
Adaptive Topological Feature via Persistent Homology:
Filtration Learning for Point Clouds

Naoki Nishikawa
The University of Tokyo

nishikawa-naoki259@g.ecc.u-tokyo.ac.jp

Yuichi Ike
Kyushu University

ike@imi.kyushu-u.ac.jp

Kenji Yamanishi
The University of Tokyo

yamanishi@mist.i.u-tokyo.ac.jp

Abstract

Machine learning for point clouds has been attracting much attention, with many
applications in various fields, such as shape recognition and material science. For
enhancing the accuracy of such machine learning methods, it is often effective to
incorporate global topological features, which are typically extracted by persis-
tent homology. In the calculation of persistent homology for a point cloud, we
choose a filtration for the point cloud, an increasing sequence of spaces. Since the
performance of machine learning methods combined with persistent homology is
highly affected by the choice of a filtration, we need to tune it depending on data
and tasks. In this paper, we propose a framework that learns a filtration adaptively
with the use of neural networks. In order to make the resulting persistent homology
isometry-invariant, we develop a neural network architecture with such invariance.
Additionally, we show a theoretical result on a finite-dimensional approximation
of filtration functions, which justifies the proposed network architecture. Experi-
mental results demonstrated the efficacy of our framework in several classification
tasks.

1 Introduction
Analysis of point clouds (finite point sets) has been increasing its importance, with many applications
in various fields such as shape recognition, material science, and pharmacology. Despite their
importance, point cloud data were difficult to deal with by machine learning, in particular, neural
networks. However, thanks to the recent development, there have appeared several neural network
architectures for point cloud data, such as DeepSet (Zaheer et al., 2017), PointNet (Qi et al., 2017a),
PointNet++ (Qi et al., 2017b), and PointMLP (Ma et al., 2022). These architectures have shown high
accuracy in tasks such as shape classification and segmentation.
In point cloud analysis, topological global information, such as connectivity, the existence of holes
and cavities, is known to be beneficial for many tasks (see, for example, (Hiraoka et al., 2016;
Kovacev-Nikolic et al., 2016)). One way to incorporate topological information into machine learning
is to use persistent homology, which is a central tool in topological data analysis and attracting much
attention recently. By defining an increasing sequence of spaces, called a filtration, from a point cloud
X ⊂ Rd, we can compute its persistent homology, which reflects the topology of X . Topological
features obtained through persistent homology are then combined with neural network methods and
enhance the accuracy of many types of tasks, such as point cloud segmentation (Liu et al., 2022),
surface classification (Zeppelzauer et al., 2016), and fingerprint classification (Giansiracusa et al.,
2019).

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 1: Procedure to utilize our framework to a classification task and its comparison to when
we use Rips filtration. For a given set of points, define a value called “weight” for each point in (a),
using a neural network method. In (b), a ball centered at each point is gradually expanded. The
balls centered at points with larger weights expand later than the balls centered at points with smaller
weights. In (c), we examine the topology of the sum of the balls as they grow larger, and aggregate the
information into a diagram called a persistence diagram. In (d), the persistence diagram is converted
to a vector, which can be used as input of machine learning models. When we use standard Rips
filtration, the balls expand uniformly from all of the points, so that we cannot correctly capture the
large global hole. On the other hand, when we use our method, the suitable filtration to solve a
classification task is chosen, and the weights on the outliers get larger. As a result, we can capture the
large global hole in the point cloud. Note that the resulting weights assigned to each point are not
pre-specified, but are fully learned from the data.

The standard pipeline to use persistent homology in combination with machine learning is split into
the following:

(i) define a filtration for data and compute the persistent homology;

(ii) vectorize the persistent homology;

(iii) input it into a machine learning model.

In (i), one needs to construct appropriate filtration depending on a given dataset and a task. A standard
way to define a filtration is to consider the union of balls with centers at points in X ⊂ Rd with a
uniform radius, i.e., take the union St =

⋃
x∈X B(x; t), B(x; t) := {y ∈ Rd | ∥y − x∥ ≤ t} and

consider the increasing sequence (St)t. Regarding (ii), one also has to choose a vectorization method
depending on the dataset and the task. For example, one can use typical vectorization methods
such as persistence landscape and persistence image. As for (iii), we can use any machine learning
models such as linear models and neural networks, and the models can be tuned with the loss function
depending on a specific task.

Recently, several studies have proposed ideas to learn not only (iii) but also (i) and (ii). Regarding
(ii), Hofer et al. (2017) and Carrière et al. (2020), for example, have proposed methods to learn
vectorization of persistence homology based on data and tasks. Furthermore, for (i), Hofer et al.
(2020) have proposed a learnable filtration architecture for graphs, which gives a filtration adaptive
to a given dataset. However, this method heavily depends on properties specific to graph data. To
establish a method to learn filtration for point clouds, we need to develop a learnable filtration
architecture for a point cloud incorporating the pairwise distance information. In this paper, we tackle
this challenging problem to adaptively choose a filtration for point clouds.

1.1 Contributions

In this paper, we propose a novel framework to obtain topological features of point clouds based on
persistent homology. To this end, we employ a weighted filtration, whose idea is to take the union of
balls with different radii depending on points. Choosing a weight function w : X → R, we can define

2

a filtration (St)t by

St =
⋃
x∈X

B(x; t− w(x)).

This type of filtration often extracts more informative topological features compared to non-weighted
filtrations. Indeed, a weighted filtration plays an important role in various practical applications (Anai
et al., 2020; Nakamura et al., 2015; Hiraoka et al., 2016; Obayashi et al., 2022). Then, we introduce
a neural network architecture to learn a map that associates a weight function f(X, ·) with a point
cloud X ⊂ Rd.

The desirable property for network f is isometry-invariance, i.e., f(TX, Tx) = f(X,x) for any
isometric transformation T of Rd, so that the associated weighted filtration is isometry-invariant. To
address this issue, we implement a function f with a network architecture based on distance matrices.
Then, the resulting weight function satisfies the isometry-invariance rigorously. Additionally, we
show a theoretical result about the approximation ability for a wide class of weight functions, which
supports the validity of our architecture.

Our main contributions are summarized as follows:

1. We propose a novel framework to obtain adaptive topological features for point clouds based on
persistent homology. To this end, we introduce an isometry-invariant network architecture for a
weight function and propose a way to learn a weighted filtration.

2. We theoretically show that any continuous weight function can be approximated by the composite
of two continuous functions which factor through a finite-dimensional space. This theoretical
result motivates our architecture.

3. We conducted experiments on public datasets and show that the topological features obtained by
our method improved accuracy in classification tasks.

Figure 1 presents one typical use of our framework for a classification task. Our method first calculates
the weight of each point using a neural network model. The colored point clouds in the second row
depict the assigned weights for each point. In the bottom one, our architecture assigns large weights
on the outliers in the point cloud, which implies that our method can choose the filtration adaptively
to data and tasks. Although the DTM filtration is also effective in the example shown in Figure 1, our
method can learn a filtration appropriately for a given task and data in a supervised way. Therefore,
our method would be effective for data and tasks with difficulties other than outliers. In §5, we will
show that our method improves the classification accuracy compared to the Rips or DTM filtration in
several experiments.

1.2 Related work

A neural network architecture for finite point sets was first proposed by Zaheer et al. (2017), as
DeepSets. Later, there appeared several geometric neural networks for point clouds, such as Point-
Net (Qi et al., 2017a), PointNet++ (Qi et al., 2017b), and PointMLP (Ma et al., 2022). These studies
addressed the rotation invariance by approximating rotation matrices by a neural network. (Xu et al.,
2021) used Gram matrices to implement an isometry-invariant neural network for point clouds. We
instead use distance matrices for our isometry-invariant network architecture since the pairwise
distance information is important in persistent homology.

Regarding vectorization of persistent homology, in the past, it has usually been chosen in unsupervised
situations, as seen in Bubenik and Kim (2007); Chung et al. (2009); Bubenik et al. (2015); Adams
et al. (2017); Kusano et al. (2017). However, recent studies such as Hofer et al. (2017) and Carrière
et al. (2020) have proposed end-to-end vectorization methods using supervised learning. In particular,
Carrière et al. (2020) used the DeepSets architecture Zaheer et al. (2017), whose input is a finite
(multi)set, not a vector, for vectorization of persistent homology to propose PersLay. Although our
method also depends on DeepSets, it should be distinguished from PersLay; our method uses it for
learning a weight for computing persistent homology while PersLay learns a vectorization method of
persistence homology.

