
Under review as a conference paper at ICLR 2024

Figure 4: *
Collected instructions with 32 participants

Figure 5: Visualizing the space of Auto-CoT and LEETPROMPT Instructions: 2D Principal Component
Analysis (PCA) of embeddings of Auto-CoT and collected instructions from LEETPROMPT. Auto-CoT in-
structions are marked as purple X. LEETPROMPT instructions are marked as dots with colors representing its
solvability: ”Test” instructions are colored gray. For ”Submitted” instructions, red color indicates that they
failed all testcases, yellow indicates they passed 1-4 testcases, and green indicates that they passed 5 testcases.
Instructions are specifically shown for two problems each from each domains to illustrate the different strategies
used by participants and whether they were successful.

A SCALING UP USER STUDY

To see if our results generalize, we expand our user study to include 12 more participants, bringing
us to a total of 32. The trends described in our main paper persist, with additional dimensions now
statistical significant. In addition to the results already described in the main paper, Table 6 shows
that prior language model and prompting experience significantly improve participants’ performance
on our problems across all domains. This new statistic adds further support to a point we made in
our main paper: we noted that users self-reported a learning effect, where they improve their ability
to write instructions as they tackle more problems.

The change in PCA clusters over time between the user study results reported in the main paper and
the scaled-up user study results is depicted in Figure 5. Overall, cluster arrangements are similar
across problems; however, human-generated instructions increasingly span across the first princi-
pal component for most problems, indicating increased diversity in human instructions. A greater
number of instructions also provides a more reliable indication of each strategy’s solvability.

Table 6: Pearson’s correlation coefficient between participant attributes (demographic, background, and ex-
perience) and the maximum number of test cases passed and the time taken for each problem. ‘..’ indicates
trending towards significance (p < 0.1) and ‘*’ denotes significance (p < 0.05). Pass is the average number
of testcases passed and Time is the avg. time taken between first and last interaction with the problem

.
Domain ! Biology Physics Math Programming General Overall
Participant # Pass Time Pass Time Pass Time Pass Time Pass Time Pass Time

Demographics
Age -0.36* -0.09 -0.57* -0.11 -0.27 -0.04 -0.38* 0.08 -0.16 0.15 -0.44* -0.02

Experience
Biology 0.13 -0.06 -0.04 0.35* 0.02 -0.33.. -0.09 0.18 0.11 0.03 0.03 0.03
Physics -0.26 -0.08 -0.01 0.37* 0.03 -0.10 -0.05 -0.14 0.06 -0.23 -0.05 -0.03
Math -0.03 0.14 0.08 0.28 0.24 0.20 0.18 0.26 0.23 0.06 0.19 0.30..
Trivia -0.01 -0.11 -0.00 0.14 0.37* -0.20 0.30.. 0.24 0.19 -0.12 0.22 -0.06

Experience
LM 0.44* 0.48* 0.22 0.28 0.54* 0.37* 0.49* 0.16 0.55* 0.39* 0.58* 0.60*
Prompting 0.40* 0.34.. 0.20 0.45* 0.38* 0.39* 0.35* 0.00 0.39* 0.33.. 0.44* 0.58*
Programming -0.06 0.23 0.09 0.08 0.26 0.13 0.29 0.14 0.36* 0.09 0.26 0.23

13

Under review as a conference paper at ICLR 2024

B PARTICIPANT DEMOGRAPHICS

Figures 6, 7 and 8 describe the participant demographics and experience as surveyed before the
study, and their feedback after they finished the study.

Figure 6: Pre-study survey of user study participants indicating their background (age, gender, highest level
of education, industry, type of degree, and their first language), experience with different subjects (biology,
physics, mathematics, and puzzles), and experience with using information technologies relevant to our study
(language models, prompting, and programming)

Figure 7: Post-study survey of user study participants describing their experience with solving problems,
their perception of the platform and feeling of control with language models. Participants also report on whether
they used external resources while solving problems and how they envision using leetprompt platform in the
future.

Figure 8: System Usability Scale ? used for measuring the usability of LEETPROMPT by study participants.

14

Under review as a conference paper at ICLR 2024

Table 7: *
Comparison of existing prompting approaches to prompts collected from LEETPROMPT using GPT-4, GPT-3.5-
TURBO and GPT-3 as the language models. 0s: Zero-shot; 0s CoT: Zero-shot Chain-of-Thought prompting;
1s, 2s, 3s, 4s: 1,2,3,4 shot (or examples) prompting; Ours: Prompts from LEETPROMPT. P denotes the
maximum number of testcases that the the given method was able to pass.

