
Published as a conference paper at ICLR 2024

Limitations of this work are larger scale models, more vision tasks, further optimization of accuracy,
power and parameter amount, optimization of training consumption caused by multiple timesteps,
etc., and we will work on them in future work. The experimental results in this paper are reproducible.
We explain the details of model training and configuration in the main text and supplement it in the
appendix. Our codes and models of Meta-SpikeFormer will be available on GitHub after review.
Moreover, in this work, the designed meta SNN architecture is tested on vision tasks. For language
tasks, the challenges faced will be different, such as parallel spiking neuron design, long-term
dependency modeling in the temporal dimension, pre-training, architecture design, etc. need to be
considered. This work can at least provide positive inspiration for SNN processing language tasks in
long-term dependency modeling and architecture design, and we are working in this direction.

A SPIKE-DRIVEN SELF-ATTENTION (SDSA) OPERATORS

In this Section, we understand vanilla and spike-driven self-attention from the perspective of compu-
tational complexity.

A.1 VANILLA SELF-ATTENTION (VSA)

Given a float-point input sequence X ∈ RN×D, float-point Query (Q), Key (K), and Value (V)
in RN×D are calculated by three learnable linear matrices, where N is the token number, D is the
channel dimension. The vanilla scaled dot-product self-attention is computed as (Dosovitskiy et al.,
2021):

VSA(Q,K, V) = softmax

(
QKT

√
d

)
V, (16)

where d = D/H is the feature dimension of one head and H is the head number,
√
d is the scale

factor. Generally, VSA performs multi-head self-attention, i.e., divide Q,K, V into H heads in the
channel dimension. In the i-th head, Qi,Ki, V i in RN×D/H . After the self-attention operation is
performed on the H heads respectively, the outputs are concatenated together.

In VSA, Q and K are matrix multiplied first, and then their output is matrix multiplied with V . The
computational complexity of VSA(·) is O(N2D), which has a quadratic relationship with the toke
number N .

A.2 SPIKE-DRIVEN SELF-ATTENTION (SDSA)

In our Transformer-based SNN blocks, as shown in Fig. 2, given a spike input sequence S ∈
RT×N×D, spike-form (binary) QS , KS , and VS in RT×N×D are calculated by three learnable
re-parameterization convolutions Ding et al. (2021) with 3× 3 kernel size:

QS = SN (RepConv1(U)),KS = SN (RepConv2(U)), VS = SN (RepConv3(U)), (17)

where RepConv(·) denotes the re-parameterization convolution, SN (·) is the spiking neuron layer.
For the convenience of mathematical expression, we assume T = 1 in the subsequent formulas.

SDSA-1. The leftmost SDSA-1 in Fig. 3 is the operator proposed in Spike-driven Transformer (Yao
et al., 2023b). The highlight of SDSA-1 is that the matrix multiplication between QS , KS , VS in
SDSA is replaced by Hadamard product:

SDSA1(QS ,KS , VS) = QS ⊗ SN (SUMc (KS ⊗ VS)) , (18)

where ⊗ is the Hadamard product, SUMc(·) represents the sum of each column, and its output is a
D-dimensional row vector. The Hadamard product between spike tensors is equivalent to the mask
operation. Compared to the VSA in Eq. 16, SUMc(·) and SN (·) take the role of softmax and scale.

Now, we analyze the computational complexity of SDSA-1. Before that, we would like to introduce
the concept of linear attention. If the softmax in VSA is removed, K and V can be multiplied first, and
then their output is matrix multiplied with Q. The computational complexity becomes O(ND2/H),
which has a linear relationship with the toke number N . This variant of attention is called linear
attention (Katharopoulos et al., 2020). Further, consider an extreme case in linear attention, set

16

Published as a conference paper at ICLR 2024

H = D. That is, in each head, Qi,Ki, V i in RN×1. Then, the computational complexity is O(ND),
which has a linear relationship with both the toke number N and the channel dimension D. This
variant of linear attention is called hydra attention (Bolya et al., 2023).

