andreea Deac, Jonathan Godwin, Thomas
Keck, Wai Lok Sibon Li, Alvaro Sanchez-Gonzalez, Jacklynn Stott, Shantanu Thakoor, et al.
Large-scale graph representation learning with very deep gnns and self-supervision. arXiv preprint
arXiv:2107.09422, 2021.

Ilyes Batatia, Philipp Benner, Yuan Chiang, Alin M. Elena, David P. Kovacs, Janosh Riebesell,
Xavier R. Advincula, Mark Asta, Matthew Avaylon, William J. Baldwin, Fabian Berger, Noam
Bernstein, Arghya Bhowmik, Samuel M. Blau, Vlad Cérare, James P. Darby, Sandip De, Fla-
viano Della Pia, Volker L. Deringer, Rokas ElijoSius, Zakariya El-Machachi, Fabio Falcioni, Edvin
Fako, Andrea C. Ferrari, Annalena Genreith-Schriever, Janine George, Rhys E. A. Goodall, Clare P.
Grey, Petr Grigorev, Shuang Han, Will Handley, Hendrik H. Heenen, Kersti Hermansson, Christian
Holm, Jad Jaafar, Stephan Hofmann, Konstantin S. Jakob, Hyunwook Jung, Venkat Kapil, Aaron D.
Kaplan, Nima Karimitari, James R. Kermode, Namu Kroupa, Jolla Kullgren, Matthew C. Kuner,
Domantas Kuryla, Guoda Liepuoniute, Johannes T. Margraf, loan-Bogdan Magdiu, Angelos
Michaelides, J. Harry Moore, Aakash A. Naik, Samuel P. Niblett, Sam Walton Norwood, Niamh
O’Neill, Christoph Ortner, Kristin A. Persson, Karsten Reuter, Andrew S. Rosen, Lars L. Schaaf,
Christoph Schran, Benjamin X. Shi, Eric Sivonxay, Tamas K. Stenczel, Viktor Svahn, Christopher
Sutton, Thomas D. Swinburne, Jules Tilly, Cas van der Oord, Eszter Varga-Umbrich, Tejs Vegge,
Martin Vondrak, Yangshuai Wang, William C. Witt, Fabian Zills, and Gadbor Csanyi. A foundation
model for atomistic materials chemistry. arXiv preprint arXiv:2401.00096, 2024.

Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When is ’nearest neighbor”
meaningful? In Catriel Beeri and Peter Buneman, editors, Database Theory - ICDT 99, 7th
International Conference, Jerusalem, Israel, January 10-12, 1999, Proceedings, volume 1540 of
Lecture Notes in Computer Science, pages 217-235. Springer, 1999. doi: 10.1007/3-540-49257-7\

15.

Aleksandar Bojchevski and Stephan Giinnemann. Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. In International Conference on Learning Representations, 2018.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovi¢. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, and Yang
Yang. Graphllm: Boosting graph reasoning ability of large language model. arXiv preprint
arXiv:2310.05845, 2023.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In NIPS, 2016.

Kaiwen Dong, Haitao Mao, Zhichun Guo, and Nitesh V. Chawla. Universal link predictor by
in-context learning on graphs. arXiv preprint arXiv:2402.07738, 2024.

11

Published as a conference paper at ICLR 2025

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. In The Twelfth International Conference on Learning Representations, 2024.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric, 2019.

Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards foundation
models for knowledge graph reasoning. In The Twelfth International Conference on Learning
Representations, 2024.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, 2017.

Mengyue Hang, Jennifer Neville, and Bruno Ribeiro. A collective learning framework to boost gnn
expressiveness for node classification. In Proceedings of the 38th International Conference on
Machine Learning, volume 139, pages 4040-4050. PMLR, 2021.

Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding. Advances in neural information
processing systems, 15, 2002.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-Isc: A
large-scale challenge for machine learning on graphs. In Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks, 2021a.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs, 2021b.