Table 8: GPT-4
0s CoT 1s 2s 3s 4s Ours

Domain Question P P P P P P P

Biology Water Potential 7 7 8 15 15 15 15
Biology Food Chain 9 8 9 6 6 8 15
Physics Ideal Gas Law 12 7 10 12 12 13 15
Physics Resistance is Futile 3 0 3 10 11 10 15
Math Consecutive Integers 14 14 13 14 13 13 15
Math Digit Sum 6 6 9 8 8 9 15
Programming Intersperse 13 13 14 14 14 14 15
Programming Sort Numbers 0 0 13 13 13 14 15
Knowledge Beatles Title 14 14 11 14 14 14 15
Knowledge Theory of Mind 1 0 15 15 14 15 15

79 69 105 121 120 125 150

Table 9: GPT-3.5-TURBO
0s CoT 1s 2s 3s 4s Ours

Domain Question P P P P P P P

Biology Water Potential 3 9 12 14 14 15 15
Biology Food Chain 0 1 9 6 6 8 15
Physics Ideal Gas Law 0 3 4 10 13 11 15
Physics Resistance is Futile 0 0 0 2 2 2 15
Math Consecutive Integers 10 13 14 11 12 8 15
Math Digit Sum 7 3 5 6 6 5 14
Programming Intersperse 6 2 1 11 11 12 15
Programming Sort Numbers 1 0 11 12 12 13 15
Knowledge Beatles Title 11 10 11 12 12 11 15
Knowledge Theory of Mind 2 1 10 8 7 8 14

43 33 73 88 92 94 148

Table 10: GPT-3
0s CoT 1s 2s 3s 4s Ours

Domain Question P P P P P P P

Biology Water Potential 6 0 8 10 12 14 15
Biology Food Chain 9 8 8 10 9 11 15
Physics Ideal Gas Law 0 0 6 7 8 8 15
Physics Resistance is Futile 0 0 0 3 4 4 15
Math Consecutive Integers 7 7 9 4 4 6 15
Math Digit Sum 4 3 4 3 3 5 12
Programming Intersperse 0 0 4 9 10 10 13
Programming Sort Numbers 0 0 6 5 2 9 15
Knowledge Beatles Title 9 11 10 9 7 8 15
Knowledge Theory of Mind 0 0 9 10 10 10 13

32 38 68 74 71 86 143

C EVALUATING OTHER MODELS

In this section, we evaluate how the human-generated instructions work across other LLMs. All the
instructions were generated using GPT-4 interactions. Here, we test if those same instructions work
on GPT-3 and GPT-3.5. We also add 10 new internal test cases along with the 5 externally generated
test cases reported in the main paper.

Table 10 shows the performance of the instructions using GPT-3 (text-davinci-003) as the language
model. We also show the results on all test cases (5 external + 10 internal). The instructions sub-
mitted by the study participants passed 143 out of 150 test cases which surpasses all the automatic
strategies. The best performing automatic method, 4-shot, passes only 86 test cases, which accounts
for only 58% of the test cases that human instructions succeed on.

Table 9 shows the performance of the instructions using GPT-3.5 as the language model. The in-
structions submitted by the study participants passed 148 out of 150 test cases which surpasses all

15

Under review as a conference paper at ICLR 2024

Table 11: Summary of Problems given in the user study, with an input / output example.
Question Description Example

Bi
ol

og
y

Water potential Given the sucrose concentration of an animal cell in a
solution, determine whether it will shrink or expand

[] INPUT: 11
OUTPUT: expand

Food chain Given a food chain, determine whether an increase in
one given species will lead to an increase or decrease in
the population of a second species.

[] INPUT: kelp -> sea urchin ->
otter -> orca, otter, kelp
OUTPUT: increase

Ph
ys

ic
s Ideal gas law Deriving final pressure with constant volume using the

ideal gas law PV = NRT
[] INPUT: 400
OUTPUT: 4

Resistance is futile Determining current for an electrical circuit given a
voltage and resistance.

[] INPUT: 100
OUTPUT: 75

M
at

h

Consecutive integers Given a sum of three consecutive integers, find the small-
est integer.