SDSA-1 has the same computational complexity as hydra attention, i.e., O(ND). Firstly, KS and
VS in Eq. 18 participate in the operation first, thus it is a kind of linear attention. Further, we consider
the special operation of Hadamard product. Assume that the i-th column vectors in KS and VS are
a and b respectively. Taking the Hadamard product of a and b and summing them is equivalent to
multiplying b times the transpose of a, i.e., SUMc(a⊗ b) = aT b. In total, there are D times of dot
multiplication between vectors, and N additions are performed each time. Thus, the computational
complexity of SDSA-1 is O(ND), which is consistent with hydra attention (Bolya et al., 2023).

SDSA-2. SDSA-1 in Eq. 18 actually first uses QS and KS to calculate the binary self-attention
scores, and then performs feature masking on VS in the channel dimension. We can also get the
binary attention scores using only QS , i.e., SDSA-2 is presented as:

SDSA2(QS , VS) = SN (SUMc (QS))⊗ VS . (19)

We evaluate SDSA-1 and SDSA-2 in Table 5. Specifically, SDSA-1-based Meta-SpikeFormer vs.
SDSA-2-based Meta-SpikeFormer: Param, 31.3M vs. 28.6M; Power, 7.2mJ vs. 6.3mJ; Acc, 74.6%
vs. 74.2%. It can be seen that with the support of the Meta-SpikeFormer architecture, even if the
Key matrix KS is removed, the accuracy is only lost by 0.4%. The number of parameters and
energy consumption are reduced by 8.7% and 12.5% respectively. Since the Hadamard product
between spiking tensors QS and KS in SDSA-1 can be regarded as a mask operation without energy
cost, SDSA-1 and SDSA-2 have the same computational complexity, i.e., O(ND). SDSA-2-based
Meta-SpikeFormer has fewer parameters and power because there is no need to generate KS .

SDSA-3 is the spike-driven self-attention operator used by default in this work, which is presented as:

SDSA3(QS ,KS , VS) = SN s

(
QS

(
KT

S VS

))
= SN s((QSK

T
S)VS). (20)

In theory, the time complexity of QS(K
T
S VS) and (QSK

T
S)VS are O(N2D) and O(ND2), respec-

tively. The latter has a linear relationship with N , thus SDSA-3 is also a linear attention. Since
QSK

T
S VS yields large integers, a scale multiplication s for normalization is needed to avoid gradient

vanishing. In our SDSA-3, we incorporate the s into the threshold of the spiking neuron to circumvent
the multiplication by s. That is, the threshold in Eq. 20 is s · uth. We write such a spiking neuron
layer with threshold s · uth as SN s(·).
SDSA-4. On the basis of SDSA-3, we directly set the threshold of SN (·) in Eq. 15 as a learnable
parameter, and its initialization value is s · uth. We have experimentally found that the performance
of SDSA-3 and SDSA-4 is almost the same (see Table 5). SDSA-4 consumes 0.1mJ less energy than
SDSA-3 because the network spiking firing rate in SDSA-4 is slightly smaller than that in SDSA-3.

A.3 DISCUSSION ABOUT SDSA OPERATORS

Compared with vanilla self-attention, the QS , KS , VS matrices of spike-driven self-attention are
in the form of binary spikes, and the operations between QS , KS , VS do not include softmax and
scale. Since there is no softmax and KS and VS can be computed first, spike-driven self-attention
must be linear attention. This is the natural advantage of a spiking Transformer. On the other hand,
in the current SDSA design, the operation between QS , KS , VS is Hadamard product or matrix
multiplication, both of which can be converted into sparse addition operations. Therefore, SDSA not
only has low computational complexity, but also only has sparse addition. Its energy consumption is
much lower than that of vanilla self-attention (see Appendix B).

In Yu et al. (2022a;b), the authors summarized various ViT variants and argued that there is general
architecture abstracted from ViTs by not specifying the token mixer (self-attention). This paper
experimentally verifies that this view also holds true in Transformer-based SNNs. In Table 5, we
tested four SDSA operators and found that the performance changes between SDSA-1/2/3/4 were not
large (less than 1.2%). We expect the SNN domain to design more powerful SDSA operators in the
future, e.g., borrowing from Swin (Liu et al., 2021), hierarchical attention (Hatamizadeh et al., 2023),
and so on.