For graph data, Hofer et al. (2020) proposed the idea of filtration learning in supervised way, i.e., to
learn the process in (i), and this idea was followed by Horn et al. (2021) and Zhang et al. (2022). They

3

introduced a parametrized filtration with the use of graph neural networks and learned it according to
a task. The persistent homology obtained by the learned filtration could capture the global structure of
the graph, and in fact, they achieved high performance on the graph classification problem. However,
filtrations for point clouds cannot be defined in the same way, as they are not equipped with any
adjacency structure initially, but equipped with pairwise distances. Moreover, the filtration should be
invariant with respect to isometric transformations of point clouds, and we need a different network
architecture to that for graphs. While many previous studies, such as Bendich et al. (2007); Cang
and Wei (2017); Cang et al. (2018); Meng et al. (2020), have tried to design special filtration in
an unsupervised way based on data properties, we aim to learn a filtration in a data-driven and
supervised way. To the best of our knowledge, this study is the first attempt to learn a filtration for
persistent homology on point cloud data in a supervised way.

Another approach to obtaining topological features is to approximate the entire process from (i) to
(iii) for computing vectorization of persistent homology by a neural network (Zhou et al. (2022) and
de Surrel et al. (2022)). Note that similar methods are proposed for image data (Som et al., 2020)
and graph data (Yan et al., 2022). Since these networks only approximate topological features by
classical methods, they cannot extract information more than features by classical methods or extract
topological information adaptively to data.

2 Background

2.1 Network Architectures for Point Clouds

There have been proposed several neural network architectures for dealing with point clouds for
their input. Here, we briefly explain DeepSets (Zaheer et al., 2017), which we will use to imple-
ment our isometry-invariant structure. A more recent architecture, PointNet (Qi et al., 2017a) and
PointMLP (Ma et al., 2022), will also be used for the comparison to our method in the experimental
section.

The DeepSets architecture takes a finite (multi)set X = {x1, . . . , xN} ⊂ Rd of possibly varying size
as input. It consists of the composition of two fully-connected neural networks ϕ1 : Rd → Rd′

and
ϕ2 : Rd′ → Rd′′

with a permutation invariant operator op such as max,min and summation:

DeepSets(X) := ϕ2(op({ϕ1(xi)}Ni=1)).

For each xi ∈ X , the map ϕ1 gives a representation ϕ1(xi). These pointwise representations are
aggregated via the permutation invariant operator op. Finally, the map ϕ2 is applied to provide the
network output. The output of DeepSets is permutation invariant thanks to the operator op, from
which we can regard the input of the network as a set. The parameters characterizing ϕ1 and ϕ2 are
tuned through the training depending on the objective function.

2.2 Persistent Homology

Here, we briefly explain persistence diagrams, weight filtrations for point clouds, and vectorization
methods of persistence diagrams.

Persistence Diagrams Let S : Rd → R be a function on Rd. For t ∈ R, the t-sublevel set of S is
defined as St := {p ∈ Rd | S(p) ≤ t}. Increasing t from −∞ to ∞ gives an increasing sequence
of sublevel sets of Rd, called a filtration. Persistent homology keeps track of the value of t when
topological features, such as connected components, loops, and cavities, appear or vanish in this
sequence. For each topological feature α, one can find the value bα < dα such that the feature α
exists in St for bα ≤ t < dα. The value bα (resp. dα) is called the birth (resp. death) time of the
topological feature α. The collection (bα, dα) for topological features α is called the persistence
diagram (PD) of f , which is a multiset of the half-plane {(b, d) | d > b}. The information of
connected components, loops, and cavities are stored in the 0th, 1st, and 2nd persistence diagrams,
respectively.

Given a point cloud X ⊂ Rd, i.e., a finite point set, one can take S to be the distance to point cloud,
defined by

S(z) = min
x∈X

∥z − x∥.

4

Then, the sublevel set St is equal to the union of balls with radius t centered at points of X:⋃
x∈X B(x; t), where B(x; t) := {y ∈ Rd | ∥x − y∥ ≤ t}. In this way, one can extract the

topological features of a point cloud X with the persistence diagram. The persistent homology of this
filtration can be captured by the filtration called Čech or Vietoris-Rips filtration (Rips filtration for
short). In this paper, we use Rips filtration for computational efficiency. See Appendix A for details.
The Rips filtration can be computed only by the pairwise distance information.

Weighted Filtrations for Point Clouds While the Rips filtration considers a ball with the same
radius for each point, one can consider the setting where the radius value depends on each point
(see, for example, Edelsbrunner (1992)). For instance, Hiraoka et al. (2016); Nakamura et al. (2015);
Obayashi et al. (2022), which use persistent homology to find the relationship between the topological
nature of atomic arrangements in silica glass and whether the atomic arrangement is liquid or solid,
use such a filtration. Given a point cloud X ⊂ Rd, one can define the radius value rx(t) at time t for
x ∈ X as follows. We first choose a function w : X → R, which is called weight, and define

rx(t) :=

{
−∞ if t < w(x),

t− w(x) otherwise.

The associated weighted Rips filtration is denoted by R[X,w]. One choice as a weight function is the
distance-to-measure (DTM) function. The resulting filtration is called a DTM-filtration, for which
several theoretical results are shown in Anai et al. (2020). One of those results shows that a persistent
homology calculated by the DTM-filtrations is robust to outliers in point clouds, which does not hold
for the Rips filtrations.

Vectorization Methods of Persistence Diagrams Persistence diagrams are difficult to handle by
machine learning since they are a multiset on a half-plane. For this reason, several vectorization
methods of persistence diagrams have been proposed, such as persistence landscape (Bubenik et al.,
2015) and persistence image (Adams et al., 2017). Carrière et al. (2020) proposed the method called
PersLay, which vectorizes persistence diagrams in a data-driven way using the structure based on
DeepSets. In this paper, we utilize this method as a vectorization method. Note that PersLay can be
replaced with any vectorization method in our architecture.

Given a function transformation map ϕc with a learnable parameter c and permutation invariant
operator op, we can vectorize a persistence diagram D by PersLay with

PersLay(D) := op({ϕc(q)}q∈D).

If we choose appropriate parametrized function ϕc, we can make PersLay similar to classical
vectorization methods such as persistence landscape and persistence image. In this paper, we utilized
the following map as ϕc, which makes PersLay similar to persistence image:

ϕc(q) =

[
exp

(
−∥q1 − c1∥2

2

)
, . . . , exp

(
−∥qM − cM∥2

2

)]⊤
.

3 Proposed Framework

In this section, we describe our framework to obtain topological representations of given point clouds.
Our idea is to use persistence homology for extracting topological information and model a weight
function w in §2.2 by a neural network, which can be learned adaptively to data. Moreover, we
propose a way to combine the topological features with deep neural networks.

3.1 Filtration Learning for Point Clouds

First, we introduce a structure to learn a filtration on point clouds end-to-end from data. For that
purpose, we learn a weight function w for a weighted filtration, by modeling it by a neural network.
We assume that the weight function depends on an input point cloud X = {x1, . . . , xN} ⊂ Rd, i.e.,
w is of the form f(X, ·) : Rd → R. Designing such a function by a neural network has the following
three difficulties:

1. The weight function f(X, ·) should be determined by the whole point cloud set X and does not
depend on the order of the points in X .

5

Figure 2: The architecture of the network. This figure is for the case of getting the weight of point
x1 in the point cloud X . Note that d(X,xi) is equal to (the transpose of) the i-th row of D(X), i.e.,
(d(xi, xj))

N
j=1.

2. The resulting function should be isometry-invariant, i.e, for any isometric transformation T , any
point cloud X , and x ∈ X , it holds that f(TX, Tx) = f(X,x).

3. The output of the f(X,x) should have both of global information X and pointwise information
of x.

To address the problem 1, we use the DeepSets architecture (§2.1). To satisfy invariance for isometric
transformations as in problem 2, we utilize the distance matrix D(X) = (d(xi, xj))

N
i,j=1 ∈ RN×N

and the relative distances d(X,x) = (∥x−xj∥)Nj=1 instead of coordinates of points, sinceD(TX) =
D(X) and d(TX, Tx) = d(X,x) hold for any isometric transformation T . Finally, to deal with
problem 3, we regard f as a function of the feature of D(X) and the feature of d(X,x). Below, we
will explain our implementation in detail.