[] INPUT: 63
OUTPUT: 20

Digit sum Given two input numbers, output the smallest number
with the given number of digits and given digit sum.

[] INPUT: 4, 9
OUTPUT: 1008

Pr
og

ra
m

m
in

g Intersperse Insert a number ’delimeter’ between every two consecu-
tive elements of input list ‘numbers’

[] INPUT: [1, 2, 3], 4
OUTPUT: [1, 4, 2, 4, 3]

Sort numbers Given an input of space-delimited string of numberals
from ’zero’ to ’nine’, sort them from smallest to largest

[] INPUT: ‘three one five’
OUTPUT: ‘one three five’

G
en

er
al

K
no

w
le

dg
e

Beatles Given a funny phrase, how many Beatles song titles are
in it?

[] INPUT: Yesterday I toured a
yellow submarine.
OUTPUT: 2

Housesitting Theory-of-mind: Bob has to go on a trip for his job.
He has to leave his house - and his dog - for a week
while he’s on the trip. He is having his friend Anna
take care of the house and the dog, Fido, while he’s
away.... Anna completes the given action. When Bob
comes back, where will he look for the given item? Will
he find it?

[] INPUT: Anna takes out Fido’s
treat bag to feed him after he
sits on command. She leaves
the bag on the counter. Bob
comes back and Fido welcomes
him like a very good boy! Bob
wants to feed him a treat.
OUTPUT: G, no

the baseline prompting strategies by a significant margin. Again, the best performing automatic
method, 4-shot, passes only 94 test cases, which accounts for only 63% of the test cases that human
instructions succeed on.

Finally, table 8 shows the performance of the instructions using GPT-4 as the language model. The
number of test cases passed is higher for all instruction strategies when using GPT-3 and GPT-3.5.
The instructions submitted by the participants pass all 150 test cases, while 4-shot prompting passes
125 test cases which is the highest amongst the 3 models. Therefore, automatic methods using
GPT-4 only pass 83% of all the successful human generated instructions.

Overall, we can see that despite the model we use, the human-generated instructions consistently
outperform the automatic strategies. Even on less powerful models like GPT-3 and GPT-3.5 the
human instructions pass more than 95% of the test cases, demonstrating the importance of studying
LLM capabilities with human interactions.

D DIVERSITY OF PROBLEMS

We provide (in Table 11) a summary of all 10 problems with the description of each problem and
some example input-output pairs that participants were shown as part of the problem description.
Below, we list the reasons for choosing each of these problems to include in our user study.

Water potential. We chose “Water potential” because it is a very simple problem in biology. We
wanted to mix simple and difficult problems to see how the task’s complexity influenced how users
developed instructions. Most users noticed the greater than/less than relationship with 10, but even
if they didn’t, copying and pasting the problem statement and providing a few examples worked
fairly well.

Food chain. “Food chain” is a more difficult biology problem that the problem setters were unable
to solve. It required much more complex logic that differed depending on the relative position of
the two species in the food chain. Some participants asked the model how to solve it and gave that
back to the model, which worked fairly well, while others gave incorrect logic, which worked in a
few cases despite being factually incorrect.

16

Under review as a conference paper at ICLR 2024

Ideal gas law. We chose “Ideal gas law” because it is one of the most fundamental equations in
physics. Users didn’t have to do much except apply the equation, which they could easily reduce to a
simple division by 100, as many quickly realized. With this problem, however, a copy-paste strategy
or even leaving out the explanation and asking the model to detect a pattern worked extremely well.

Resistance is futile. “Resistance is futile” necessitated more logic in calculating the total resis-
tance of the circuit prior to applying Ohm’s Law. Despite the fact that Ohm’s Law is fairly simple,
the equations for calculating total resistance were too complex for the language model, and some
participants found the text description of the circuit difficult to interpret. No one was able to solve
this without simplifying the formula in our first round of user studies, but one participant in the
second round was able to solve it with a vague prompt that did not include a formula and some
examples.

Consecutive integers. “Consecutive integers” is the simpler of the two math problems. It is an
elementary school level problem that the language model easily understands. Users who simplified
the formula were successful, but it was also possible to solve the problem by simply pasting or
rewording the prompt and providing examples.

