
Appendix: Exploiting Data Sparsity in Secure
Cross-Platform Social Recommendation

Jamie Cui1, Chaochao Chen2,1*, Lingjuan Lyu3, Carl Yang4, and Li Wang1

1Ant Group
2Zhejiang University

3Sony AI
4Emory University

*Corresponding author, email: zjuccc@zju.edu.cn

A Private Information Retrieval (PIR)

Our protocol requires a bandwidth-efficient single-server PIR scheme. Specifically, in our work, we
use the famous Seal PIR [1], which additionally leverages levelled homomorphic encryption scheme
Fan-Vercauteren (FV) [2]. Slightly different from the standard PIR scheme, Seal-PIR further allows
the client to send a compressed query to the server, which is then decompressed on the server by
PIR.Expand algorithm. In general, Seal-PIR consists of four algorithms (see Figure 1):

(PIR.Query,PIR.Expand,PIR.Response,PIR.Extract).

In particular, we consider single-server PIR with a computationally bounded adversary. The security
definition is given below,
Definition 1 (Security of Computational PIR). Let FPIR be the query function which takes input as
an index in [|DB|], where DB is the target database, and let r be the user’s random coins. Then for
every distinct indices i, j ∈ [|DB|], and for every probabilistic polynomial-time adversaryA bounded
by security parameter λ,

|Pr
r
[A(1λ,FPIR(i, r)) = 1]− Pr

r
[A(1λ,FPIR(j, r)) = 1]| ≤ negl(λ).

Since the construction of Seal-PIR replies on FV, now we show the details of the FV scheme.

Fan-Vercauteren (FV). FV is a levelled homomorphic encryption scheme, where plaintexts are
represented as polynomials of degree at most N , and integer coefficients modulo t. More specifically,
the plaintext polynomials are from the quotient ring Rt = Zt[x]/(xN + 1), where N is a power of 2,
and t is the plaintext modulus that determines how many data can a single FV plaintext represents.
The ciphertexts in FV comprises of two polynomials from ring Rq = Zq[x]/(xN + 1), where q is
the coefficient modulus affecting the noise budget of a ciphertext and the security level of the entire
cryptosystem. As operations such as addition or multiplication are performed, the noise of the output
ciphertext grows based on the noise of the operands and the operation being performed. For the
purpose of PIR, we care about the following operations:

p(xk) = Subk(c),

where c is a ciphertext encrypting a polynomial p(x), and k is an odd integer. For instance, if c
encrypts the polynomial p(x) = x3 + 4x, Sub2(c) returns (x2)3 + 4x2 = x6 + 4x2.

B Security Proofs

First, we give the formal definitions of computational indistinguishability, simulation-based security
(which is a popular tool for proving secure computation security), and IND-CPA security (indis-

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

Parameters: d ∈ [1, log n],m = n1/d, compression c ∈ [0, log2N].

PIR.Query(i)

1 : Generate sj = (sj,i)i∈[m], the d-th selections vector in {0, 1}m

2 : l← dd ·m/2ce
3 : Parse (s1, ..., sd) as (s′1, ..., s

′
d) vectors in {0, 1}2

c

4 : ∀j ∈ [l],mj ←
∑
i∈2c

(2−c mod t) · sj [i] · xi ∈ Rt

5 : ∀j ∈ [l], qj ← Encsk(mj)

6 : ~q = (qj)j∈[l] ∈ Rlq
7 : return ~q

PIR.Expand(q)

1 : l← dd ·m/2ce
2 : ciphertexts← []

3 : for j ∈ {1, . . . , l}, ctxts = [qj = (c0, c1)] do

4 : for a ∈ {0, . . . , c− 1} do
5 : for b ∈ {0, . . . , 2a − 1} do
6 : Let c′k ← c0 + Sub2c−a+1(c0)

7 : Let c′k+2a ← c1 + Sub2c−a+1(c1)

8 : endfor

9 : ctxts = [c′0, ..., c
′
2a+1−1]

10 : endfor

11 : ciphertexts← ciphertexts‖ctxts
12 : endfor

13 : Let ~s← ciphertexts

14 : return ~s

PIR.Response(DB, ~s)

1 : ∀si ∈ ~s, let DBi =
m⊕
j=0

DB.Get(i, j)⊗ si[j]

2 : return r := DBi

PIR.Extract(r)

1 : ∀i ∈ {1, . . . , d}, let r := Decsk(r) mod 2l

2 : return DBi := r

Figure 1: Seal-PIR algorithms, where we denote the number of entries in the database as n, and a
user-defined recursion level as d. Also we use ⊗ to denote the homomorphic operation of plaintext-
ciphertext multiplication ⊕ to denote the homomorphic operation of ciphertext addition. We also use
DB.Get(i, j) to indicate get the ith dimension vector’s jth value.

tinguishable chosen-plaintext attack). Then we use these definitions to prove lemma 1 and lemma
2.

B.1 Definitions and Tools

Definition 2 (Computational Indistinguishability). Let a ∈ {0, 1}∗ be the inputs from participants,
and λ ∈ N be the security parameter, two probability functions {F0(a, λ)}a∈{0,1}∗,λ∈N} and

2

{F1(a, λ)}a∈{0,1}∗,λ∈N} are said to be computational indistinguishable, if for every non-uniform
polynomial-time algorithmA, there exits a negligible function negl(λ), such that for every a ∈ {0, 1}∗
and every λ ∈ N,

|Pr[A(F0(a, λ)) = 1]| − |Pr[A(F1(a, λ)) = 1]| ≤ negl(λ).