Hyosoon Jang, Seonghyun Park, Sangwoo Mo, and Sungsoo Ahn. Diffusion probabilistic models for
structured node classification. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Kerstin Kliser, Btazej Banaszewski, Samuel Maddrell-Mander, Callum McLean, Luis Miiller, Ali
Parviz, Shenyang Huang, and Andrew Fitzgibbon. MiniMol: A parameter-efficient foundation
model for molecular learning. arXiv preprint arXiv:2404.14986, 2024.

David Péter Kovdcs, J. Harry Moore, Nicholas J. Browning, Ilyes Batatia, Joshua T. Horton, Venkat
Kapil, William C. Witt, loan-Bogdan Magddu, Daniel J. Cole, and Gabor Csanyi. Mace-off23:
Transferable machine learning force fields for organic molecules. arXiv preprint arXiv:2312.15211,
2023.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. In The Twelfth
International Conference on Learning Representations, 2024.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. In NeurIPS, 2022.

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail
Galkin, and Jiliang Tang. Graph foundation models. arXiv preprint arXiv:2402.02216, 2024.

Péter Mernyei and Citdlina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks. arXiv preprint arXiv:2007.02901, 2020.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In ICLR, 2020.

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou, and
Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms. arXiv preprint
arXiv:2402.05862, 2024.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at evaluation of gnns under heterophily: Are we really making progress? In The
Eleventh International Conference on Learning Representations, 2023.

12

Published as a conference paper at ICLR 2025

Meng Qu, Huiyu Cai, and Jian Tang. Neural structured prediction for inductive node classification.
In International Conference on Learning Representations, 2022.

Leonardo F.R. Ribeiro, Pedro H.P. Saverese, and Daniel R. Figueiredo. struc2vec: Learning node
representations from structural identity. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery,
2017.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-Scale Attributed Node Embedding.
Journal of Complex Networks, 9(2), 2021.

Ryoma Sato. Training-free graph neural networks and the power of labels as features. arXiv preprint
arXiv:2404.19288, 2024.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Giinnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Nima Shoghi, Adeesh Kolluru, John R. Kitchin, Zachary Ward Ulissi, C. Lawrence Zitnick, and
Brandon M Wood. From molecules to materials: Pre-training large generalizable models for
atomic property prediction. In The Twelfth International Conference on Learning Representations,
2024.

Maciej Sypetkowski, Frederik Wenkel, Farimah Poursafaei, Nia Dickson, Karush Suri, Philip Frad-
kin, and Dominique Beaini. On the scalability of gnns for molecular graphs. arXiv preprint
arXiv:2404.11568, 2024.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. arXiv preprint arXiv:2310.13023,
2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579-2605, 2008.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In /CLR, 2018.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2020.

Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger.
Simplifying graph convolutional networks. In ICML, 2019.

Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan, Jianan Zhao, Wenwen Zhuang, Jun Yin, Peiyan
Zhang, Weihao Han, Hao Sun, Weiwei Deng, Qi Zhang, Lichao Sun, Xing Xie, and Senzhang
Wang. A comprehensive study on text-attributed graphs: Benchmarking and rethinking. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural
Information Processing Systems, volume 36, pages 17238-17264. Curran Associates, Inc., 2023.

Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, Sourav S Bhowmick, and Juncheng Liu. Pane:
scalable and effective attributed network embedding. The VLDB Journal, 32(6):1237-1262, 2023.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In Proceedings of The 33rd International Conference on Machine Learning,
pages 40-48. PMLR, 2016.

13

Published as a conference paper at ICLR 2025

Jaemin Yoo, Meng-Chieh Lee, Shubhranshu Shekhar, and Christos Faloutsos. Less is more: Slimg
for accurate, robust, and interpretable graph mining. In KDD, pages 3128-3139. ACM, 2023.