Digit sum. “Digit sum” is an intriguing problem because it is very simple for a human to solve and
is also considered an elementary school level problem. However, the logic is much more difficult to
explain to the language model because the model isn’t as strong in math and, in many cases, doesn’t
know what a “digit” is. Participants were surprised by the resulting outputs of their test inputs,
and found it difficult to understand why the model produced those results. Even though it was
very simple to solve manually, the problem setting team was unable to solve it using the language
model. In this problem, only two instructions worked; both used a rewording of the question and two
examples that were the same and in the same order, and neither example was an edge case example.

Intersperse. “Intersperse” is a simple programming problem that participants with limited pro-
gramming experience could understand. The problem setting team derived this problem from an
open dataset Chen et al. (2021) rather than creating it. Some participants were surprised by the
output because it provided a code to solve the problem rather than the solution, with one participant
even adding “Please no code” to their prompt.

Sort numbers. “Sort numbers” is another relatively simple programming problem, a simple array
sort with English numbers rather than numerals. A version of this problem is also used in the
open dataset Chen et al. (2021). The majority of participants explicitly converted between the text
versions of the numbers and the numerals and created an array, while some successfully sorted the
words directly.

Beatles. We selected the “Beatles problem” because it is more concerned with general knowledge
and text processing than with mathematical formulas or programming logic. To identify Beatles
songs, the model needed to recognize them and be able to parse an input string. The model had
trouble recognizing the song “Rain” in one of the example problems, which stumped participants
who were trying to pass every example case before submitting, but because it was not used in the
test cases, those who submitted anyways passed. The language model also counted additional titles
that were semantically similar to phrases in the passage but were not direct substrings.

Housesitting. “Housesitting” is a theory of mind problem. The problem-solving team wanted to
know if the language model could perform well in theory-of-mind tasks. Participants were required
to explain its lengthy description to the model. However, once participants provided all of the
scenario descriptions, the language model was mostly successful in solving the problem. However,
because of time constraints and a general dislike of reading long problem descriptions before being
able to solve the problem, some participants were discouraged from even attempting the problem.
The standard strategy participants employed, which was mostly successful, was to copy and paste
the scenario description and insert some examples.

17

Under review as a conference paper at ICLR 2024

E QUALITATIVE CODING

To gauge the diversity in responses, we implemented qualitative coding. This method is typically
used in social sciences to categorize and analyze qualitative data - in this case, submissions made in
response to instructions. In this process, we assign codes, or specific labels, to different aspects of
the data in order to classify it in a meaningful way.

Here are the codes that we utilize:

Instruction prompting (INST): This coding category pertains to strategies involving direct in-
structions. These are the most common methods employed by participants. This might involve:

• INST-SIM: Simplifying the problem to make it more understandable.

• INST-EXP: Asking the model to emulate a third party, like an expert or a crowd, to gen-
erate a response. Argyle et al. (2022)

• INST-INC: Includes instructions that may not be factually correct but can still assist the
language model in problem-solving. Turpin et al. (2023)

Examples (EX): This category involves providing examples, which have been observed to enhance
the model’s problem-solving capacity.

• EX-ZERO: No examples are provided, leaving the model to interpret potential inputs and
outputs. Kojima et al. (2022)

• EX-N-SHOT: Few examples are given, providing some clues to the model.

• ORDER: The solution utilized an unusual sequence in which examples are presented. Wang
et al. (2022a)

Chain of thought (COT): Encouraging the model to break down the explanation into steps or
providing step-by-step problem-solving instructions can enhance the model’s performance.

• COT-CONS: Changing the decoding strategy to promote diverse sampling with self-
consistency. Wang et al. (2022b)

• COT-COMP: Using complex reasoning steps to assist the model. Fu et al. (2022)

• COT-TEXT: Indicates that a chain of thought approach doesn’t substantially help with
text-based problems. Ye & Durrett (2022)

Structure (ST) The way the prompt text is formatted can influence the model’s performance.

• ST-NONE: Continuously formatted instructions without line breaks. These appeared to be
less effective.

• ST-BREAK: Breaking the prompt into multiple lines. The most commonly employed for-
matting strategy.

• ST-STEP: Structuring the prompt with steps or bullet points. This was shown to enhance
prompt clarity.

• ST-QUES: Using ”Q:” instead of ”Question:”. We observed this to be effective in certain
cases. Fu et al. (2022)

Writing code (CODE): Writing code (CODE): This category pertains to responses involving cod-
ing. Zhang et al. (2023a)

• CODE-PSEU: Writing solutions in pseudocode format.