17

Published as a conference paper at ICLR 2024

Table 6: FLOPs of self-attention modules. The FLOPs in VSA and SDSA are multiplied by
EMAC = 4.6pJ and EAC = 0.9pJ respectively to obtain the final energy cost. RC , R̂ denote the
sum of spike firing rates of various spike matrices.

VSA SDSA-1 SDSA-2 SDSA-3 SDSA-4

Q,K, V 3ND2 T ·RC · 3 · FLConv T ·RC · 2 · FLConv T ·RC · 3 · FLConv T ·RC · 3 · FLConv

f(Q,K, V) 2N2D T · R̂ ·ND T · R̂ ·ND T · R̂ ·ND2 T · R̂ ·ND2

Scale N2 - - - -
Softmax 2N2 - - - -
Linear FLMLP T ·RC · FLConv T ·RC · FLConv T ·RC · FLConv T ·RC · FLConv

B THEORETICAL ENERGY EVALUATION

B.1 SPIKE-DRIVEN OPERATORS IN SNNS

Spike-driven operators for SNNs are fundamental to low-power neuromorphic computing. In CNN-
based SNNs, spike-driven Conv and MLP constitute the entire network. Specifically, the matrix
multiplication between the weight and spike matrix in spike-driven Conv and MLP is transformed
into sparse addition, which is implemented as addressable addition in neuromorphic chips (Frenkel
et al., 2023).

By contrast, QS , KS , VS in spike-driven self-attention involve two matrix multiplications. One way
is to execute element-wise multiplication between QS , KS , VS , like SDSA-1 in (Yao et al., 2023b)
and SDSA-2 in this work (Eq. 19). And, element multiplication in SNNs is equivalent to mask
operation with no energy cost. Another method is to perform multiplication directly between QS ,
KS , VS , which is then converted to sparse addition, like spike-driven Conv and MLP (SDSA-3/4 in
this work).

B.2 ENERGY CONSUMPTION OF META-SPIKEFORMER

When evaluating algorithms, the SNN field often ignores specific hardware implementation details
and estimates theoretical energy consumption for a model (Panda et al., 2020; Yin et al., 2021; Yang
et al., 2022; Yao et al., 2023d; Wang et al., 2023a). This theoretical estimation is just to facilitate the
qualitative energy analysis of various SNN and ANN algorithms.

Theoretical energy consumption estimation can be performed in a simple way. For example, the
energy cost of ANNs is FLOPs times EMAC , and the energy cost of SNNs is FLOPs times EAC

times network spiking firing rate. EMAC = 4.6pJ and EAC = 0.9pJ are the energy of a MAC and
an AC, respectively, in 45nm technology (Horowitz, 2014).

There is also a more refined method of evaluating energy consumption for SNNs. We can count the
spiking firing rate of each layer, and then the energy consumption of each layer is FLOPs times EAC

times the layer spiking firing rate. The nuance is that the network structure affects the number of
additions triggered by a single spike. For example, the energy consumption of the same spike tensor
differs when doing matrix multiplication with various convolution kernel sizes.

In this paper, we count the spiking firing rate of each layer, then estimate the energy cost. Specifically,
the FLOPs of the n-th Conv layer in ANNs Molchanov et al. (2017) are:

FLConv = (kn)
2 · hn · wn · cn−1 · cn, (21)

where kn is the kernel size, (hn, wn) is the output feature map size, cn−1 and cn are the input and
output channel numbers, respectively. The FLOPs of the m-th MLP layer in ANNs are:

FLMLP = im · om, (22)

where im and om are the input and output dimensions of the MLP layer, respectively.