Duo Zhang, Xinzijian Liu, Xiangyu Zhang, Chenggian Zhang, Chun Cai, Hangrui Bi, Yiming Du,
Xuejian Qin, Jiameng Huang, Bowen Li, Yifan Shan, Jinzhe Zeng, Yuzhi Zhang, Siyuan Liu,
Yifan Li, Junhan Chang, Xinyan Wang, Shuo Zhou, Jianchuan Liu, Xiaoshan Luo, Zhenyu Wang,
Wanrun Jiang, Jing Wu, Yudi Yang, Jiyuan Yang, Manyi Yang, Fu-Qiang Gong, Linshuang Zhang,
Mengchao Shi, Fu-Zhi Dai, Darrin M. York, Shi Liu, Tong Zhu, Zhicheng Zhong, Jian Lv, Jun
Cheng, Weile Jia, Mohan Chen, Guolin Ke, Weinan E, Linfeng Zhang, and Han Wang. Dpa-2:
Towards a universal large atomic model for molecular and material simulation. arXiv preprint
arXiv:2312.15492, 2023.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. In Advances in Neural Information
Processing Systems, volume 34, pages 9061-9073, 2021.

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael Bronstein, Zhaocheng Zhu, and
Jian Tang. Graphtext: Graph reasoning in text space. arXiv preprint arXiv:2310.01089, 2023.

Hao Zhu and Piotr Koniusz. Simple spectral graph convolution. In ICLR. OpenReview.net, 2021.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. In NIPS, 2020.

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propaga-
tion. Technical Report CMU-CALD-02-107, 2002.

Yun Zhu, Yaoke Wang, Haizhou Shi, Zhenshuo Zhang, Dian Jiao, and Siliang Tang. Graphcontrol:
Adding conditional control to universal graph pre-trained models for graph domain transfer learning.
In WWW, 2024.

14

Published as a conference paper at ICLR 2025

A PROOF OF FEATURE AND LABEL PERMUTATION INVARIANCE

In this section, we prove that the proposed distance-based features have the desiring property of
feature- and label-permutation invariance.

A.1 LABEL-PERMUTATION INVARIANCE

Here, we show the label-permutation invariance of the distance of LinearGNN predictions. L.e. for
any two LinearGNNSs 7 and j, the (squared) distances between the permuted predictions, denoted as

Hg},(f) - Qq(f))||2 and the distances between the original predictions, i.e. Hy,(f) - yEﬁ') ||? are the same.

Consider permuting the label dimension, i.e. right multiplicate a permutation matrix @ € R*¢ to the
LinearGNN prediction Y = FFL+ Y:. (Eq @) The permutated label logits Y can be expressed as:

Y = FFY.Q. (11)
Given the linearity of matrix multiplication, we have:

Y = FF/(Y.Q) = (FF/Y.,)Q =YQ. (12)

Thus, label-permutation equivariance is proved. Since the permutation matrix Q is orthonormal
(i.e. QTQ = I), pairwise distances between permuted logits remain the same as those between the
original logits.

195 — g@)12 = 907QTQuY + 99TQT QYY) — 29T QT QYY)

_ gOTg) 4 gOITH) _ 95T 50) (13)
=19 — 91>

Hence, the distance-based feature is label permutation-invariant.

A.2 FEATURE-PERMUTATION INVARIANCE
Now, let’s consider permuting the feature dimension by right multiplication with a permutation matrix

P c R4 resulting in permuted features on labeled nodes denoted as F, P. Since the permutation
matrix P is orthonormal, the pseudoinverse of F P is:

(FLP)"=P'"F}. (14)

Substituting it into the equation[d] the predictions using permuted feature are:

FP(F,P)'Y, =FPP "F'Y,=FF'Y, =Y. (15)

Here, PP" = I where I € R?*? is the identity matrix, hence proving that the predictions with

feature-permutation are identical to the original predictions Y. That is, the predictions are feature-
permutation invariant. Therefore, the distance features are also feature-permutation invariant.

B DATASETS

We collect a diverse collection of 31 node classification datasets from three sources: PyG (Fey and|
Lenssen, [2019), DGL (Wang et al., [2020), and OGB (Hu et al., 2021b). We follow the default split
if there is a given one, otherwise, we use the standard semi-supervised setting (Kipf and Welling,
2017) where 20 nodes are randomly selected as training nodes for each label. The detailed dataset
information is summarized in Table 3l

15

Published as a conference paper at ICLR 2025

Table 3: 31 datasets used in this paper. Of those, 20 are homophilic and 11 are heterophilic.