First, we implement a network to obtain a pointwise feature vector of a point x ∈ Rd by

g1(x) := ϕ(2)(op({ϕ(1)(∥x− xj∥)}Nj=1)), (1)

where ϕ(1) and ϕ(2) are fully-connected neural networks. This structure (1) can be regarded as
the DeepSets architecture whose input is a set of one-dimensional vectors, hence it is permutation
invariant.

Next, we use the DeepSets architecture to obtain a feature vector for the entire point cloud X as
follows. We first implement pointwise feature vectors with the same architecture as g1, i.e.,

g2(xi) := ϕ(4)(op({ϕ(3)(d(xi, xj))}Nj=1)),

where ϕ(3) and ϕ(4) are fully-connected neural networks. Then, we get a feature vector h(X) for the
entire point cloud X by applying the DeepSets architecture again:

h(X) = ϕ(5)(op({g2(xi)}Ni=1)), (2)

where ϕ(5)is a fully-connected neural network. Here we omit the first inner network for the DeepSets
architecture since it can be combined with ϕ(4) in g2.

Finally, we implement f as a neural network whose input is the concatenated vector of h(X) and
g1(x). Specifically, we concatenate h(X) with the feature vector g1(x) for x ∈ R to get a single
vector, and then input it into a fully-connected neural network ϕ(6):

fθ(X,x) = ϕ(6)([h(X), g1(x)]
⊤),

where θ := (θk)
6
k=1 is the set of parameters that appear in network ϕ(k) (k = 1, . . . , 6). The overall

neural network architecture is shown in Figure 2.
Remark 3.1. Since our implementation of the weight function depends on distance matrices, not on
the coordinates of each point, we can apply our method to a dataset given in distance matrix format.
In fact, we will apply our framework to such a dataset in Section 5.

6

Remark 3.2. If we want to consider features other than the position information assigned to each
point in the calculation of the filtration weights, as in the silica glass studies, we vectorize those
features and concatenate them together.

By using the weight function fθ(X, ·), we can calculate the persistent homology of filtration
R[X, fθ(X, ·)]. Then, we can obtain the vectorization using PersLay parametrized by c. Then,
we can input this vector into a machine learning model Fθ′ with parameter θ′. Given the dataset
{(Xk, yk)}Mk=1, the objective function to be minimized can be written as

L(θ, θ′, c) := 1

M

M∑
k=1

ℓ (Fθ′(PersLay(R[Xk, fθ(Xk, ·)])), yk) ,

where ℓ is an appropriate loss function depending on tasks. Typically, if the task is regression, ℓ is
the mean square loss, and if the task is classification, ℓ is the cross entropy loss. The optimization
problem

min
θ,θ′,c

L(θ, θ′, c)

is solved by stochastic gradient descent. Note that the differentiability of the objective function and
the convergence of the optimization algorithm is guaranteed by results in Carrière et al. (2021).

3.2 Combining Topological Features with a DNN-based method

While we can use the topological features alone, we can also concatenate them with the features
computed by a deep neural network (DNN). In order to do this, we need to learn not only (a)
networks in our framework but also (b) DNN. Although (a) and (b) can be learned simultaneously
since the output of the resulting feature is differentiable with all parameters, the networks cannot be
successfully optimized in our experiments. This would be because the loss function is not smooth
with respect to the parameters in (a), which can also make the optimization of (b) unstable. To deal
with this issue, we propose to learn (a) and (b) separately.

Let us describe the whole training procedure briefly here. Suppose X is a input point cloud. We write
Ψtopo(X) ∈ RL1 for the topological feature which comes from our method, and ΨDNN(X) ∈ RL2

for the feature that comes from a DNN-based method. Let ℓ be a loss function for the classification
task and n be a number of classes. We propose the following two-phase training procedure:

1st Phase. Let C1 : RL2 → Rn be a classifier that receives feature from ΨDNN. Then,
C1 and ΨDNN are learned through the classification task, which is achieved by minimizing∑M

k=1 ℓ(C1(ΨDNN(Xk)), yk).

2nd Phase. Let C2 : RL1+L2 → Rn be a classifier. We discard the classifier C1 and fix ΨDNN.
Then, C2 and Ψtopo are learned through the classification task, which is achieved by minimizing∑M

k=1 ℓ(C2([ΨDNN(Xk)
⊤,Ψtopo(Xk)

⊤]⊤), yk).

This training procedure is observed to make the optimization stable and to help the architecture to
achieve higher accuracy. We show the experimental result in § 5.

4 Approximation Ability of Weight Function

In this section, we theoretically show that our architecture has a good expression power. We prove
that approximation of any continuous map can be realized by our idea to concatenate two finite-
dimensional feature vectors.

Consider the space 2[0,1]
m

of subsets in [0, 1]m equipped with the Hausdorff distance. For a fixed
N ∈ N, we define the following subspace of 2[0,1]

m

:

X := {X ⊂ [0, 1]m | |X| ≤ N}.

The following theorem states that we can approximate any continuous function on X × [0, 1]m by
concatenating the finite dimensional feature vectors of a point cloud and a point. The proof of the
theorem is given in Appendix B.

7

Theorem 4.1. Let f : X × [0, 1]m → R be a continuous function. Then for any ϵ > 0, there exist
K ∈ N and continuous maps ψ1 : X → RK , ψ2 : RK+m → R such that

sup
X∈X

∫
[0,1]m

(
f(X,x)− ψ2([ψ1(X)⊤, x⊤]⊤)

)2
dx < ϵ.

5 Experiments

To investigate the performance of our method in classification tasks, we conducted numerical
experiments on two types of public real-world datasets. In §5.1, we present a simple experiment on
a protein dataset to demonstrate the efficacy of our method. Next, in §5.2, we show the result of a
experiment on a 3D CAD dataset. The classification accuracy was used as the evaluation metric.

The first experiment was conducted to show the validity of our method where we only used the
topological feature, without DNN features. In the second experiment, on the other hand, we combine
the topological features and features from DNNs using the method described in §3.2.

All the code was implemented in Python 3.9.13 with PyTorch 1.10.2. The experiments were conducted
on CentOS 8.1 with AMD EPYC 7713 2.0 GHz CPU and 512 GB memory. Persistent homology
was calculated by Python interface of GUDHI1. All of the source codes we used for experiments is
publically available 2. More details of the experiments can be found in Appendix C.

5.1 Protein classification

Dataset. In this section, we utilize the protein dataset in Kovacev-Nikolic et al. (2016) consisting
of dense configuration data of 14 types of proteins. The authors of the paper analyzed the maltose-
binding protein (MBP), whose topological structure is important for investigating its biological role.
They constructed a dynamic model of 370 essential points each for these 14 types of proteins and
calculated the cross-correlation matrix C for each type3. They then define the distance matrix, called
the dynamical distance, by Dij = 1 − |Cij |, and they use them to classify the proteins into two
classes, “open" and “close" based on their topological structure. In this paper, we subsampled 60
points and used the distance matrices with the shape 60× 60 for each instance. We subsampled 1,000
times, half of which were from open and the rest were from closed. The off-diagonal elements of the
distance matrix were perturbed by adding noise from a normal distribution with a standard deviation
of 0.1.

Architectures and comparison baselines. Given a distance matrix, we computed the proposed
adaptive filtration and calculate the persistent homology. Then, the 1st persistence diagram of that
filtration was vectorized by PersLay. The obtained feature was input into a classifier using a linear
model, and all the models were trained with cross entropy loss. For comparison, we evaluate the
accuracy when we replace our learnable filtration with a fixed filtration. As a fixed filtration, we used
Rips or DTM filtration (Anai et al., 2020), the latter of which is robust to outliers. The hyperparameter
for DTM filtration was set to maximize the classification accuracy. Additionally, we replaced our
topological feature by the output of (2), which we call DistMatrixNet, and compared the classification
accuracy. Note that we used DistMatrixNet not for the computation of filtration weights but for the
direct computation of point clouds’ feature. Since the protein dataset is given in the format of distance
matrices, we did not utilize standard neural network methods for point clouds.

Results. We present the results of the binary classification task of proteins in Table 1. We can see
that our framework overperformed the other methods in terms of the accuracy of the classification.