• CODE-PROG: Writing actual functions in a programming language or asking the model to
generate code.

18

Under review as a conference paper at ICLR 2024

Asking the model for help (SELF): In some instances, even if the model doesn’t have a final
solution, it can still provide helpful input as an intermediate step toward helping the user create a
solution.

• SELF-ASK: Repeatedly asking the model for help can yield beneficial results. Press et al.
(2022) (SELF-ASK)

• SELF-TAUG: When prompted with a few rationale examples as a self-taught-reasoner, the
model generates rationales to answer many questions. Zelikman et al. (2022)

Strategies for future studies We found more strategies that we didn’t code for in our responses,
but we expect to appear in future studies with the platform.

• Social engineering the model such as giving it confidence or threatening it ?. We did not see
any of our participants do this, but they may attempt in future studies, as more awareness
of this technique percolates to the public.

• Generate programs as the intermediate reasoning steps, but offloads the solution step to a
runtime such as a Python interpreter ?. We did not have any integrations with any code
interpreters, but if we were to build such a feature into LEETPROMPT this would be useful
coding.

• ‘Program of Thoughts’ (PoT) uses language models to express the reasoning process as a
program and executes the code on an external computer. Chen et al. (2022). We did not
have any integrations that run code, but if we were to build this feature into LEETPROMPT,
this would be a useful coding.

F DIVERSITY OF INSTRUCTIONS

In this section, we visualize some example human-generated instructions from our user study, how
many test cases the instruction passed, and how we codified the instruction strategy with an explana-
tion for our code. The following are a few sample instructions submitted for the problem “Resistance
is Futile”:

Human-generated instruction:

Find the value of 7500 / [[INPUT]].
Give your answer in the form "Output: "

Number of test cases passed: 5/5

Explanation: This solution presents a direct instruction approach, incorporating a simplified for-
mula without providing any examples. Given its simplicity, there’s no break line, list or question/an-
swer structuring within the prompt itself.

Coding: INST-SIM, EX-ZERO, ST-NONE

Human-generated instruction:

For t h e f o l l o w i n g r e s i s t a n c e , o u t p u t t h e t o t a l c u r r e n t o f t h e c i r c u i t
I n p u t : 100
Outpu t : 75
I n p u t : 250
Outpu t : 30
I n p u t : 300
Outpu t : 25
I n p u t : [[INPUT]]

Number of test cases passed: 5/5

19

Under review as a conference paper at ICLR 2024

Explanation: This solution uses direct instruction, void of any simplified formulas. It reconstructs
the question into a more straightforward form, stripping away details that might seem essential to
a human, such as the configuration of the resistors or the battery’s voltage. Nonetheless, the model
manages to infer an answer from the three examples provided, which are separated by new lines.
Interestingly, the sequence of these examples deviates from the original list.

Coding: INST, EX-3-SHOT, ST-BREAK, ORDER

Human-generated instruction: Tell language model how to solve the
problem here
You are building a device to resist the Borg. In order to do
this, you need to connect some resistors in a circuit with a 9
V battery. You have 5 resistors of a given resistance (in ohms).
You plan to connect 3 of them in series in parallel with two of
them in series. For the three resistors in series, we simply add
their resistances:
Rseries = R1 + R2 + R3. For the two resistors in series, we add
their
resistances: Rparallel = R4 + R5. Then we can calculate the
equivalent
resistance of the two sets of resistors in parallel: 1/Rparallel
=
1/Rseries + 1/Rparallel.Finally, we can use Ohm’s Law to calculate
the
total current in the circuit: I = V/Rtotal. What is the total
current in
milliamperes of the circuit?

Input: 100
Output: 75
Input: 300
Output: 25
Input: 750
Output: 10
Input: 250
Output: 30
Input: [[INPUT]]

Number of test cases passed: 4/5

Explanation: In this submission, the participant restates the problem statement while incorporating
additional instructions and logical steps needed to calculate the current, a strategy characteristic of
a ’chain of thought’ prompt. The participant also provides four example cases, adhering to the order
in which they were presented on the platform.

Coding: INST, COT, EX-4-SHOT, ST-BREAK

20

Under review as a conference paper at ICLR 2024

Human-generated instruction: Here is a electrical circuit question I am
trying to solve:
What is the total current in milliamperes of the circuit?

