
Appendix
We present the proof of Theorem 1 in Appendix A followed by the analysis of the illustrative cases of
UDA failure in Appendix B. Then we present the results for the experiment of using different poison
percentages when mislabeled data is used for poisoning in Appendix D followed by the proposed
bilevel formulation for clean label attacks in Appendix E. We discuss additional related work in
Appendix G and present additional experiments in Appendix F. We conclude in Appendix H by
providing the details of the datasets used, model architectures, and the clean label experiment.

A Proof of the lower bound on the target domain loss

Theorem 1. Let H be the hypothesis class and G be the class representation maps. Then, for all
h ∈ H and g ∈ G,

eT (h) ≥ max{eS(f̃S , f̃T), eT (f̃S , f̃T)} − eS(h)−D1(p̃S , p̃T).

Proof.

eS(h) + eT (h) = eT (h, f̃T)) + eT (h, f̃S) + eS(h, f̃S)− eT (h, f̃S)

≥ eT (f̃S , f̃T) + eS(h, f̃S)− eT (h, f̃S)

= eT (f̃S , f̃T) +

∫
(p̃S(z)− p̃T (z))|h(z)− f̃S(z)| dz

≥ eT (f̃S , f̃T)−
∫
|p̃S(z)− p̃T (z)| dz

= eT (f̃S , f̃T)−D1(p̃S , p̃T).

Similarly, we can also show that

eS(h) + eT (h) ≥ eS(f̃S , f̃T)−D1(p̃S , p̃T).

Combining the two results gives us the statement of the theorem.

Corollary 1.2. For all h ∈ H and g ∈ G,

|eT (h)−eS(f̃S , f̃T)| ≤ eS(h) +D1(p̃S , p̃T), and |eT (h)−eT (f̃S , f̃T)| ≤ eS(h) +D1(p̃S , p̃T).

Proof. From the upper bound we have,

eT (h)− eS(f̃S , f̃T)) ≤ eS(h) +D1(p̃S , p̃T) and eT (h)− eT (f̃S , f̃T)) ≤ eS(h) +D1(p̃S , p̃T)

From the lower bound (Eq. 2) we have,

eT (h)− eS(f̃S , f̃T) ≥ −eS(h)−D1(p̃S , p̃T) and eT (h)− eT (f̃S , f̃T) ≥ −eS(h)−D1(p̃S , p̃T)

Combining the results from the upper and the lower bounds gives us the statement of the corollary.

B Illustrative examples of UDA failure

In this section, we provide the details of the analysis of the illustrative cases in the main paper. As
described in Sec. 3.2, the input space X is in R2 and the source and the target distributions are
Gaussian mixtures

pS(x) = 0.5pS+(x) + 0.5pS−(x) and pT (x) = 0.5pT+(x) + 0.5pT−(x),

where pS+(x) = N (µS+, σ
2I), pS−(x) = N (µS−, σ

2I), pT+(x) = N (µT+, σ
2I), and pT−(x) =

N (µT−, σ
2I). The true labeling function f(x) in the input space is assumed linear: f(x) = I[vTx >

0] where v is the unit normal vector to the decision boundary. The representation space Z is in R and
the representation map g : X → Z is linear: g(x) = uTx where ‖u‖ = 1. For the hypothesis, we
use h(z) = Φ(az + b) which is a linear model az + b followed by a saturating function which can be
the cumulative normal distribution Φ (or others such as the logistic function l).

1

Figure 8: This figure provides a visual help for deriving the induced labeling function f̃(z) in Eq. 5.
u is the direction of the 1-D projection g(z) = uTx, v is the direction of the labeling function f(x)
in the input space where we assumed f(x) = I[vTx > 0], and q is the intersection of the two lines
vTx = 0 and uT (x− zu) = 0 projected along the u⊥ direction. Evaluating Eq. 6 using the help of
this figure results in Eq. 7.

The representation map g induces the distributions p̃(z) over Z as

p̃S(z) = 0.5N (uTµS+, σ
2) + 0.5N (uTµS−, σ

2), and

p̃T (z) = 0.5N (uTµT+, σ
2) + 0.5N (uTµT−, σ

2).

The map g also induces the labeling function f̃(z) on Z defined as f̃(z) = ED[f(x)|g(x) = z] [2].
Computing this quantity can be complex in general but is relatively straightforward for a mixture of
Gaussians and a simple half-space labeling function f(x). Following the definition, we have

f̃(z) = ED[f(x)|g(x) = z] =

∫
Z
f(x) I[uTx = z] p(x|z = g(x))dx. (5)

In our example, the integral
∫
R2 · dx can be decomposed into

∫∞
−∞

∫∞
−∞ · dzdw where z and w are

the coordinates along the rotated axes u and u⊥ (see Fig. 8).