Dataset #Nodes #Edges #Feature #Classes #Labeled Nodes Train/Val/Test Ratios (%) Category Source
Air Brazil 131 1074 131 4 80 61.1/19.1/19.8 Homophilic Ribeiro et al. (2017]
Cornell 183 554 1703 5 87 47.5/32.2/20.2 Heterophilic Pei et al. (2020]
Texas 183 558 1703 5 87 47 7/20.2 Heterophilic Pei et al. (2020]
Wisconsin 251 900 1703 5 120 47. .9/20.3 Heterophilic Pei et al. (2020]
Air EU 399 5995 399 4 80 20.1/39.8/40.1 Homophilic Ribeiro et al. (2017]
AirUS 1190 13599 1190 4 80 6.7/46.6/46.6 Homophilic Ribeiro et al. (2017}
Chameleon 2277 36101 2325 5 1092 48.0/32.0/20.0 Heterophilic Pei et al. (2020]
‘Wiki 2405 17981 4973 17 340 14.1/42.9/43.0 Homophilic 'Yang et al. (2023]
Cora 2708 10556 1433 7 140 5.2/18.5/36.9 Homophilic Yang et al. (2016]
Citeseer 3327 9104 3703 6 120 3.6/15.0/30.1 Homophilic Yang et al. (2016)
BlogCatalog 5196 343486 8189 6 120 2.3/48.8/48.8 Homophilic Yang et al. (2023]
Squirrel 5201 217073 2089 5 2496 48.0/32.0/20.0 Heterophilic Pei et al. (2020]
Actor 7600 30019 932 5 3648 48.0/32.0/20.0 Heterophilic Pei et al. (2020
LastFM Asia 7624 55612 128 18 360 4.7/47.6/47.6 Homophilic Rozemberczki et al. (2021
AmzPhoto 7650 238162 745 8 160 2.1/49.0/49.0 Homophilic Shchur et al. (2013
Minesweeper 10000 78804 7 2 5000 50.0/25.0/25.0 Heterophilic Platonov et al. (2023
WikiCS 11701 431206 300 10 580 5.0/15.1/49.9 Homophilic Mernyei and Cangea (2020]
Tolokers 11758 1038000 10 2 5879 50.0/25.0/25.0 Heterophilic Platonov et al. (2023
AmzComp 13752 491722 767 10 200 1.5/49.3/49.3 Homophilic Shchur et al. (2013]
DBLP 17716 105734 1639 4 80 0.5/49.8/49.8 Homophilic Bojchevski and Gunnemann (2018
CoCS 18333 163788 6805 15 300 1.6/49.2/49.2 Homophilic Shchur et al. (2018
Pubmed 19717 88648 500 3 60 0.3/2.5/5.1 Homophilic Yang et al. (2016]
FullCora 19793 126842 8710 70 1400 7.1/46.5/46.5 Homophilic Bojchevski and Gunnemann (2018
Roman Empire 22662 65854 300 18 11331 50.0/25.0/25.0 Heterophilic Platonov et al. (2023]
Amazon Ratings 24492 186100 300 5 12246 50.0/25.0/25.0 Heterophilic Platonov et al. (2023
Deezer 28281 185504 128 2 40 0.1/49.9/49.9 Hc hili R ietal. (2021]
CoPhysics 34493 495924 8415 5 100 0.3/49.9/49.9 Homophilic Shchur et al. (2018
Questions 48921 307080 301 2 24460 50.0/25.0/25.0 Heterophilic Platonov et al. (2023
Arxiv 169343 1166243 128 40 90941 53.7/17.6/28.7 Homophilic Hu et al. (2021b]
Reddit 232965 114615892 602 41 153431 65.9/10.2/23.9 Homophilic Hamilton et al. (2017
Product 2449029 123718280 100 47 196615 8.0/1.6/90.4 Homophilic Hu et al. (2021b)

C IMPLEMENTATION DETAILS

All experiments were conducted using five different random seeds: {0, 1, 2, 3, 4}. The best
hyperparameters were selected based on the validation accuracy. The runtime measurements presented
in Table E] were performed on an NVIDIA Quadro RTX 8000 GPU with CUDA version 12.2,
supported by an AMD EPYC 7502 32-Core Processor that features 64 cores and a maximum clock
speed of 2.5 GHz. All GraphAny experiments can be conducted on a single GPU with 20GB GPU
memory and 50GB CPU memory.