For spike-driven Conv or MLP, we only need to consider additional timestep T and layer spiking firing
rates. The power of spike-driven Conv and MLP are EAC ·T ·RC ·FLConv and EAC ·T ·RM ·FLMLP

respectively. RC and RM represent the layer spiking firing rate, defined as the proportion of non-zero

18

Published as a conference paper at ICLR 2024

elements in the spike tensor. For the SDSA modules in Fig. 3, the energy cost of the Rep-Conv part is
consistent with spike-driven Conv. The energy cost of the SDSA operator part is given in Table 6.
Combining Table 5, we observe that the SDSA(·) function itself does not consume much energy
because the Q, K, and V matrices themselves are sparse. The evidence is that SDSA-1 saves about
0.6mJ of energy consumption compared to SDSA-3 (see Table 5). In order to give readers an intuitive
feeling about the spiking firing rate, we give the detailed spiking firing rates of a Meta-SpikeFormer
model in Table 11.

C DETAILED CONFIGURATIONS AND HYPER-PARAMETER OF
META-SPIKEFORMER MODELS

C.1 IMAGENET-1K EXPERIMENTS

On ImageNet-1K classification benchmark, we employ three scales of Meta-SpikeFormer in Table 7
and utilize the hyper-parameters in Table 8 to train models in our paper.

Table 7: Configurations of different Meta-SpikeFormer models.

stage # Tokens Layer Specification 15M 31M 55M

1

H

2
×
W

2

Downsampling Conv 7x7 stride 2
Dim 32 48 64

Conv-based
SNN block

SepConv DWConv 7x7 stride 1
MLP ratio 2

Channel Conv Conv 3x3 stride 1
Conv ratio 4

H

4
×
W

4

Downsampling Conv 3x3 stride 2
Dim 64 96 128

Conv-based
SNN block

SepConv DWConv 7x7 stride 1
MLP ratio 2

Channel Conv Conv 3x3 stride 1
Conv ratio 4

2 H

8
×
W

8

Downsampling Conv 3x3 stride 2
Dim 128 192 256

Conv-based
SNN block

SepConv DWConv 7x7 stride 1
MLP ratio 2

Channel Conv Conv 3x3 stride 1
Conv ratio 4

Blocks 2

3 H

16
×
W

16

Downsampling Conv 3x3 stride 2
Dim 256 384 512

Transformer-based
SNN block

SDSA RepConv 3x3 stride 1
Channel MLP MLP ratio 4

Blocks 6

4 H

16
×
W

16

Downsampling Conv 3x3 stride 1
Dim 360 480 640

Transformer-based
SNN block

SDSA RepConv 3x3 stride 1
Channel MLP MLP ratio 4

Blocks 2

C.2 COCO EXPERIMENTS

In this paper, we have used two methods to utilize Meta-SpikeFormer for object detection. We first
exploit Meta-SpikeFormer as backbones for object detection, fine-tuning for 24 epochs after inserting
the Mask R-CNN detector (He et al., 2017). The batch size is 12. The AdamW is employed with
an initial learning rate of 1× 10−4 that will decay in the polynomial decay schedule with a power
of 0.9. Images are resized and cropped into 1333 × 800 for training and testing and maintain the
ratio. Random horizontal flipping and resize with a ratio of 0.5 was applied for augmentation during

19

Published as a conference paper at ICLR 2024

Table 8: Hyper-parameters for image classification on ImageNet-1K
Hyper-parameter Directly Training Finetune

Model size 15M/31M/55M 15M/31M/55M
Timestemp 1 4

Epochs 200 20
Resolution 224*224
Batch size 1568 336
Optimizer LAMB

Base Learning rate 6e-4 2e-5
Learning rate decay Cosine

Warmup eopchs 10 2
Weight decay 0.05

Rand Augment 9/0.5
Mixup None
Cutmix None

Label smoothing 0.1

training. This pre-training fine-tuning method is a commonly used strategy in ANNs. We use this
method and get SOTA results (see Table 3), but with many parameters. To address this problem, we
then train Meta-SpikeFormer in a direct training manner in conjunction with the lightweight Yolov5
1 detector, which Yolov5 is re-implemented by us in a spike-driven manner. Results are reported
in Table 9. The current SOTA result in SNNs on COCO is EMS-Res-SNN (Su et al., 2023), which
improves the structure. We get better performance using parameters that are close to EMS-Res-SNN.