We therefore have

f̃(z) =

∫ ∞
−∞

∫ ∞
−∞

I[vTx > 0] I[uTx = z] p(x|z = g(x))dzdw

=

∫ ∞
−∞

I[vTx > 0] (0.5Nw(µT+u
⊥, σ2I) + 0.5Nw(µT+u

⊥, σ2I))dw. (6)

This integral can be evaluated as

f̃(z) =


0.5Φ(

q−µT+u
⊥

σ) + 0.5Φ(
q−µT+u

⊥

σ) if vTu⊥ < 0

0.5[1− Φ(
q−µT+u

⊥

σ)] + 0.5[1− Φ(
q−µT+u

⊥

σ)] if vTu⊥ > 0
0.5(1 + sign(z)) if vTu⊥ = 0 and vTu > 0
0.5(1− sign(z)) if vTu⊥ = 0 and vTu < 0

(7)

where Φ is the cumulative normal distribution and q is the intersection of the two lines vTx = 0 and
uT (x− zu) = 0 projected along the u⊥ direction. More concretely,

q =
u1v1 + u2v2

u1v2 − u2v1
z

where u = [u1, u2]T and v = [v1, v2]T .

2

The UDA minimization problem is

min
u,a,b

eS(h) + λD(p̃S , p̃T) + η(‖u‖2 − 1)2, (8)

where the last term was added to enforce ‖u‖ = 1. For differentiability, we consider the squared loss
instead of the absolute loss:

eS(h) = ES [(Φ(az + b)− f̃S(z))2] =

∫
R
p̃S(z)

(
Φ(az + b)− f̃S(z)

)2

dz

and also
D(p̃, p̃′) =

∫
R

(p̃(z)− p̃′(z))2dz.

The expectation in eS(h) can only be computed numerically due to the complex formula for f̃(z).
On the other hand, the mismatch loss is

D(p̃S(z), p̃T (z)) =

∫
R

(p̃S(z)− p̃T (z))2dz

=

∫
R

(
0.5

2πσ2

)2 [
e−

(z−uT µS+)2

2σ2 + e−
(z−uT µS−)2

2σ2 − e−
(z−uT µT+)2

2σ2 − e−
(z−uT µT−)2

2σ2

]2

dz,

which can be computed either numerically or analytically.

The three cases explained in the main paper are as follows:

Case 1 : µS+ = [−1, 1]T , µS− = [−1,−1]T , µT+ = [1, 1]T , µT− = [1,−1]T , vS(x) = vT (x) =
[0, 1]T , λ = 10−1

Case 2 : µS+ = [−1, 1]T , µS− = [−1,−1]T , µT+ = [1,−1]T , µT− = [1, 1]T , vS(x) =
−vT (x) = [0, 1]T , λ = 10−1

Case 3 : µS+ = [0, 1]T , µS− = [0,−1]T , µT+ = [−1, 0]T , µT− = [1, 0]T , vS(x) = [0, 1]T ,
vT (x) = [−1, 0]T , λ = 10−2

The other shared parameters are σ = 1 and η = 10. The λ determines the optimal tradeoff between
Es and D in Eq. 8.

We solve Eq. 8 numerically using scipy.optimize.minimize(method=‘Nelder-Mead’) function which is
stable even if the cost function may be non-differentiable. Starting from random initial conditions
and running until convergence, the solution u for both Case 1 and Case 2 converges to [0, 1]T .

For Case 1 (favorable case), we get max{eS(f̃S , f̃T), eT (f̃S , f̃T)} < 10−3 and eT (h) < 10−3

which shows UDA was successful.

For Case 2 (unfavorable case), we get max{eS(f̃S , f̃T), eT (f̃S , f̃T)} > 0.99 and eT (h) > 0.99
which shows UDA was unsuccessful.

For Case 3 (ambiguous case), there is an almost equal chance of u converging to [−0.70, 0.72]T

or [0.70, 0.72]T . For the former, we get max{eS(f̃S , f̃T), eS(f̃S , f̃T)} < 10−4 and eT (h) < 10−3

where UDA is successful. For the latter, we get max{eS(f̃S , f̃T), eS(f̃S , f̃T)} u 0.33 and eT (h) u
0.33 where UDA has failed.

C Details of the figures explaining the effect of poisoning on UDA methods

As illustrated in Case 3 of Fig. 1 in Sec. 3.2, UDA methods can be fooled into producing a rep-
resentation that causes a large error on the target domain with a small amount of poisoned data.
The simplest successful poisoning attack to fool UDA methods was shown in Sec. 4.1 (wrong-label
incorrect-domain poisoning). In this attack, we added mislabeled data (wrong-label) from the target
domain into the source data (incorrect-domain). The left part of Fig. 4 shows this setting. The right
part of Fig. 4 shows how the representation learned from discriminator-based UDA methods aligns
the incorrect classes closer than the correct ones. Due to the lack of target domain labels, the loss of
the discriminator is minimized as long as the green and blue blobs align, regardless of their labels.
But to minimize the classification loss on the source domain the representation must classify the

3

Table 4: Effect of using different percentages of wrong-label incorrect-domain poisoned data on the
target domain accuracy when training UDA methods on poisoned source domain data on the Digits
tasks (mean±s.d. of 5 trials).