C.1 GRAPHANY IMPLEMENTATION

Table 4: Summary of hyperparameters of GraphAny on different datasets.

Dataset # Batches Learning Rate Hidden Dimension # MLP Layers Entropy

Cora 500 0.0002 64 1 2
Wisconsin 1000 0.0002 32 2 1
Arxiv 1000 0.0002 128 2 1
Products 1000 0.0002 128 2 1

We optimize the attention module using standard cross-entropy loss on the labeled nodes. In each
training batch (batch size set as 128 for all experiments), we randomly sample two disjoint sets
of nodes from the labeled nodes Vr.: Vier and Viarger. Vrer is used for performing inference using
LinearGNNs, and Vi is utilized to compute the loss and update the attention module. This
separation is intended to prevent the attention module from learning trivial solutions unless the
number of labeled nodes is too low to allow for a meaningful split. Empirically, as the final attention
weights of GraphAny mostly focus on Linear, LinearSGC1, and LinearSGC2 (Figure[7), we mask
the attention for LinearHGC1 and LinearHGC2 to achieve faster convergence.

The hyperparameter search space for GraphAny is relatively small, we fixed the batch size as 128
and varied the number of training batches with options of 500, 1000, and 1500; explored hidden
dimensions of 32, 64, and 128; tested configurations with 1, 2, and 3 MLP layers; and set the fixed
entropy value H at 1 and 2. The optimal settings derived from this hyperparameter search space are
detailed in Table 4]

16

Published as a conference paper at ICLR 2025

C.2 BASELINE IMPLEMENTATION

We utilize the Deep Graph Library (DGL) (Wang et al., 2020) implementations of GCN and GAT for
our baseline models. To optimize their performance, we conducted a comprehensive hyperparameter
tuning using a grid search strategy on each dataset. The search space included the following
parameters: number of epochs fixed at 400; hidden dimensions explored were 64, 128, and 256;
number of layers tested included 1, 2, and 3; and the learning rates considered were 0.0002, 0.0005,
0.001, and 0.002.

For label propagation, we use the DGL’s implementation and use grid search to find the best model
with a search space defined as follows: number of propagation hops of 1, 2, and 3; « of 0.1, 0.3, 0.5,
0.7, and 0.9.

D COMPLETE RESULTS

Table E] provides all results on 31 datasets for MLP, GCN, GAT baselines trained on each dataset
from scratch and four GraphAny models trained only on one graph.

Table 5: Per-dataset results of all baselines and four GraphAny models

GraphAny GraphAny GraphAny GraphAny

Dataset MLP GCN GAT (Products) (Arxiv) (Wisconsin) (Cora)