We describe some observations below: Firstly, the result of our method is better than those of Rips
and DTM filtrations. This would be because our method learned a weighted filtration adaptively
to data and tasks and could provide more informative topological features than the classical ones.
Secondly, our method achieved higher accuracy compared to DistMatrixNet, which has a similar

1https://gudhi.inria.fr/
2https://github.com/git-westriver/FiltrationLearningForPointClouds
3The correlation matrix C can be found in https://www.researchgate.net/publication/

301543862_corr.

8

https://gudhi.inria.fr/
https://github.com/git-westriver/FiltrationLearningForPointClouds
https://www.researchgate.net/publication/301543862_corr
https://www.researchgate.net/publication/301543862_corr

Table 1: The accuracy of the binary classification task of protein structure. We compared our
methods with DistMatrixNet and persistent homology with Rips/DTM filtration. We can see that our
method performs better than other three methods.

DistMatrixNet Rips DTM Ours
65.0 ± 12.0 79.9 ± 3.0 78.0 ± 1.6 81.9 ± 2.1

number of parameters to the proposed method. This suggests that persistent homology is essential in
the proposed method rather than the expressive power of DistMatrixNet.

5.2 3D CAD data classification

Dataset. In this section, we deal with the classification task on ModelNet10 (Wu et al., 2015). This
is a dataset consisting of 3D-CAD data given by collections of polygons of 10 different kinds of
objects, such as beds, chairs, and desks. We choose 1,000 point clouds from this dataset so that
the resulting dataset includes 100 point clouds for each class. The corresponding point cloud was
created with the sampling from each polygon with probability proportional to its area. Moreover, to
evaluate the performance in the case where the number of points in each point cloud is small, we
subsampled 128 points from each point cloud. The number of points is relatively small compared with
the previous studies, but this setting would be natural from the viewpoint of practical applications.
We added noise to the coordinates of each sampled point using a normal distribution with a standard
deviation of 0.1.

Architecture and comparison baselines. We utilized the two-phase training procedure described
in §3.2, where we concatenated a feature computed by DNN-based method and a topological feature.
As DNN-based methods, which were trained through the 1st Phase, we utilized DeepSets (Zaheer
et al., 2017), PointNet (Qi et al., 2017a), and PointMLP (Ma et al., 2022). A given point cloud was
input into our adaptive filtration architecture, and the resulting 1st persistence diagram was vectorized
by PersLay. The concatenated features were input into a classifier based on a linear model, and the
parameters are tuned with the cross entropy loss.

We compared the result of 1st Phase, which is the accuracy of a DNN alone, and that of 2nd Phase to
validate the efficacy of our learnable filtration. We also compared our method with a fixed filtration,
Rips or DTM, instead of our learnable filtration. Furthermore, we replaced our topological feature
replaced by the output of DistMatrixNet (2) and compared the classification accuracy.

Results. The results are shown in Table 2. Below, we present some observations for the results.

Firstly, our method outperformed Rips filtration, which is one of the most common filtrations.
Moreover, the accuracy of our method is almost the same as or higher than that of DTM filtration.
While DTM filtration has hyperparameters that need to be tuned, our method achieved such a result
by learning an adaptive filtration automatically through the training. This result implies that our
method is useful in efficiently choosing filtrations.

Secondly, our method again overperformed DistMatrixNet. This indicates that the combination of
persistent homology and DistMatrixNet was crucial similarly to the protein dataset.

Thirdly, and most importantly, it can be observed that the classification accuracy is better when
our method was concatenated with DeepSets/PointNet compared to using DeepSets/PointNet alone.
Additionally, the accuracy when we combine our method and DeepSets/PointNet is competitive
when using PointMLP alone. These observations indicate that concatenating the topological features
obtained by our method yields positive effects. The accuracy when we combine our method and
PointMLP is not higher than that of PointMLP. This would mean that PointMLP has already captured
enough information including topological features during the 1st phase, so that the information
obtained by persistent homology may be redundant, potentially negatively impacting the classification.

6 Conclusion

In this paper, we tackled the problem to obtain adaptive topological features of point clouds. To this
end, we utilize a weighted filtration and train a neural network that generates a weight for each point.

9

Table 2: Results for the classification task of 3D CAD data. The row named “1st Phase” shows the
results when we used the feature calculated by DNN only, and the rows named “2nd Phase” shows
the results when we concatenated them with the feature calculated by DistMatrixNet or topological
feature obtained by persistent homology. Compared to using the DeepSets/PointNet alone, we
can achieve higher accuracy when we concatenate the topological feature obtained by our method.
Additionally, regardless which DNN method we use, using topological feature computed by our
method improves accuracy better than using topological feature computed by Rips filtration and
feature computed by DistMatrixNet. Moreover, the accuracy when we combine our method with
DeepSets/PointNet is competitive with using PointMLP alone.

DeepSets PointNet PointMLP
of parameters 813,488 3,472,500 3,524,386

1st Phase 65.7 ± 1.4 64.3 ± 4.4 68.8 ± 6.3
2nd Phase DistMatrixNet 65.7 ± 4.8 55.7 ± 13.9 53.8 ± 7.4

Rips 67.0 ± 2.6 68.4 ± 2.4 57.8 ± 12.4
DTM 68.0 ± 2.5 68.7 ± 2.3 57.2 ± 6.8
Ours 67.5 ± 2.5 68.8 ± 2.0 60.0 ± 6.3

Since the model is desired to be invariant with respect to isometric transformation, we proposed a
network architecture that satisfies such invariance. We theoretically showed a finite-dimensional
approximation property for a wide class of weight functions, which supports the validity of our
architecture. Our numerical experiments demonstrated the effectiveness of our method in comparison
with the existing methods.

Limitations and future work There are several limitations and remained future work for this study.
First, while we concentrated on determining the weight function of the weighted Rips filtration in
this paper, we can also consider other kinds of filtrations. For example, we can expand the balls from
each point at different speeds. Second, we did not applied our method to larger datasets as we needed
to compute persistent homology repeatedly in the training, which make the computational cost higher.
In fact, it took about seven hours to train the neural networks in our method for each cross-validation.
While we believe our method is meaningful since it sometimes improves classification accuracy, this
is one of the largest limitations of our study. Addressing this issue is one of our future work. Third,
since our method adaptively chooses a filtration, our framework is expected to work well even if a
subsequent machine learning model has a simple architecture. We plan to validate the hypothesis
experimentally and theoretically.

Acknowledgments

We appreciate Marc Glisse and Théo Lacombe for the helpful discussion. This work was partially
supported by Grant-in-Aid for Transformative Research Areas (A) (22H05107) and JST KAKENHI
JP19H01114.

10

References
H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, S. Chepushtanova, E. Hanson,

F. Motta, and L. Ziegelmeier. Persistence images: A stable vector representation of persistent
homology. Journal of Machine Learning Research, 18, 2017.

H. Anai, F. Chazal, M. Glisse, Y. Ike, H. Inakoshi, R. Tinarrage, and Y. Umeda. DTM-based filtrations.
In Topological Data Analysis, pages 33–66. Springer, 2020.

P. Bendich, D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and D. Morozov. Inferring local homology
from sampled stratified spaces. In 48th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’07), pages 536–546. IEEE, 2007.

M. Boutin and G. Kemper. On reconstructing n-point configurations from the distribution of distances
or areas. Advances in Applied Mathematics, 32(4):709–735, 2004.

P. Bubenik and P. T. Kim. A statistical approach to persistent homology. Homology, homotopy and
Applications, 9(2):337–362, 2007.

P. Bubenik et al. Statistical topological data analysis using persistence landscapes. Journal of Machine
Learning Research, 16(1):77–102, 2015.

Z. Cang and G.-W. Wei. Topologynet: Topology based deep convolutional and multi-task neural
networks for biomolecular property predictions. PLoS computational biology, 13(7):e1005690,
2017.

Z. Cang, L. Mu, and G.-W. Wei. Representability of algebraic topology for biomolecules in machine
learning based scoring and virtual screening. PLoS computational biology, 14(1):e1005929, 2018.

M. Carrière, F. Chazal, Y. Ike, T. Lacombe, M. Royer, and Y. Umeda. PersLay: A neural network
layer for persistence diagrams and new graph topological signatures. In International Conference
on Artificial Intelligence and Statistics, pages 2786–2796. PMLR, 2020.