Based on ohm’s law, current is voltage devide by resistance,
the circuit has a voltage source of 9 volts, I will provide a
number,
the resistance of whole circuit will be 1.2 times the number I
provided,
can you calcuate the current for me?

The following are some example inputs and outputs:
Input: 100
Output: 75
Input: 300
Output: 25
Input: 750
Output: 10

Please note that the output of the current is milliampere, just
output a number without unit

Input: [[INPUT]]

Number of test cases passed: 5/5

Explanation: This solution employs a ’chain of thought’ strategy, as it involves the participant
explaining the calculation process for the current using a somewhat simplified formula. It also
demonstrates the participant’s effort to correct the model’s behavior by explicitly stating that the
output should be in milliamperes at the conclusion of the prompt.

Coding: INST, COT, EX-3-SHOT

21

Under review as a conference paper at ICLR 2024

Human-generated instruction:
d e f t o t a l c u r r e n t (r e s i s t a n c e , b a t t e r y v o l t a g e) :

C a l c u l a t e t h e t o t a l r e s i s t a n c e o f t h e c i r c u i t
s e r i e s r e s i s t a n c e = 3 * r e s i s t a n c e
p a r a l l e l r e s i s t a n c e = r e s i s t a n c e + r e s i s t a n c e
t o t a l r e s i s t a n c e = s e r i e s r e s i s t a n c e + (1 / p a r a l l e l r e s i s t a n c e)

C a l c u l a t e t h e t o t a l c u r r e n t i n m i l l i a m p e r e s u s i n g Ohm’ s law
t o t a l c u r r e n t = b a t t e r y v o l t a g e / t o t a l r e s i s t a n c e
t o t a l c u r r e n t m i l l i a m p s = t o t a l c u r r e n t * 1000

r e t u r n t o t a l c u r r e n t m i l l i a m p s

Example usage
r e s i s t a n c e = 100 # ohms
b a t t e r y v o l t a g e = 9 # v o l t s
t o t a l c u r r e n t m i l l i a m p s = t o t a l c u r r e n t (r e s i s t a n c e , b a t t e r y v o l t a g e)
p r i n t (” ” The t o t a l c u r r e n t i n m i l l i a m p e r e s i s : ” ” , t o t a l c u r r e n t m i l l i a m p s)

I n p u t : Any number
Outpu t : t o t a l c u r r e n t m i l l i a m p s
I n p u t : [[INPUT]]

Number of test cases passed: 0/5

Explanation: This submission used Python code to create a solution that calculated the total current
in milliamperes of the circuit. This required a detailed explanation of the current calculation method,
which suggests the use of a ’chain of thought’ prompt strategy. However, the method used was
incorrect. Direct instructions were also a feature of this approach, as they guided the model to print
a specific statement. Interestingly, this participant did not provide any example input-output pairs.
The structure of the solution was enhanced by placing instructions on separate lines.

Coding: INST-INC, COT, CODE-PROG, EX-ZERO, ST-BREAK

22

Under review as a conference paper at ICLR 2024

Human-generated instruction: You are an expert electrictian.
I give you 5 resistors all of the same resistance as input. In
your circuit is a 9 V battery.
You have connected 3 resistors in series, which is in parallel
with 2 other resistors that are in series. What is the total
current in milliamperes of the circuit?

Examples:
Input: 100
Output: 75

Input: 300
Output: 25

Now it’s your turn:
Input: [[INPUT]]

Number of test cases passed: 3/5

Explanation: This participant has asked the model to simulate an expert electrician when giving
instructions. They have also provided two examples which are separated by new lines.

Coding: INST-EXP, EX-2-SHOT, ST-BREAK

23

Under review as a conference paper at ICLR 2024

Participants demonstrated a diverse range of strategies in attempting to solve the problem, illus-
trating the rich array of thought processes that emerges when different individuals tackle the same
challenge. However, the effectiveness of these strategies varied. Writing code and instructing the
model to impersonate an expert was less successful for this problem. Alternatively, strategies that
simplified the problem were more effective. This was seen in both the transformation of the problem
into a straightforward formula, and the removal of seemingly crucial problem parameters. It turns
out that, in many cases, these elements were important from a human perspective but not necessary
for the language model to infer a solution. In conclusion, strategies that focused on distilling the
problem to its core components were typically more successful.