Actor 33.95+080 28.55+068 27.30+022 28.99+061 28.6040.21 29.51+055 27.91+0.16
AirBrazil 23.08+585 42.31+798 57.69+1475 34.61+1654 34.61+1609 36.15+1668 33.07+16.68
AirEU 21.25+231 41.88+360 32.50+845 41.75+684 41.50+6.50 41.13+6.02 40.50+7.01
AirUS 22.88+146 46.49+181 48.47+417 43.57+207 43.64+183 43.86+1.44 43.46+1.45
AmzComp 58.28+298 85.83+086 87.01+0s0 82.90+125 83.04+124 82.00+1.14 82.99+1.22
AmzPhoto 68.20+088 91.88+079 91.86+1.07 90.64+082 90.60+0.82 90.18+0.91 90.14+0.93
AmzRatings 47.904045 47354026 47.18+042 42704010 42.74+012 42.57+034 42.84+0.04
BlogCatalog 64.11+195 71.51+262 61984599 74.73+319 73.63+2.95 77.69+190 72.52+3.22
Chameleon 36.62+087 64.69+221 67.76+072 62.59+087 62.59+0.86 60.09-+£1.93 61.49+1.88
Citeseer 44.40+044 63.40+063 69.10+159 67.94+029 68.34+0.23 67.50+0.44 68.90+0.07
CoCS 85.884093 91.83+071 88.47+079 90.46+054 90.4540.59 90.85+0.63 90.47+0.63
CoPhysics 87.43+198 93.93+037 93.01+089 92.66+052 92.69+0.52 92.54+0.43 92.70+0.54
Cora 48.42+063 81.40+070 81.70+143 79.36+023 79.38+0.16 77.82+1.15 80.18+0.13
Cornell 67.57+506 35.14+651 35.144352 64.86+0.00 65.94+1.48 66.49+1.48 64.86+1.91
DBLP 56.27+062 73.02+222 73.87+135 70.62+097 70.90+0.88 70.13+0.77 71.73+0.94
Deezer 54244215 53.69+229 55994378 52.09+278 52.11+2.79 52.13+3.02 51.98+2.79
LastFMAsia 57.41+093 81.91+1.12 84.66+061 80.17+044 80.60+0.58 79.47+1.23 80.83+0.41
Minesweeper 80.00+000 81.12+037 80.08+0.04 80.27+0.16 80.30+0.13 80.13+0.09 80.46-0.15
Pubmed 69.50+1.79 76.60+032 77.30+060 76.54+034 76.36+0.17 77.46+0.30 76.60+0.31
Questions 97.33+006 97.15+004 97.114002 97.10+001 97.09+0.02 97.11+0.00 97.06+0.03
Reddit 72.16+0.15 94.89+002 92.76+046 90.67+0.13 90.58+0.12 91.00+0.24 90.4640.03
Roman 65.80+035 45.08+043 43.93+045 64.66+084 64.25+1.09 64.06+0.78 64.25+0.64
Squirrel 30.36+078 47.07+071 46.69+144 49.45+067 49.70+0.95 42344346 48.49+098
Texas 48.65+401 51.35+271 54.05+241 73.52+296 72.97+271 73.51+1.21 71.89+1.48
Tolokers 78.16+002 79.93+0.10 78.50+055 78.18+0.03 78.18+0.04 78.24+0.03 78.20+0.02
Wiki 63.79+1.77 70.09+151 59.63+416 63.08+361 62.96+3.68 61.10+4.36 60.56+3.62
Wisconsin 66.67+351 37.25+164 52944310 65.89+223 65.10+322 T1.77+5.98 61.18+5.08
WikiCS 72724043 79.12+045 79.27+020 75.01+054 74.95+0.61 73.77+0.83 74.39+0.71

OGBN-Arxiv 55.50+023 71.74+029 73.65+0.11 58.58+0.11 58.68+0.17 57.79+0.56 58.62+0.05
OGBN-Products 61.06+008 75.79+0.12 79.45+059 61.19+023 61.31+0.20 60.28+0.80 61.60+0.10
FullCora 33.54+064 61.06+024 58.95+055 57.13+037 57.25+043 56.29+0.17 56.73+0.41

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 ABLATION STUDY ON MORE GRAPH OPERATORS
In this section, we further validate the effectiveness of GraphAny by gradually adding diverse

types of graph convolution for propagating features. Specifically, we consider three types of graph
convolutions:

17

Published as a conference paper at ICLR 2025

GraphAny-LinearGNNs GraphAny-Chebyshev GraphAny-PPR
—e— GraphAny 7 65 ‘\._\
65 MeanAgg /
. 60 S —

-

45 35 53
2 3 4 5 2 3 4 5 2 3 4 5
t t t

\

[
=}
o
o

—e— GraphAny
MeanAgg

(52
(5]
Performance

Performance
Performance
o
3

IS
o

o

=]
IS
o

—e— GraphAny
MeanAgg

Figure 10: Ablation study with different graph operators (test accuracy in %): GraphAny-LinearGNN
(left), GraphAny-Chebyshev (middle), and GraphAny-PPR (right). GraphAny is trained on the
Wisconsin dataset and evaluated on all 31 datasets.