M. Carrière, F. Chazal, M. Glisse, Y. Ike, H. Kannan, and Y. Umeda. Optimizing persistent homology
based functions. In International Conference on Machine Learning, pages 1294–1303. PMLR,
2021.

M. K. Chung, P. Bubenik, and P. T. Kim. Persistence diagrams of cortical surface data. In International
Conference on Information Processing in Medical Imaging, pages 386–397. Springer, 2009.

T. de Surrel, F. Hensel, M. Carrière, T. Lacombe, Y. Ike, H. Kurihara, M. Glisse, and F. Chazal.
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point
clouds. arXiv preprint arXiv:2202.01725, 2022.

H. Edelsbrunner. Weighted alpha shapes. University of Illinois at Urbana-Champaign, 1992.

N. Giansiracusa, R. Giansiracusa, and C. Moon. Persistent homology machine learning for fingerprint
classification. In 2019 18th IEEE International Conference On Machine Learning And Applications
(ICMLA), pages 1219–1226. IEEE, 2019.

Y. Hiraoka, T. Nakamura, A. Hirata, E. G. Escolar, K. Matsue, and Y. Nishiura. Hierarchical structures
of amorphous solids characterized by persistent homology. Proceedings of the National Academy
of Sciences, 113(26):7035–7040, 2016.

C. Hofer, R. Kwitt, M. Niethammer, and A. Uhl. Deep learning with topological signatures. Advances
in Neural Information Processing Systems, 30, 2017.

C. Hofer, F. Graf, B. Rieck, M. Niethammer, and R. Kwitt. Graph filtration learning. In International
Conference on Machine Learning, pages 4314–4323. PMLR, 2020.

M. Horn, E. De Brouwer, M. Moor, Y. Moreau, B. Rieck, and K. Borgwardt. Topological graph
neural networks. In International Conference on Learning Representations, 2021.

V. Kovacev-Nikolic, P. Bubenik, D. Nikolić, and G. Heo. Using persistent homology and dynamical
distances to analyze protein binding. Statistical Applications in Genetics and Molecular Biology,
15(1):19–38, 2016.

11

G. Kusano, K. Fukumizu, and Y. Hiraoka. Kernel method for persistence diagrams via kernel
embedding and weight factor. The Journal of Machine Learning Research, 18(1):6947–6987,
2017.

W. Liu, H. Guo, W. Zhang, Y. Zang, C. Wang, and J. Li. TopoSeg: Topology-aware segmentation
for point clouds. In L. D. Raedt, editor, Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI-22, pages 1201–1208. International Joint Conferences
on Artificial Intelligence Organization, 7 2022. doi: 10.24963/ijcai.2022/168. URL https:
//doi.org/10.24963/ijcai.2022/168. Main Track.

X. Ma, C. Qin, H. You, H. Ran, and Y. Fu. Rethinking network design and local geometry in point
cloud: A simple residual mlp framework. In International Conference on Learning Representations,
2022.

Z. Meng, D. V. Anand, Y. Lu, J. Wu, and K. Xia. Weighted persistent homology for biomolecular
data analysis. Scientific reports, 10(1):2079, 2020.

T. Nakamura, Y. Hiraoka, A. Hirata, E. G. Escolar, and Y. Nishiura. Persistent homology and
many-body atomic structure for medium-range order in the glass. Nanotechnology, 26(30):304001,
2015.

I. Obayashi, T. Nakamura, and Y. Hiraoka. Persistent homology analysis for materials research and
persistent homology software: HomCloud. Journal of the Physical Society of Japan, 91(9):091013,
2022.

N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington. A roadmap for the computation
of persistent homology. EPJ Data Science, 6:1–38, 2017.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 652–660, 2017a.

C. R. Qi, L. Yi, H. Su, and L. J. Guibas. PointNet++: Deep hierarchical feature learning on point sets
in a metric space. Advances in Neural Information Processing Systems, 30, 2017b.

A. Som, H. Choi, K. N. Ramamurthy, M. P. Buman, and P. Turaga. Pi-Net: A deep learning
approach to extract topological persistence images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, pages 834–835, 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. Advances in Neural Information Processing Systems, 30, 2017.

D. Widdowson and V. Kurlin. Recognizing rigid patterns of unlabeled point clouds by complete and
continuous isometry invariants with no false negatives and no false positives. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1275–1284, 2023.

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3D ShapeNets: A deep
representation for volumetric shapes. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1912–1920, 2015.

J. Xu, X. Tang, Y. Zhu, J. Sun, and S. Pu. SGMNet: Learning rotation-invariant point cloud
representations via sorted gram matrix. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 10468–10477, 2021.

Z. Yan, T. Ma, L. Gao, Z. Tang, Y. Wang, and C. Chen. Neural approximation of extended persistent
homology on graphs. arXiv preprint arXiv:2201.12032, 2022.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola. Deep Sets.
Advances in Neural Information Processing Systems, 30, 2017.

M. Zeppelzauer, B. Zieliński, M. Juda, and M. Seidl. Topological descriptors for 3d surface analysis.
In Computational Topology in Image Context: 6th International Workshop, CTIC 2016, Marseille,
France, June 15-17, 2016, Proceedings 6, pages 77–87. Springer, 2016.

12

https://doi.org/10.24963/ijcai.2022/168
https://doi.org/10.24963/ijcai.2022/168

S. Zhang, S. Mukherjee, and T. K. Dey. Gefl: Extended filtration learning for graph classification. In
Learning on Graphs Conference, pages 16–1. PMLR, 2022.

C. Zhou, Z. Dong, and H. Lin. Learning persistent homology of 3d point clouds. Computers &
Graphics, 102:269–279, 2022.

13

—— Appendix ——
A Simplicial complexes and filtrations

In this appendix, we briefly recall the definitions of simplicial complexes and filtrations.
Definition A.1. Let V be a finite set. A (finite) simplicial complex whose vertex set is V is a
collection K of subsets of V satisfying the following conditions.

(1) ∅ ̸∈ K;

(2) for any v ∈ V , {v} ∈ K;

(3) if σ ∈ K and ∅ ≠ τ ⊂ σ, then τ ∈ K.

An element σ of K with the cardinality #σ = k + 1 is called a k-simplex.

A subcomplex of a simplicial complex K is a subset K ′ of K that is a simplcial complex itself.
Definition A.2. A filtration of a simplicial complex K is an increasing family (Kt)t∈R of subcom-
plexes of K.

Given a point cloud in Rd, we can construct the Čech filtration as follows.
Definition A.3. Let X ⊂ Rd be a point cloud and t ∈ R. One defines a simplicial complex Č[X]t as
follows:

Č[X]t :=

{
∅ ≠ σ ⊂ X

∣∣∣∣∣ ⋂
x∈σ

B(x; t) ̸= ∅

}
.

The family (Č[X]t)t∈R forms a filtration, which is called the Čech filtration of X .

The Čech complex Č[X]t is known to be homotopy equivalent to the union of balls
⋃

x∈X B(x, t).
However, it takes much computational cost to compute the Čech complex. Therefore, we utilize the
Rips filtration instead.
Definition A.4. Let X ⊂ Rd be a point cloud and t ∈ R. One defines a simplicial complex R[X]t by

{x0, . . . , xk} ∈ Rp[X]t :⇐⇒ ∥xi − xj∥ ≤ 2t for any i, j ∈ {0, . . . , k}.
The family (R[X]t)t∈R forms a filtration, which is called the Rips filtration of X .

When a point cloudX is equipped with a weight function onX , we obtain the weighted Rips filtration
as follows. This definition is totally same as that of Anai et al. (2020).
Definition A.5. Let X ⊂ Rd be a point cloud, w : X → R a function. One defines a simplicial
complex R[X,w]t by

{x0, . . . , xk} ∈ R[X,w]t
:⇐⇒ t ≥ w(xi), t ≥ w(xj), ∥xi − xj∥ ≤ 2t− w(xi)− w(xj) for any i, j ∈ {0, . . . , k}.

The family (R[X,w]t)t∈R forms a filtration, which is called the weighted Rips filtration of X .

DTM filtration, which we mentioned in §2.2, is one type of weighted filtration with the weight
function w : Rm → R defined by

w(x) =

(
1

k0

k0∑
k=1

∥x− pk(x)∥q
) 1

q

, (3)

where p1(x), . . . , pk0
(x) are choice of k0-nearest neighbors of x in Rm.

