
A Implementation details

For the reproducibility, we provided the source code of model. For the request of Neurips2021
committee, however, it is restricted by private repository via request3. We train the model using
the AdamW optimizer (Loshchilov and Hutter, 2019) with β1 = 0.8, β2 = 0.99, and weight decay
λ = 0.01, and apply the learning rate schedule as that of (Kong et al., 2020) with initial learning rate
of 2× 10−4 for generator and 2× 10−6 for discriminator. We train VoiceMixer with a batch size of
64 for 150k steps. The architecture of VoiceMixer is illustrated in Figure 5, 6.
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Figure 6: Discriminator architecture of VoiceMixer

3https://github.com/anonymous-speech/voicemixer/tree/main/code

16

https://github.com/anonymous-speech/voicemixer/tree/main/code


Table 5: Hyperparmeters of generator

Hyperparameter VoiceMixer

Mel-spectrogram Dimension 80 -

Prenet Linear Layer 2
Prenet Linear Hidden 384
Prenet Conv1D Layer 1
Prenet Conv1D Hidden 384
Prenet Conv1D Kernel 7

Speaker Encoder Conv1D Layer 6
Speaker Encoder Conv1D Hidden [32,64,128,192,256,384]
Speaker Encoder Conv1D Kernel 3
Speaker Encoder Conv1D Stride 2
Speaker Encoder GRU Hidden 384
Speaker Encoder Linear projection 384

Content Encoder MRF Module 3
Content Encoder MRF kernel [3, 7]
Content Encoder MRF dilation [[1, 3], [1,3]]
Content Encoder MRF Filter Size 384

Decoder Conv1D Layer 1
Decoder Conv1D Hidden 384
Decoder MRF Module 3
Decoder MRF Kernel [3, 7]
Decoder MRF Dilation [[1, 3], [1,3]]
Decoder MRF Filter Size 384
Decoder Linear Projection 80

Range Predictor Conv1D layer 2
Range Predictor Conv1D Kernel 3
Range Predictor Conv1D Filter size 384
Range Predictor Dropout Size 0.5

Context Network Conv1D layer 3
Context Network Conv1D kernel 3
Context Network Conv1D Filter 384
Context Network Conv1D Dropout 0.5
Context Network MaskedConv1D layer 3
Context Network MaskedConv1D kernel 23
Context Network MaskedConv1D Mask [5,7,9]
Context Network MaskedConv1D Filter 384
Context Network Linear Projection 384

Adversarial Speaker Classifier Conv1D layer 5
Adversarial Speaker Classifier Conv1D Kernel 3
Adversarial Speaker Classifier Conv1D Filter Size 256
Adversarial Speaker Classifier Conv1D stride 2
Adversarial Speaker Classifier Dropout Size 0.1

Encoder/Decoder Dropout 0.2

k 24
ρ 0.1
Batch Size 64
λadv/λc/λs/λs− 0.01/0.02/0.02/0.04
λmel/ λcon/ λpos/ λneg/λadvsc 45/1/45/9/1
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Table 6: Hyperparameter of discriminator

Hyperparameter VoiceMixer

Content Discriminator Conv1D layer 1
Content Discriminator Conv1D kernel 3
Content Discriminator Conv1D filter 256
Content Discriminator Blocks First Conv1D Input [256, 256, 512, 1024]
Content Discriminator Blocks First Conv1D Filter [256, 512, 1024, 1024]
Content Discriminator Blocks First Conv1D Kernel 3
Content Discriminator Blocks First Conv1D Stride [1,2,2,2]
Content Discriminator Blocks Second Conv1D Filter [256, 512, 1024, 1024]
Content Discriminator Blocks Second Conv1D Kernel 1
Content Discriminator Blocks First Conv1D Stride 1

Style Discriminator Conv1D layer 1
Style Discriminator Conv1D kernel 3
Style Discriminator Conv1D filter 128
Style Discriminator Spectrogram-side Block First Conv1D Input [128, 256, 512, 1024]
Style Discriminator Spectrogram-side Block First Conv1D Filter [256, 512, 1024, 1024]
Style Discriminator Spectrogram-side Block First Conv1D Kernel 9
Style Discriminator Spectrogram-side Block First Conv1D Stride [2,2,2,2]
Style Discriminator Spectrogram-side Block Second Conv1D Filter [256, 512, 1024, 1024]
Style Discriminator Spectrogram-side Block Second Conv1D Kernel 1
Style Discriminator Spectrogram-side Block First Conv1D Stride 1
Style Discriminator Condition-side Block Conv1D Filter [256, 512, 1024, 1024]
Style Discriminator Condition-side Block Conv1D Kernel 1