Table 9: Performance of object detection on COCO val2017 (Lin et al., 2014)

Methods Architecture Spike
-driven

Param
(M)

Power
(mJ)

Time
Step

mAP@0.5
(%)

Conv-based SNN EMS-Res-SNN (Su et al., 2023) ✓ 26.9 - 4 50.1

Transformer-based SNN Meta-SpikeFormer + Yolo ✓ 16.8 34.8 1 45.0
(This Work) ✓ 16.8 70.7 4 50.3

C.3 ADE20K EXPERIMENTS

Meta-SpikeFormer is employed as the backbone equipped with Sementic FPN Lin et al. (2017),
which is re-implemented in a spike-driven manner. In T = 1, ImageNet-1K trained checkpoints are
used to initialize the backbones while Xavier is utilized to initialize other newly added SNN layers.
We train the model for 160K iterations with a batch size of 20. The AdamW is employed with an
initial learning rate of 1× 10−3 that will decay in the polynomial decay schedule with a power of
0.9. Then we finetuned the model to T = 4 and decreased the learning rate to 1× 10−4. To speed up
training, we warm up the model for 1.5k iterations with a linear decay schedule.

C.4 ADDITIONAL RESULTS ON VOC2012 SEGMENTATION

VOC2012 (Everingham et al., 2010) is a benchmark for segmentation which has 1460 and 1456
images in the training and validation set respectively, and covering 21 categories. Previous work
using SNN for segmentation has used this dataset. Thus we also test our method on this dataset. We
train the Meta-SpikeFormer for 80k iterations in T = 1 with ImageNet-1k trained checkpoints to
initialize the backbones while Xavier is utilized to initialize other newly added SNN layers. Then we
finetune the model to T = 4 with lower learning rate 1× 10−4. Other experiment settings are the
same as the ADE20k benchmark. Results are given in Table 10, and we achieve SOTA results.

1https://github.com/ultralytics/yolov5

20

Published as a conference paper at ICLR 2024

Table 10: Performance of semantic segmentation on VOC2012 (Everingham et al., 2010)

Methods Architecture Spike
-driven

Param
(M)

Power
(mJ)

Time
Step MIoU(%)

ANN FCN-R50 (Long et al., 2015) ✗ 49.5 909.6 1 62.2
DeepLab-V3 (Chen et al., 2017) ✗ 68.1 1240.6 1 66.7

ANN2SNN Spike Calibration (Li et al., 2022) ✓ - - 64 55.0

CNN-based Spiking FCN (Kim et al., 2022) ✓ 49.5 383.5 20 9.9
SNN Spiking DeepLab (Kim et al., 2022) ✓ 68.1 523.2 20 22.3

Transformer Meta-SpikeFormer ✓ 16.5 81.4 4 58.1
-based SNN (This Work) ✓ 58.9 179.8 4 61.1

21

Published as a conference paper at ICLR 2024

Table 11: Layer spiking firing rates of model Meta-SpikeFormer (T = 4,
31.3M, SDSA-3) on ImageNet-1K.

T = 1 T = 2 T = 3 T = 4 Average

Stage 1

Downsampling Conv 1 1 1 1 1

ConvBlock
SepConv PWConv1 0.2662 0.4505 0.3231 0.4742 0.3785

DWConv&PWConv2 0.3517 0.4134 0.3906 0.4057 0.3903

Channel Conv Conv1 0.3660 0.5830 0.4392 0.5529 0.4852
Conv2 0.1601 0.1493 0.1662 0.1454 0.1552

Downsampling Conv 0.4408 0.4898 0.4929 0.4808 0.4761

ConvBlock
SepConv PWConv1 0.2237 0.3658 0.3272 0.3544 0.3178

DWConv&PWConv2 0.2276 0.2672 0.2590 0.2567 0.2526

Channel Conv Conv1 0.3324 0.4640 0.4275 0.4433 0.4168
Conv2 0.0866 0.0838 0.0811 0.0775 0.0823