B Proofs of the theorem in Section 4

Recall that we define the space of point clouds X with

X := {X ⊂ [0, 1]m | |X| ≤ N},
where N ∈ N is a fixed natural number. Firstly, we prove the compactness of X .

14

Lemma B.1. The space X is compact.

Proof. We prove this by induction on N . When N = 0, X is a singleton set, so the statement holds.
Assume that the statement holds for all N ≤ N0 − 1 (N0 ≥ 1). We prove that X is sequentially
compact for N = N0.

Take an arbitrary sequence (Xn)n∈N in X . Then, we can choose i ∈ {1, . . . , N0} so that there exist
an infinite number of n ∈ N such that |Xn| = i. Let n(1), n(2), . . . be the sequence of n such that
|Xn| = i, listed in increasing order. If i < N0, by the assumption of induction, (Xn(k))k∈N has a
convergent subsequence, which means (Xn)n∈N also has a convergent subsequence.

Suppose i = N0. For each k, let xk be the element of Xn(k) that is the smallest in the lexicographic
order, and let Yk := Xn(k) \ {xk}. By the compactness of [0, 1]m, the sequence (xk)k∈N has
a convergent subsequence, which we denote by (xk(l))l∈N. By the assumption of induction, the
sequence (Yk(l))l∈N also has a convergent subsequence, which we denote by (Yk′(l))l∈N. Then, the
sequence (xk′(l))l∈N is also convergent. Let x∗ and Y ∗ be the limits of (xk′(l))l∈N and (Yk′(l))l∈N,
respectively.

Take an arbitrary ϵ > 0. Then we can choose K1,K2 ∈ N such that

l > K1 ⇒ ∥xk′(l) − x∗∥ < ϵ

l > K2 ⇒ dH(Yk′(l), Y
∗) < ϵ.

Here, for any X,Y ⊆ Rm and x0, y0 ∈ Rm, we have

dH(X ∪ {x0}, Y ∪ {y0})
= max{d(x0, Y ∪ {y0}), sup

x∈X
d(x, Y ∪ {y0}), d(y0, X ∪ {x0}), sup

y∈Y
d(y,X ∪ {x0})}

≤ max{∥x0 − y0∥, sup
x∈X

d(x, Y), ∥y0 − x0∥, sup
y∈Y

d(y,X)}

≤ max{∥x0 − y0∥, dH(X,Y)}

Therefore, for K = max{K1,K2} and l > K, we have

dH(Yk′(l) ∪ {xk′(l)}, Y ∗ ∪ {x∗}) ≤ max{dH(Yk′(l), Y
∗), ∥xk′(l) − x∗∥} < ϵ,

which implies that (Xn(k′(l)))l∈N = (Yk′(l) ∪ {xk′(l)})l∈N converges to Y ∗ ∪ {x∗}. Therefore,
(Xn)n∈N has a convergent subsequence. Thus, the claim is proven.

In the following, assume that L2([0, 1]m) is the space of square-integrable functions defined on
[0, 1]m.

Next, we show that any functions in a compact subspace of L2([0, 1]m) can be approximated by the
linear combination of finite number of functions in L2([0, 1]m).

Lemma B.2. Let G be a compact subspace of L2([0, 1]m). Then, for any ϵ > 0, there exist K ∈ N
and e1, . . . , eK ∈ G such that ∥e1∥L2

= · · · = ∥eK∥L2
= 1 and

sup
g∈G

∫
[0,1]m

(
g(x)−

K∑
k=1

⟨g, ek⟩ · ek(x)

)
dx < ϵ.

Proof. Take ϵ > 0 arbitrarily. Since G is compact, there exists K ′ ∈ N such that g1, . . . , gK′ such
that mini=1,...,K′ ∥g − gi∥L2

< ϵ holds for any g ∈ G. Let {e1, . . . , eK} (K ∈ N,K ≤ K ′) be a
orthonormal basis of span{g1, . . . , gK′}. Since

∑K
k=1⟨g, ek⟩·ek(x) is a projection of g ∈ L2([0, 1]

m)
on span{g1, . . . , gK′}, for any g ∈ G, we have∥∥∥∥∥g −

K∑
k=1

⟨g, ek⟩ · ek

∥∥∥∥∥
L2

≤ min
i=1,...,K′

∥g − gi∥L2
< ϵ.

This completes the proof.

15

The following two lemmas show that the continuity of the map X 7→ f(X, ·), which is proved using
the continuity of the map (X,x) 7→ f(X,x).

Lemma B.3. Let f : X × [0, 1]m → R be a continuous function and let X0 ∈ X . For any ϵ > 0,
there exists δ > 0 such that

dH(X0, X) < δ ⇒ sup
x∈[0,1]m

|f(X,x)− f(X0, x)| < ϵ

holds.

Proof. Since [0, 1]m is compact, {X0} × [0, 1]m is also compact in the product topology. Note
that the product topology is equivalent to the topology induced by the metric d∞((X,x), (Y, y)) :=
max{dH(X,Y), ∥x− y∥2}.

Take an arbitrary ϵ > 0. Since f is continuous, for any x ∈ [0, 1]m, we can choose δx > 0 such that

y ∈ [0, 1]m, d∞((X0, y), (X0, x)) < δx ⇒ |f(X0, y)− f(X0, x)| < ϵ/2.

Let
⋃

xBδx(x) be an open cover of {X0}×[0, 1]m. Then, by the compactness of {X0}×[0, 1]m, there
exist n ∈ N and x1, . . . , xn ∈ [0, 1]m such that

⋃
iBδxi

(xi) is also an open cover of {X0}× [0, 1]m.

Let δ := min{δ1, . . . , δn}/2. Suppose X ∈ X satisfies dH(X0, X) < δ, and let x be an arbitrary
point in [0, 1]m. Then, there exists i ∈ {1, . . . , n} such that

∥x− xi∥2 = d∞((X0, x), (X0, xi)) < δi

Moreover, we have

d∞((X,x), (X0, xi)) = max{dH(X,X0), ∥x− xi∥2} < δi

which implies that

|f(X0, x)− f(X0, xi)| < ϵ/2, |f(X,x)− f(X0, xi)| < ϵ/2.

Therefore, we obtain |f(X,x) − f(X0, x)| < ϵ. Since δ does not depend on x, the claim is
proved.

Lemma B.4. Let f : X × [0, 1]m → R is a continuous function. Then, the map h : X →
L2([0, 1]m), X 7→ f(X, ·) is continuous.

Proof. Take ϵ > 0 and X0 ∈ X0 arbitrarily. By Lemma B.3, there exists δ > 0 such that

dH(X,X0) < δ ⇒ sup
x∈[0,1]m

|f(X,x)− f(X0, x)| < ϵ.

Therefore, if dH(X,X0) < δ, we have

∥f(X, ·)− f(X0, ·)∥L2
=

√∫
[0,1]m

(f(X,x)− f(X0, x))
2
dx < ϵ,

which implies the map X 7→ f(X, ·) is continuous.

Thanks to the compactness of X (Lemma B.1), the finite approximation result (Lemma B.2) and
the continuity of the map X 7→ f(X, ·) (Lemma B.4), we can approximate f(X, ·) with a linear
combination of functions in L2([0, 1]m), for all X ∈ X .

Finally, we prove the following theorem, which is same as Theorem 4.1, using the fact that the space
of continuous functions defined on [0, 1]m is dense in L2([0, 1]m).

Theorem B.5. Let f : X × [0, 1]d → R be a continuous function. Then for any ϵ > 0, there exist
K ∈ N and continuous maps ψ1 : X → RK , ψ2 : RK+m → R such that

sup
X∈X

∫
[0,1]m

(
f(X,x)− ψ2([ψ1(X)⊤, x⊤]⊤)

)2
dx < ϵ.

16

Proof. Since the image of a compact space under a continuous map is compact, by Lemma B.1 and
Lemma B.4, {f(X, ·) | X ∈ X} is a compact set. By Lemma B.2, there exist K ∈ N and e1, . . . , eK
such that ∥e1∥L2 = · · · = ∥eK∥L2 = 1 and

sup
X∈X

∫
[0,1]m

(
f(X,x)−

K∑
k=1

⟨f(X, ·), ek⟩ · ek(x)

)2

dx < ϵ/4.