Baselines We use open source implementation of StarGAN-VC4, and official implementation of
AGAIN-VC5, AUTOVC6, and Blow7. For fair comparison to other baselines, we does not use pre-
trained speaker encoder which is trained with generalized end-to-end (GE2E) loss (Wan et al., 2018).
For AUTOVC and VoiceMixer, we train the speaker encoder with the entire model. StarGAN-VC is
trained with a batch size of 32 for 200k steps. For AUTOVC, AGAIN-VC, and VoiceMixer, we use
mel-spectrogram segment of 192 frames for training. We recommend 192 frames to train the model
when the sampling rate is 22,050 Hz in comparison with 128 frames on 16,000 Hz sampling rate. We
train AGAIN-VC with the suggested model hyperparameters and a batch size of 64 for 100k steps.
We train the AUTOVC with the suggested model hyperparameters and a batch size of 16 for 100k
steps. For blow, we train the model with the suggested hyperparameters for 300 epochs over 40 GPU
days on Nvidia A100. Other models take under 1 GPU day on Nvidia A100.

For adversarial speaker classification on AUTOVC, we use the same classifier of ours and gradient
reversal layer. Then, we use 0.02 weight for adversarial speaker classification loss.

Mel-spectrogram We use the mel-spectrogram as an input for VoiceMixer, AGAIN-VC, and
AUTOVC. We use the audio signal downsampled at 22,050 sampling rate. Though a short-time
Fouorier transform (STFT) with a window size of 1,024, hop size of 256, and 1,024 points of FFT,
We compute Mel-spectrogram. We use 80 channel of mel filterbank spanning 0 Hz to 8 kHz, and clip
to a minimum value of 10−5 before applying log dynamic range compression.

Vocoder For converting mel-spectrogram into audio signal, we use an official implementation of
HiFi-GAN 8. We use the HiFi-GAN generator of V 1, which has a initial hidden dimension of 512.
We train the HiFi-GAN using 108 speakers of VCTK dataset, and we also evaluate the HiFi-GAN as
shown in Table 1 and Table 2.

4https://github.com/liusongxiang/StarGAN-Voice-Conversion
5https://github.com/KimythAnly/AGAIN-VC
6https://github.com/auspicious3000/autovc
7https://github.com/joansj/blow
8https://github.com/jik876/hifi-gan
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B Experiments

(a) t-SNE visualization for speaker embeddings (b) t-SNE visualization for content embeddings

Figure 7: t-SNE visualization for speaker/content embedding from different speech of 10 speakers

(a) (b)

Figure 8: t-SNE visualization for content embeddings of “Please call Stella” from 3 speakers. The
left show the content embeddings labeled with speaker id and the right show the same content
embeddings labeled with phoneme. The phoneme information is extracted from the attention
alignment of Tacotron2, and the character sequence “Please call Stella” becomes [P, L, IY1, Z, , K,
A01, L, , S, T, EH1, L, AH0, .].

t-SNE visualization In Figure 7, we present the t-SNE visualization for both speaker and content
embeddings from the different utterances of 10 speakers. While the speaker embeddings from
different speakers can be distinguished, it is difficult to differentiate between content embeddings
from different speakers. This means content encoder extracts the features irrelevant to speaker
information. To demonstrate that the content embeddings are related to context information, we
also conduct t-SNE visualization for content embeddings as shown in the Figure 8. The content
embeddings from the same utterance of different speaker are distinguish by phoneme information.
We extract the phoneme label from the attention alginement of Tacotron2, and the character sequence
is converted by (Park, 2019).

Table 7: Inference speed comparison

Model Latency (s) Speedup

AUTOVC 0.041±0.0199 -
VoiceMixer 0.007±0.0004 5.6×

Inference speed We compare the inference speed of VoiceMixer compared with the AUTOVC. We
conduct the evaluation on a Intel Xeon Gold 6148 CPU and a NVIDIA Titan V GPU with a 1 batch
size. For evaluation, both model convert the 400 samples and the average length of mel-spectrogram
is 406 frames. Our model has 5.6× speedup compared with the AUTOVC as shown in Table 7.
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C Evaluation details

Mean opinion score We conduct the subjective MOS test for the naturalness of converted speech
and similarity of converted speech to target voice. Figure 9 shows the instructions for participants.

(a) Naturalness (b) Similarity

Figure 9: Subjective evaluation for Naturalness and Similarity. $0.02 per 1 hit is paid to participants.

Mean Ceptral Distortion We evaluate the model performance with mel cepstral distortion (MCD)
(Kubichek, 1993). To compute MCD between synthesized and ground-truth audio, we calculate
the first 13 mel-frequency cepstral coefficients (MFCCs) by taking discrete cosine transform to raw
waveform. The MCD between two frame is the l2 distance between their MFCCs. This can be
formulated as follows:

MCD13 =
1

T

T−1∑
t=0

√√√√ 13∑
k=1

(M t,k −M
′

t,k)
2 (22)

where M t,k, M
′

t,k represent original and synthesized kth MFCCs of tth frame. T denotes the
number of frames. Since two sequences are not aligned, dynamic time warping (DTW) (Berndt and
Clifford, 1994) was applied prior to comparison. Here, the lower MCD indicates higher similiarity
between two audio.