* GraphAny-LinearGNN gradually adds the following graph convolution operators: F' = X
(Linear), F = (I — A)X (LinearHGC1), F = (I — A)?X (LinearHGC2), F = AX
(LinearSGC1), and F = A2X (LinearSGC2), with A denoting the row normalized adjaceny
matrix. In this case, when increasing ¢ high-pass and low-pass predictions are gradually
added.

» GraphAny-Chebyshev gradually adds the Chebyshev filters (Defferrard et al.,2016), where
F® is computed recursively by:

FY =X,
F® =LX, (16)
F® = oLt _ pt=2)

and L denotes the scaled and normalized Laplacian f—L —IwithL =I-D"Y2AD /2,
In this case, when increasing ¢ high order predictions are gradually added.

* GraphAny-PPR gradually adds the personalized PageRank with increasing restart ratios:
{0.01, 0.25, 0.5, 0.75, 0.99}. In this case, when increasing ¢ local predictions are gradually
added.

We compare the performance of GraphAny against the baseline, which averages all channels, denoted
as MeanAgg. The results are shown in Figure [I0] where we have the following observations:

GraphAny consistently outperforms the baseline MeanAgg by a significant margin, demonstrat-
ing effective and consistent inductive knowledge transfer across multiple datasets with different types
of graph convolutions. The performance varies across graph convolution types. For LinearGNNSs,
low-pass graph convolutions (LinearSGC1 and LinearSGC2) significantly enhance performance. In
contrast, for Chebyshev graph convolutions, adding high-order convolutions reduces performance
as higher-order information introduces more noise. For personalized PageRank, adding more local
channels consistently improves results.

E.2 COMPARISON AGAINST ACM-GNN

To comprehensively compare GraphAny’s performance, we included ACM-GNN (Luan et al.| [2022)
as a baseline due to its good performance on both homophilic and heterophilic graphs. However,
ACM-GNN faces scalability issues that prevent its application to large graphs. Using the authors’ im-
plementatiorﬂ we encountered out-of-memory for a GPU of 40GB on four large datasets: Questions,
Reddit, Arxiv, and Product. Therefore, we evaluated ACM-GNN on the remaining 27 graphs, with
results reported in Table [6]

Our observations are as follows: Tuning ACM-GNN is highly time-consuming, requiring 672 GPU
hours on 27 graphs, while GraphAny requires only 4 GPU hours, showcasing its efficiency and
the advantage of inductive inference. In terms of performance, GraphAny outperforms ACM-SGC

“https://github.com/SitaoLuan/ACM-GNN/tree/main/ACM-Pytorch/

18

Published as a conference paper at ICLR 2025

and is only slightly (1-2%) below ACM-GCN. However, this slight difference is not a significant
disadvantage for GraphAny, given the unfair advantage transductive models have by leveraging the
inductive validation set for parameter and hyperparameter tuning, as well as the substantial difference
in runtime.

Table 6: Experimental results of ACM-GNNs. Hyperparameter search durations: ACM-GNNs (672
GPU hours), MLP/GCN/GAT (240 GPU hours total), GraphAny (denoted as Ours, 4 GPU hours).

Metric MLP GCN GAT ACM-SGC ACM-GCN Ours-Cora Ours-Wis Ours-Arxiv Ours-Product
Heldout (25 graphs) 54.87 64.19 64.01 60.91 66.92 65.11 65.23 65.56 65.56
Overall (27 graphs) 55.07 63.83 64.26 61.82 67.79 65.58 66.02 66.12 66.14

19

	Introduction
	Related Work
	GraphAny: Fully-inductive Node Classification on Any Graph
	Inductive Inference with LinearGNNs
	Learning Inductive Attention over LinearGNN Predictions
	Efficient Training and Fully-inductive Inference

	Experiments
	Experimental Setup
	Performance of Inductive Node Classification
	Visualization of the Inductive Attention
	Ablation Studies

	Conclusion
	Proof of Feature and Label Permutation Invariance
	Label-permutation Invariance
	Feature-permutation Invariance

	Datasets
	Implementation Details
	GraphAny Implementation
	Baseline Implementation

	Complete Results
	Additional Experimental Results
	Ablation Study on More Graph Operators
	Comparison Against ACM-GNN