Stage 2

Downsampling Conv 0.3456 0.3916 0.3997 0.3916 0.3821

ConvBlock
SepConv PWConv1 0.2031 0.3845 0.3306 0.3648 0.3207

DWConv&PWConv2 0.1860 0.2101 0.2020 0.1988 0.1992

Channel Conv Conv1 0.2871 0.4499 0.4013 0.4233 0.3904
Conv2 0.0548 0.0541 0.0501 0.0464 0.0513

ConvBlock
SepConv PWConv1 0.3226 0.4245 0.4132 0.4158 0.3940

DWConv&PWConv2 0.1051 0.1051 0.1025 0.0995 0.1030

Channel Conv Conv1 0.2863 0.3787 0.3732 0.3728 0.3528
Conv2 0.0453 0.0418 0.0408 0.0382 0.0415

stage3

Downsampling Conv 0.3817 0.4379 0.4436 0.4401 0.4259

Block1
SDSA

RepConv-1/2/3 0.1193 0.2926 0.2396 0.2722 0.2309
QS 0.2165 0.2402 0.2377 0.2213 0.2289
KS 0.0853 0.0931 0.0935 0.0818 0.0884
VS 0.0853 0.1414 0.1227 0.1234 0.1182

KT
S VS 0.3083 0.4538 0.4238 0.4023 0.3971

QS(K
T
S VS) 0.7571 0.8832 0.8674 0.8426 0.8376

RepConv-4 0.4115 0.6402 0.6034 0.5398 0.5487

Channel MLP Linear 1 0.2147 0.3849 0.3263 0.3637 0.3224
Linear 2 0.0353 0.0298 0.0262 0.0232 0.0286

Block2
SDSA

RepConv-1/2/3 0.2643 0.4093 0.3706 0.3918 0.3590
QS 0.1594 0.1859 0.1913 0.1871 0.1809
KS 0.0774 0.1029 0.1061 0.1034 0.0975
VS 0.0852 0.1271 0.1228 0.1232 0.1146

KT
S VS 0.4125 0.5852 0.5805 0.5835 0.5404

QS(K
T
S VS) 0.8246 0.9216 0.9231 0.9190 0.8970

RepConv-4 0.4148 0.6622 0.6737 0.6545 0.6013

Channel MLP Linear 1 0.2899 0.4026 0.3756 0.3884 0.3641
Linear 2 0.0302 0.0269 0.0239 0.0219 0.0258

Block3
SDSA

RepConv-1/2/3 0.2894 0.3877 0.3706 0.3773 0.3562
QS 0.1419 0.1397 0.1437 0.1405 0.1415
KS 0.0590 0.0609 0.0639 0.0616 0.0614
VS 0.0904 0.1232 0.1279 0.1261 0.1169

KT
S VS 0.3674 0.4703 0.4825 0.4863 0.4516

QS(K
T
S VS) 0.8423 0.8912 0.9010 0.8961 0.8827

RepConv-4 0.3613 0.4850 0.5281 0.5072 0.4704

Channel MLP Linear 1 0.3047 0.3795 0.3676 0.3727 0.3561
Linear 2 0.0274 0.0248 0.0227 0.0211 0.0240

Continued on next page

22

Published as a conference paper at ICLR 2024

Table 11 – continued from previous page
T = 1 T = 2 T = 3 T = 4 Average

Block4
SDSA

RepConv-1/2/3 0.2833 0.3469 0.3400 0.3430 0.3283
QS 0.1910 0.1884 0.1937 0.1893 0.1906
KS 0.0570 0.0620 0.0658 0.0642 0.0622
VS 0.0834 0.0986 0.1065 0.1043 0.0982

KT
S VS 0.3421 0.4375 0.4566 0.4670 0.4258

QS(K
T
S VS) 0.8279 0.8925 0.9067 0.9097 0.8842

RepConv-4 0.3632 0.4932 0.5457 0.5365 0.4847

Channel MLP Linear 1 0.3040 0.3562 0.3487 0.3512 0.3400
Linear 2 0.0282 0.0267 0.0244 0.0230 0.0256