F0 Root Mean Square Error To evaluate reference similarity in terms of fundamental frequencies
(F0), we compute root mean square error for F0 (RMSEF0

). We first extract the F0 using open source
implementation of World vocoder9, then computes the l2 distance between F0 of synthesized and
ground-truth waveform:

RMSEF0 = 1200‖(log2(Fr)− log2(Fs))‖2 (23)

Fr and Fs represent F0 sequences of raw and synthesized waveform, respectively. We also apply to
DTW to calculate RMSEF0

between two sequences, which are not aligned.

Fréchet Deep Speech Distances We report Fréchet Deep Speech Distances (FDSD) (Bińkowski
et al., 2020) which assess the quality of generated audio based on the Fréchet distance to the
ground-truth audio. FDSD is similar to Fréchet Inception Distance which is the common metric
of evaluating GANs for images. However, FDSD is computed on representations extraced from an
speech recognition model of DeepSpeech2 Amodei et al. (2016) instead of the Inception network.
We follow the open source implementation of FDSD10, which is computed as follows:

FDSD =
√
‖µX − µY ‖22 + Tr(

∑
X +

∑
Y −2

√
(
∑

X

∑
Y )) (24)

where X and Y refers to extracted feature of ground-truth and generated waveform, respectively.
µX , µY and

∑
X ,
∑

Y are the means and covariance matrices of X and Y , respectively. Tr(·)
denotes the trace of matrix.

9https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder
10https://github.com/google-research/google-research/tree/master/ged_tts
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Figure 10: (a) the overall architecture of the automatic speaker verification. (b) the Fast ResNet-34
model.

Automatic speaker verification The automatic speaker verification (ASV) network is shown in
Figure 10a. Features are extracted from ground-truth mel-spectrogram of target voice and converted
mel-spectrogram by the Fast ResNet-34 model (Chung et al., 2020). Then, the similarity of extracted
features are compared to produce final verification result. As shown in Figure 10b, Fast Resnet-
34 model is similar to the original Resnet-34 model (He et al., 2016) but contains quarter of the
channels. This decrease in the number of channels enables the model to be light-weight and declines
computational cost. Compared to the standard Resnet-34 model, the Fast Resnet-34 model drastically
reduces the number of parameters from 22 to 1.4 million. Each of the four residual blocks contain [3,
4, 6, 3] layers with [16, 32, 64, 128] filters. The self-attentive pooling (Cai et al., 2018) focuses on
informative frames that are crucial for classification task. Finally, the fully-connected layer outputs
512-dimensional feature for similarity comparison.

We use the equal error rate (EER) to calculate speaker verification results. As shown in Figure 11,
EER is the location on the ROC curve where the false acceptance rate (FAR) is equal to the false
rejection rate (FRR). Lower equal error rate indicates higher accuracy of the ASV system. The Fast
ResNet-34 model is trained on the Voxceleb2 (Chung et al., 2018) dataset and tested on the Voxceleb1
(Nagrani et al., 2017) dataset. Compared to other methods, our proposed method achieves lowest
ASV EER represented in Table 1.

Figure 11: Receiver operating characteristic (ROC) curve
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D Hyperparameter tuning

We performed hyperparameter tuning during the ablation study. To validate the model, the mel-
spectrogram reconstruction loss was used to evaluate the speech quality. However, the lower mel-
spectorgram reconstruction loss does not always indicate that the style is effectively transferred in
the converted speech. In many cases, the model with too low mel-reconstruction loss value simply
reconstructs the source speech and is not able to convert the voice. To validate the voice style transfer
performance, we evaluated the converted speech by the speaker classification model during validation.
To evaluate the converted speech, a single utterance was selected from each speaker in the test data,
and all possible pairs of utterances (98×98 = 9,604) were produced. We searched for the weight
of loss with a grid search. First, we selected models with a classification accuracy above 95%.
Subsequently, we selected the model with the lowest reconstruction loss.

E Similarity-based duration

The majority of voice conversion models use the segmented mel-spectrogram as the source speech
during training. This aid in causing the data to have the same length in the same batch during training.
Without the first and last time frame, the additional time frame T + 1 can be used after time T .
However, in practice, we use the duplicated frame of T − 1 as a T + 1 frame. As both models are
trained almost the same, we use the latter for efficiency. The term dn is the cumulative sum of the
frame number that is added until the similarity is under average similarity. The average similarity is
the average over the utterance.
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