24

Under review as a conference paper at ICLR 2024

G USER INTERFACE DESIGN

The platform underwent multiple iterations to improve user experience and testing.

Initial design. Overall, the initial UI lacked clarity in presenting primary actions and information.
We brought in UI/UX engineers onto our team to improve the design. With them, we identified
several areas for improvement. We describe these improvements in Figure 9

Figure 9: Initial design details. (A) The area containing ”Details,” ”My Submissions,” and ”Standings” was
located underneath problem description. If the problem description is too long, user may not see this informa-
tion. (B) ”Mask” represented the input that users could manipulate in order to test instructions, but the term was
confusing to many users. (C) Unclear that user can switch to different models or change parameters. Icons do
not clearly indicate what types of parameters can be changed. (D) Buttons to test and submit instructions were
located under respective tabs. Users found this frustrating as testing and submission required an extra click into
the tab before clicking on respective button.

Design iterations. Our team iterated through different versions in order to address the areas iden-
tified above. In Figures 10, 11, you can see two different designs with features used in the final user
study design.

Final UI design. The final user study incorporated elements from previous iterations (see Fig-
ures 13, 14, 15). To improve usability, we included a tour of the interface (Figure 12), a problem
navigation pane(Figure 13), and a test feedback UI change (Figure 16).

25

Under review as a conference paper at ICLR 2024

Figure 10: Iteration 1. (A) Problem description, details, user submissions, and user ranking were consolidated
into one portion so users can easily scan for information available to them. The information previously found
under ”Details” was placed next to the problem name. ”Details” in this iteration shows the problem description
and examples. (B) The word ”MASK” is replaced with the word ”INPUT” so users understand that this text is
to include their manipulated input. (C) Adjustment for models and parameters made more visible. (D) Test and
submit buttons are visible.

Figure 11: Iteration 2. In this second iteration, we explored to idea of (E) consolidating inputs and outputs
into one area. Inputs would be highlighted based on the test case selected. And outputs would be highlighted
in color. (F) Console expands and collapses so users have maximum area to work on instructions.

26

Under review as a conference paper at ICLR 2024

Figure 12: Example problem and tour of the interface. Before starting the user study, participants are given
an example problem. A walk-through with tooltips introduces each section of the interface.

Figure 13: User study interface. For the user study, we adapted the interface to provide additional information
to the study participants. For this, we made the following changes as marked: (A) Modal overlay provides
problem navigation and shows time remaining in the study. The button ”Study Pane” leads to a study dashboard
side sheet (A.1) where participants can navigate to other problems and see the status of each (”Fully Solved,”
”Partially Solved,” ”Unsolved,” and ”Not Attempted). (B) Explicitly stating the name of this section. (C) & (D)
Clarification of relationship between input and test cases. (E) Model and parameters adjustments are visible
but frozen for the purposes of this study. This is explained in the initial walk-through.

27

Under review as a conference paper at ICLR 2024

Figure 14: Testing functionality. The participants can test their instructions with their own custom inputs in
the test console. The specific functionalities are as follows: (F) Participant’s text input was divided into three
sections. The top screen allows editing for instructions. Bottom section shows area to enter and edit input.
Area that shows output of model is below. Participant can either click on ”Run on Custom Input” or the ”Test”
button to test instructions on a particular input.

Figure 15: Submit functionality. After the participants are done testing their instructions, they can submit
their prompt for evaluation against the blind testcases. When the ”Submit” button is clicked, participants are
taken to the submit tab. (G) Loading animation was added to indicate progress. (H) Stop button added for better
user control.

28

Under review as a conference paper at ICLR 2024

Figure 16: Submission feedback Once a submission is completed, participants receive feedback on how their
instructions performed against the blind test cases. The feedback is shown to the participants in form of the
shown the number of test cases that passed (see I). Instructions are highlighted based on number of test cases
passed. Green indicates that all test cases passed, yellow for some test cases passed, and red for no test cases
passed.

29

	Introduction
	LeetPrompt
	Study to judge efficacy of LeetPrompt
	Results
	Discussion & Implications
	Future directions and limitations
	Scaling up user study
	Participant demographics
	Evaluating other models
	Diversity of problems
	Qualitative coding
	Diversity of instructions
	User interface design