Definition 3 (Simulation-based Security). Let F = (F0,F1) be a functionality, we say a protocol π
securely computes F in the presence of static semi-honest adversaries if there exists a probabilistic
polynomial-time algorithm S0 and S1 such that

{(S0(1λ, x,F0(x, y)),F(x, y))}
c≡ {(viewπ0 (λ, x, y), outputπ(λ, x, y))},

{(S1(1λ, y,F1(x, y)),F(x, y))}
c≡ {(viewπ1 (λ, x, y), outputπ(λ, x, y))},

where x, y are inputs from P0 and P1 separately.

Definition 4 (IND-CPA Security Game). A public-key encryption scheme is said to be IND-CPA
secure if for all probabilistic polynomial-time adversary A,

Pr[GameA(1λ) = 1] ≤ 1

2
+ negl(λ),

where the IND-CPAA(λ) is defined as follows:

IND-CPAA(λ)

1 : b←$ {0, 1}
2 : (pk, sk)←$KGen(1λ)

3 : (state,m0,m1)←$A(1λ, pk, c)
4 : c←$Enc(pk,mb)

5 : b′ ←$A(1λ, pk, cstate)
6 : return b′ = b

B.2 Proofs of Lemma 1 and Lemma 2

Lemma 1. The protocol in Figure 5 (i.e. Dense-Sparse Matrix Multiplication with Insensitive
Sparsity) is secure in the MPC-hybrid model.

Proof. We use simulation-based proof [3] for Lemma 1. Since we are considering our protocol in
the MPC-hybrid model, we assume there are two ideal MPC functionalities Fmul and Fadd, where
Fmul takes [x]0, [y]0 from P0, and [x]1, [y]1 from P1, and returns [z]0 to P0 and [z]1 to P1 such
that z = xy,. Similarly, Fadd takes [x]0, [y]0 from P0, and [x]1, [y]1 from P1, and returns [z]0 to
P0 and [z]1 to P1 such that z = x + y. The security of Fmul and Fadd says that [z]0 and [z]1 are
indistinguishable from uniform randomness from the sole view of P0 or P1 separately. That is to say,
for all c ∈ Zδ

|Pr[[Fmul([x], [y])]i = c]− Pr[r = c]| = 0,

|Pr[[Fadd([x], [y])]i = c]− Pr[r = c]| = 0,

where i ∈ {0, 1}, δ is the share bit length, and r is a uniform random number sampled from Zδ .
Therefore, we need to build a simulator S0 to simulate the view of P0 in protocol π. Note in our
protocol, all the interactions between P0 and P1 come from Fmul and Fadd, then we can use S0 to
generate a uniform random value r ∈ Zδ for each stage independently. Given that the outputs of ideal
functionalities Fmul and Fadd are indistinguishable from uniform randomness for both view of the
parties, this simulation works for both S0 and S1, and the simulation completes.

Lemma 2. The protocol in Figure 6 (i.e. Dense-Sparse Matrix Multiplication with Sensitive Sparsity)
is secure in the PIR-hybrid model with the leakage of |ly|.

3

Proof. We also use simulation-based proof [3] for Lemma 2. First, we assume there is a ideal
functionality Fpir, which takes a value set DB from P0, an index i from P1, and returns DBi to P1.
The security of Fpir are biased since PIR only aim to hide the query i from P0. More formally,
the security of single-database computational PIR says that, for every distinct i, j ∈ [n] and every
probabilistic polynomial-time (PPT) adversary A,

|Pr[A(1λ,Fpir(i, r)) = 1]− Pr[A(1λ,Fpir(j, r)) = 1]| ≤ negl(λ),

where λ is the computational security parameter, n is the size of the database DB, and negl is a
negligible function bounded by computational security parameter λ.

Since in the offline phase, P0 only sends the public key pk to P1, the simulation for offline phase is
trivial. For online phase, we build simulator S0 and S1 for P0 and P1 separately.

Simulator S0: First, for step 1-3, P0 and P1 invokes Fpir |ly| times (which is the pre-defined
leakage). S0 can simulate this process by inputing Fpir with |ly| random encryptions, i.e. DB =
{Encpk(r1), ...,Encpk(rn)}, where r1, .., rn ∈ Zδ are uniform random numbers. For the view of S0,
IND-CPA security says that with a PPT adversary A who can access the encryption oracle,

|Pr[A(1λ,Encpk(DBi)) = 1]− Pr[A(1λ,Encpk(r)) = 1]| ≤ negl(λ).

Therefore, from the view of S0 is indistinguishable from a random encryption with leakage of |ly|.
For the rest of the protocol, party P0 sends nothing. The simulation completes.

Simulator S1: First, for step 1-3, S1 invokes Fpir |ly| times. Assuming the secure instantiation of
Fpir, the simulation for S1 in step 1-3 is trivial. Then at step 4, S1 generates a random value r ∈ Zδ ,
encrypts it with P0’s public key Encpk(r), and sends the result to P0. Observe that for all c ∈ Zδ , for
a given m ∈ Zδ ,

|Pr[r = c]− Pr[m− r = c]| = 0.

The simulation completes.

References
[1] Sebastian Angel, Hongzhang Chen, K. Laine, and S. Setty. Pir with compressed queries and amortized

query processing. IEEE S&P, pages 962–979, 2018.

[2] Junfeng Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptol. ePrint
Arch., 2012:144, 2012.

[3] Yehuda Lindell. How to simulate it–a tutorial on the simulation proof technique. In Tutorials on the
Foundations of Cryptography, pages 277–346. Springer, 2017.

4

	Private Information Retrieval (PIR)
	Security Proofs
	Definitions and Tools
	Proofs of Lemma 1 and Lemma 2