By Lemma B.4, X 7→ f(X, ·) is continuous. Therefore, for any τ > 0, there exists δ > 0 such
that dH(X,Y) < δ ⇒ ∥f(X, ·) − f(Y, ·)∥ < τ for any X,Y ∈ X . Then, if X,Y ∈ X satisfy
dH(X,Y) < δ, we have

|⟨f(X, ·), ek⟩ − ⟨f(Y, ·), ek⟩| = |⟨f(X, ·)− f(Y, ·), ek⟩|
≤ ∥f(X, ·)− f(Y, ·)∥L2

< τ.

This means that the function h : X → R such that h(X) = ⟨f(X, ·), ek⟩ is continuous. Since X is a
compact space, h(X) is bounded, i.e., there exists B > 0 such that, for any k, |⟨f(X, ·), ek⟩| < B
holds.

Since the space of continuous functions with compact support is dense in L2([0, 1]m), there exist
continuous functions ê1, . . . , êK such that ∥ek − êk∥L2

<
√
ϵ/2BK.

Let ψ1 : X → RK , ψ2 : RK+m → R be continuous maps such that

ψ1(X) = [⟨f(X, ·), e1⟩, . . . , ⟨f(X, ·), eK⟩]⊤

ψ2([x1, . . . , xK , y]
⊤) =

K∑
k=1

xk · êk(y) (x1, . . . , xk ∈ R, y ∈ [0, 1]m).

Then, for any X ∈ X , we have√√√√∫
[0,1]m

(
f(X,x)−

K∑
k=1

ψ2([ψ1(X)⊤, x⊤]⊤)

)2

dx

<

√√√√∫
[0,1]m

(
f(X,x)−

K∑
k=1

⟨f(X, ·), ek⟩ · ek(x)

)2

dx

+

√√√√∫
[0,1]m

(
K∑

k=1

⟨f(X, ·), ek⟩ · ek(x)− ψ2([ψ1(X)⊤, x⊤]⊤)

)2

dx

<

√
ϵ

2
+

√√√√∫
[0,1]m

(
K∑

k=1

⟨f(X, ·), ek⟩ · ek(x)−
K∑

k=1

⟨f(X, ·), ek⟩ · êk(x)

)2

dx

≤
√
ϵ

2
+

√√√√∫
[0,1]m

(
K∑

k=1

⟨f(X, ·), ek⟩ · (ek(x)− êk(x))

)2

dx

≤
√
ϵ

2
+

√√√√∫
[0,1]m

(
K∑

k=1

⟨f(X, ·), ek⟩2
)(

K∑
k=1

(ek(x)− êk(x))2

)
dx

≤
√
ϵ

2
+

√√√√KB2

K∑
k=1

∫
[0,1]m

(ek(x)− êk(x))2dx

<

√
ϵ

2
+

√
KB2 ·K

(√
ϵ

2KB

)2

=
√
ϵ.

This completes the proof.

17

C Details of Experiment Settings

C.1 Evaluation

In each experiment, 5-fold cross-validation was conducted, and average and standard deviation of the
five results are shown in the result section.

C.2 Optimization

We set the batch size as 40. As an optimization algorithm, we used Adam. We used the following
learning rate scheduler based on the method proposed in Vaswani et al. (2017):

η = ηmax ·min

{
1

epoch
1
2

,
epoch

N
3
2
warmup

}
.

We set Nwarmup = 40. Additionally, we set ηmax = 2.0× 10−2 when we train DeepSets or PointNet
in the 1st phase and ηmax = 1.0× 10−2 in other training (PointMLP in the 1st phase, and all in the
2nd phase). For the protein dataset, the number of epochs was 200. For ModelNet10, the number of
epochs in the 1st phase was 1000, and that of the 2nd phase was 200.

C.3 Settings related to persistent homology

For PersLay, the dimension of the parameter c was 2× 32, i.e., c ∈ R2×32. Additionally, we set all
of the permutation invariant operator op which appears in PersLay as summation. The dimension of
the vectors computed by PersLay is 32. We convert this vector to the feature vector whose dimension
is 16 using a linear model.

For the weighted function in the DTM filtration (see Equation (3)), we fixed the value of q at 2, and
we chose the hyperparameter k0 from among 2, 3, 5, 8, and 10 to maximize the classification accuracy
through cross-validation. See Appendix E.2 for the results with other values of k0.

C.4 Networks

We set all of the permutation invariant operator op which appears in our method and DeepSets
as summation. The dimension of the feature vectors obtained by PersLay, DeepSets, PointNet,
PointMLP was set as 16.

Next, we describe the architectures of DNN-based methods. In the following, we denote multi-
layer parceptrons whose dimension of input is din, that of output is dout and the number of neu-
rons in the middle layers d1, d2, . . . by MLP(din, d1, d2, . . . , dout). Batch normalization was per-
formed after each layer. Regarding the proposed method, we set ϕ(1) = MLP(1, 64, 128, 256),
ϕ(2) = MLP(256, 128, 64, 8), ϕ(3) = MLP(1, 64, 128, 256), ϕ(4) = MLP(256, 256, 256, 256),
ϕ(5) = MLP(256, 128, 64, 16) and ϕ(6) = MLP(24, 256, 512, 256, 1). Dropout was per-
formed for the last two layers of ϕ(2) and ϕ(5). As for DeepSets, which is defined by
DeepSets(X) := ϕ2(op({ϕ1(xi)}Ni=1})), we set ϕ1 = MLP(input_dim, 64, 64, 64, 128, 1024)
and ϕ2 = MLP(1024, 512, 256, 16). Dropout was performed for the last two layers of ϕ2. For Point-
Net, we used the same architecture as that of used in Qi et al. (2017a), except for the dimension of the
output, which we set 16. Regarding PointMLP, we set dim_expansion = [2, 2, 2], pre_blocks =
[2, 2, 2], pos_blocks = [2, 2, 2], k_neighbors = [24, 24, 24], reducers = [2, 2, 2].

Finally, we describe the initialization of the network parameters. In the experiment on protein dataset,
we initialized the parameters in the network to compute the weight in our method with normal
distribution with a mean of 0 and a standard deviation of 1.0× 10−4, while other parameters was
initialized with the default settings of PyTorch. For the experiment on ModelNet, all of the parameters
was initialized with the default settings of PyTorch.

C.5 Computational cost of persistent homology

First, we estimate the computational cost of our experiments. The computational complexity of
persistent homology is known to be cubic in the number of simplices in the worst case. This fact can

18

be found in, for example, the last sentence of Section 5.3.1 in Otter et al. (2017). Since we consider
1-dimensional persistent homology, we need to consider up to 2-simplices in the Rips complex, so
the number of simplices is (

N

1

)
+

(
N

2

)
+

(
N

3

)
=

1

6
N(N2 + 5),

where N is the number of points. For the protein dataset, the number of points is 60, so the number of
simplices is 36,050. For the 3D CAD dataset, the number of points is 128, so the number of simplices
is 349,632. Since the number of simplices is O(N3), the computational cost can be upper-bounded
by O(N9) in our case.

D More Observation on the Approximation Ability of the Weight Function

In §4, we provided the theoretical result that demonstrates the validity of the concatenation finite
dimensional vectors. While this result partially justifies our network architecture, we did not show that
the continuous maps ψ1 and ψ2 can be approximated by the networks. Instead of providing further
theoretical results, we show that our network can recover the DTM function. We trained our network
fθ(X,x) for the regression task to approximate DTM functions (3). We show the approximation
error in Table 3. We can observe that the approximation error is small enough. This result means
that our method can choose filtrations from the space including Rips and DTM filtration if trained
appropriately.

Table 3: The approximation error of DTM functions by the proposed network fθ(X,x) for various
values of k0. In this experiment, the hyperparameter q of DTM function was fixed at 2. We can
observe that DTM function can be approximated by our network fθ(X,x) with small error.

value of k0 error
0 (Rips) 0.0000 ± 0.0000

2 0.0015 ± 0.0000
3 0.0016 ± 0.0000
4 0.0017 ± 0.0000
5 0.0018 ± 0.0000
10 0.0022 ± 0.0001

We leave it as future work to provide stronger theoretical results for our network or to propose a new
architecture with a complete approximation guarantee. There are several previous studies that could
help solve this task. For example, the study by Boutin and Kemper (2004) shows that in most cases,
the arrangement of points can be uniquely determined from the distribution of distances between
pairs of points. Additionally, Widdowson and Kurlin (2023) showed that Simplexwise Centered
Distribution (SCD) is complete isometry invariant and continuous. These results would help us to
obtain theoretical guarantees of our network or to propose a new network architecture with stronger
theoretical guarantees.