Block5
SDSA

RepConv-1/2/3 0.2882 0.3334 0.3280 0.3298 0.3198
QS 0.1577 0.1487 0.1501 0.1482 0.1512
KS 0.0440 0.0496 0.0528 0.0534 0.0499
VS 0.0853 0.1276 0.1363 0.1377 0.1217

KT
S VS 0.3633 0.4934 0.5187 0.5365 0.4780

QS(K
T
S VS) 0.8424 0.9031 0.9178 0.9213 0.8961

RepConv-4 0.3550 0.5158 0.5620 0.5678 0.5001

Channel MLP Linear 1 0.3211 0.3551 0.3477 0.3503 0.3436
Linear 2 0.0247 0.0223 0.0205 0.0194 0.0217

Block6
SDSA

RepConv-1/2/3 0.3072 0.3335 0.3286 0.3310 0.3251
QS 0.1468 0.1392 0.1392 0.1376 0.1407
KS 0.0373 0.0437 0.0442 0.0449 0.0426
VS 0.0935 0.1255 0.1331 0.1333 0.1213

KT
S VS 0.3380 0.4449 0.4569 0.4667 0.4266

QS(K
T
S VS) 0.8073 0.8623 0.8706 0.8725 0.8532

RepConv-4 0.2862 0.4085 0.4315 0.4352 0.3903

Channel MLP Linear 1 0.3084 0.3267 0.3192 0.3230 0.3193
Linear 2 0.0241 0.0218 0.0202 0.0194 0.0214

stage4

Downsampling Conv 0.2456 0.2487 0.2414 0.2438 0.2449

Block1
SDSA

RepConv-1/2/3 0.1662 0.3402 0.3052 0.3280 0.2849
QS 0.2044 0.1330 0.1202 0.1096 0.1418
KS 0.0221 0.0259 0.0214 0.0205 0.0225
VS 0.0870 0.1556 0.1438 0.1443 0.1327

KT
S VS 0.1782 0.2832 0.2455 0.2412 0.2370

QS(K
T
S VS) 0.6046 0.6607 0.5710 0.5285 0.5912

RepConv-4 0.2379 0.2635 0.1852 0.1592 0.2115

Channel MLP Linear 1 0.2332 0.3966 0.3615 0.3859 0.3443
Linear 2 0.0262 0.0252 0.0192 0.0171 0.0219

Block2
SDSA

RepConv-1/2/3 0.3053 0.4001 0.3907 0.4018 0.3745
QS 0.1389 0.1245 0.1176 0.1108 0.1230
KS 0.0227 0.0231 0.0224 0.0218 0.0225
VS 0.0764 0.1038 0.1051 0.1048 0.0975

KT
S VS 0.1600 0.1968 0.1985 0.1979 0.1883

QS(K
T
S VS) 0.5439 0.5558 0.5348 0.5079 0.5356

RepConv-4 0.1718 0.1697 0.1578 0.1384 0.1594

Channel MLP Linear 1 0.3000 0.3811 0.3768 0.3913 0.3623
Linear 2 0.0030 0.0035 0.0032 0.0029 0.0032

Head Linear 0.4061 0.4205 0.4323 0.4545 0.4283

23

	Introduction
	Related work
	Spike-driven Transformer V2: Meta-SpikeFormer
	The concept of meta Transformer architecture in ANNs
	Spiking Neuron Layer
	Meta-SpikeFormer

	Experiments
	Image classification
	Event-based Activity Recognition
	Object detection
	Semantic segmentation
	Ablation Studies

	Discussion and Conclusion
	Spike-Driven Self-Attention (SDSA) Operators
	Vanilla Self-Attention (VSA)
	Spike-Driven Self-Attention (SDSA)
	Discussion about SDSA operators

	Theoretical Energy Evaluation
	Spike-driven operators in SNNs
	Energy Consumption of Meta-SpikeFormer

	Detailed Configurations and Hyper-parameter of Meta-SpikeFormer Models
	ImageNet-1K experiments
	COCO experiments
	ADE20K experiments
	Additional results on VOC2012 segmentation