E More Observations on Numerical Experiments

E.1 Visualization of weight function and the difference of persistent diagrams

In this section, we visualize some of the weight functions that are learned by the proposed method.
Additionally, we draw the persistence diagrams for Rips filtration and the learned filtration.

For the protein dataset, we visualize the resulting weight function in Figure 3, and show the persistence
diagram with/without the weight function in Figure 4. We can see that our method gives different
weights depending on the points and the point clouds. However, we cannot observe large differences
between the persistence diagrams. Developing the methods that can learn much interpretable weight
function is our future work.

For the 3D CAD dataset, we show the weight functions and the persistence diagram in Figure 5
and 6, respectively. We can observe that the middle and the rightmost point clouds have non-trivial
weight functions, which may lead to improving the classification accuracy. On the other hand, we

19

can observe that the leftmoft point cloud has a trivial weight function, which means that our method
does not have any advantages in this case.

Figure 3: Some examples of the weight functions in the experiment for the protein dataset. These six
point clouds correspond to different proteins. The point clouds in the first row belongs to open, and
those in the second row belongs to close. Since the original dataset are given by the distance matrices,
we visualize the point clouds using the method called multi-dimensional scaling. We visualize the
weights for all of the 370 points, which include the 60 points used for training. We can see that
the weight depends on each point. Additionally, we can observe that different weight functions are
learned for different point clouds.

Figure 4: The persistence diagrams for the Rips filtration and the weighted filtration learned by
our method (protein dataset). The first row corresponds to the Rips filtration, and the second row
corresponds to the weighted filtration. The persistence diagrams in the first and second columns are
associated with the point clouds with the label open, and those in the third and fourth columns are
associated with the point clouds with the label close.

E.2 Results for DTM with various hyperparameters

As mentioned in §5.2, in our two experiments, our adaptive filtration achieved classification accuracy
equal to or higher than the DTM filtration with the optimal value of k. In this chapter, we compare
our method with DTM filtration using different values of the parameter k, while keeping q fixed at 2.
The experimental results are presented in Table 4 and 5.

20

Figure 5: Some examples of the weight functions in the experiment for the 3D CAD dataset.
Different point clouds in this figure represent different labels. We visualize the weights for 1920
points, which include the 128 points used for training. We can see that our method assigns small
weight values to points near the edges of the objects and points corresponding to the legs of the desks.
This would help improving the classification accuracy.

class=0 class=2 class=4 class=6

Figure 6: The persistence diagrams for Rips filtration and the weighted filtration learned by
our method (3D CAD dataset). The first row corresponds to Rips filtration, and the second row
corresponds to our method. The four columns in this figure correspond to the point clouds in Figure 5.
We can see that the persistence diagrams for the weighted filtration learned by our method are
different from those for the Rips filtration.

Table 4: The results for the protein dataset including DTM filtration with various hyperparameter
settings.

DTM(k = 2) DTM(k = 3) DTM(k = 5) DTM(k = 8) DTM(k = 10) Ours
73.0 ± 2.9 71.1 ± 3.4 74.2 ± 1.5 77.3 ± 1.9 78.0 ± 1.6 81.9 ± 2.1

Table 5: The results for ModelNet10 including DTM filtration with various hyperparameter settings.

DeepSets PointNet PointMLP
1st Phase 65.7 ± 1.4 64.3 ± 4.4 68.8 ± 6.3
2nd Phase Rips 67.0 ± 2.6 68.4 ± 2.4 57.8 ± 12.4

DTM (k = 2) 67.7 ± 2.6 68.3 ± 2.5 53.0 ± 9.6
DTM (k = 3) 68.0 ± 2.5 68.7 ± 2.3 51.8 ± 9.4
DTM (k = 5) 67.6 ± 2.5 67.9 ± 1.5 56.3 ± 7.6
DTM (k = 8) 66.9 ± 3.1 67.5 ± 2.1 57.2 ± 9.8

DTM (k = 10) 67.5 ± 2.5 67.7 ± 1.8 57.2 ± 6.8
Ours 67.5 ± 2.5 68.8 ± 2.0 60.0 ± 6.3

21

E.3 Ablation studies for the proposed network

In our method, we used the networks with a huge number of parameters, which can cause overfitting.
To address this concern, we conduct experiments with the reduced number of parameters to observe the
changes in classification accuracy, especially for the protein dataset. In addition to the experimental
results presented in the main text, which we call (R0), we conducted four experiments, (R1), (R2),
(R3), and (R4), with reduction of the number of parameters. Table 6 shows the number of the
architectures in the networks ϕ(1), . . . , ϕ(6) used in each experiment. In (R1), we reduced the number
of parameters in the networks, ϕ(1), ϕ(2), ϕ(3), ϕ(4), ϕ(5), which are used to extract features from the
entire point cloud and each point. Furthermore, in (R2), we decreased the number of parameters in
the network ϕ(6), which calculates weights using the extracted features. In (R3), we adopted both
reductions, and in (R4), we further reduced the number of the intermediate layers from three to one
in ϕ(4).

We present the result in Table 7. We can see that the accuracy of (R1) and (R3) is lower than that
of the original experiment (R1). This would mean that the parameter reduction in the networks
ϕ(1), ϕ(2), ϕ(3), ϕ(4), ϕ(5), which extract global/local features, has negative impact on the accuracy.
On the other hand, the classification accuracy of (R2) and (R4) is a little better than that of (R0). This
might mean that we can improve the classification accuracy by decreasing the number of parameters
in ϕ(6).

Since the difference between the accuracy of (R0) and that of (R2) is small, we believe that overfitting
due to an excessive number of parameters would not be a significant issue for this experiment.

Table 6: Network layers in the ablation studies. For each experiment, the number of neurons in each
layer of the MLP used in the networks ϕ(1), . . . , ϕ(6) is specified in each element of the table.

ϕ(1) ϕ(2) ϕ(3) ϕ(4) ϕ(5) ϕ(6)

(R0) 1, 64, 128, 256 256, 128, 64, 8 1, 64, 128, 256 256, 256, 256, 256 256, 128, 64, 16 24, 256, 512, 256, 1
(R1) 1, 64, 128 128, 64, 8 1, 64, 128 128, 128, 128, 128 128, 64, 16 24, 256, 512, 256, 1
(R2) 1, 64, 128, 256 256, 128, 64, 8 1, 64, 128, 256 256, 256, 256, 256 256, 128, 64, 16 24, 128, 128, 1
(R3) 1, 64, 128 128, 64, 8 1, 64, 128 128, 128, 128, 128 128, 64, 16 24, 128, 128, 1
(R4) 1, 64, 128 128, 64, 8 1, 64, 128 128, 128 128, 64, 16 24, 128, 128, 1

Table 7: The accuracy of the binary classification task including ablation studies (R1), (R2), (R3),
and (R4). The classification accuracy of (R1) and (R3) is worse than that of (R0), while that of
(R2) and (R4) is a little better than that of (R0). This would show that decreasing the number of
parameters of ϕ(6) improve the accuracy and that decreasing the number of parameters in the networks
ϕ(1), ϕ(2), ϕ(3), ϕ(4), ϕ(5) does not.

(R0) (R1) (R2) (R3) (R4)
81.9 ± 2.1 80.2 ± 2.9 82.1 ± 3.2 79.4 ± 0.9 82.0 ± 3.4

22

	Introduction
	Contributions
	Related work

	Background
	Network Architectures for Point Clouds
	Persistent Homology

	Proposed Framework
	Filtration Learning for Point Clouds
	Combining Topological Features with a DNN-based method

	Approximation Ability of Weight Function
	Experiments
	Protein classification
	3D CAD data classification

	Conclusion
	Simplicial complexes and filtrations
	Proofs of the theorem in Section 4
	Details of Experiment Settings
	Evaluation
	Optimization
	Settings related to persistent homology
	Networks
	Computational cost of persistent homology

	More Observation on the Approximation Ability of the Weight Function
	More Observations on Numerical Experiments
	Visualization of weight function and the difference of persistent diagrams
	Results for DTM with various hyperparameters
	Ablation studies for the proposed network