Poisontarget (%) DANN CDAN MCD SSL
MNIST→ USPS USPS→ MNIST MNIST→ USPS USPS→ MNIST MNIST→ USPS USPS→ MNIST MNIST→ USPS USPS→ MNIST

0% (Clean) 92.17±0.73 92.73±0.71 93.92±0.97 95.94±0.71 89.96±2.04 88.34±2.50 88.69±1.28 82.23±1.59

2% 63.53±2.09 94.72±0.63 90.54±0.91 88.79±2.34 22.74±2.17 51.02±3.57 65.88±2.93 41.25±2.32
4% 28.39±4.78 34.25±9.53 90.22±0.74 76.55±2.25 2.37±1.41 16.66±4.73 30.82±1.28 28.60±2.16
6% 7.32±4.78 12.96±7.33 42.86±5.09 8.61±4.77 2.56±0.97 4.64±1.34 21.29±2.51 18.89±1.11
8% 0.97±0.44 1.63±0.41 7.02±3.88 5.35±0.94 7.04±0.25 4.43±1.76 10.84±1.52 11.11±2.74
10% 0.97±0.53 5.83±0.82 1.92±0.42 2.96±0.71 0.66±0.16 2.07±0.69 7.76±1.52 9.88±1.07

poison data correctly. This forces the representation of wrong source and target domain classes to be
closer than the correct ones. As a result of this, the source classification loss and domain mismatch
loss are minimized but the learned representation still incurs a large target domain error. This is
exactly what Case 3 (right) of Fig. 1 illustrated. The t-SNE embeddings in Fig. 2 confirm this on real
datasets where representations are learned using popular discriminator-based UDA methods.

To make the poisoning attacks harder to detect we used watermarking-based attacks using poison
data that has some features of the target data but still looks like the source data (Fig. 10). This
setting is illustrated in the left part of Fig. 5. The right part of Fig. 5 shows how discriminator-
based UDA methods are fooled into producing a representation that fails to generalize on the target
domain. Similar to the previous case of wrong-label incorrect-domain poisoning discriminator is
optimal when the green and blue blobs align. However, since the poison data has incorrect labels the
source classification loss prefers to align it with the wrong class (poison data labeled as + is aligned
with source class with label +). Due to the presence of target features in the poison data (due to
watermarking) the representation moves the target domain data closer to the poison data leading to an
alignment of wrong source and target domain classes. As the percentage of watermarking increases
the poisoning attack becomes more successful (Table 3) indicating that target domain data is being
aligned to wrong source domain classes similar to the poison data. Fig. 9 ((a) and (b)) demonstrate
this effect on popular discriminator-based UDA methods.

To make our attack even stealthier, we consider the effect of using correctly labeled poisoned data
on the UDA methods. We generate such poison data by solving a computationally efficient version
of the bilevel problem (Eq. 9), as shown in Eq. 4. The left part of Fig. 6 illustrates the poison data
generated by solving Eq. 4. The poison data specifically targets a particular target domain test point
(shown in purple). Since the poison data is close in the representation space to the target domain test
point, UDA methods align it closer to the class of the poison data. This leads to misclassification of
the test point. Since the poison data is crafted for a specific test point, they don’t have much effect
on the entire target domain data. The right part of Fig. 6 illustrates this effect and shows that clean
labeled poison data can also successfully hurt the performance of UDA methods.

D Effect of poison percentage on attack success with mislabeled poison data

In this section, we evaluate the effect of using different poison percentages on attack success when
mislabeled data is used for poisoning. As can be seen in Tables 1 and 2, the success of wrong-label
clean-domain poisoning with 10% poisoned data is very limited. Thus, here we only focus on using a
smaller poison percentage to study the attack success of wrong-label wrong-domain poisoning. The
results of the experiment are summarized in Table 4. For all tasks, the presence of only 6% poison
data causes a significant decrease in the target domain accuracy. When the poison percentage is
decreased further to only 2% we still see a drop of at least 20% in the target accuracy for all methods
except CDAN[18]. The use of a conditional discriminator provides CDAN this robustness. However,
the success of CDAN is dependent on the quality of the pseudo-labels from the classifier on the target
domain data. Good pseudo-labels provide CDAN a positive reinforcement to align correct source
and target domain classes. Thus, leading to a failure of poisoning. However, as the percentage of
poisoned data increases, the classifier begins to easily classify the target domain data into labels
intended by the attacker, deteriorating the quality of the pseudo-labels. This provides a negative
reinforcement to CDAN causing it to align wrong classes from the source and the target domain. As
a result, the poisoning attack becomes successful. Thus, for wrong-label wrong-domain poisoning,
increasing the percentage of poison data gradually drives UDA methods from the case favorable to
UDA to the unfavorable one.

4

(a) DANN (b) CDAN (c) MCD (d) SSL

Figure 9: (Best viewed in color). t-SNE embedding of the data in the representation space (for MNIST
→ USPS task) learned using DANN, CDAN, MCD, and SSL on source domain data poisoned with
watermarked (α = 0.3) data. Successful poisoning aligns the wrong classes for discriminator-based
approaches, as seen in (a) with DANN. Poisoning fails against CDAN because of the pseudo-labels
being correct on the target data (b). For MCD, we see 20 distinct clusters highlighting the failure of
the method at detecting and aligning target domain data (c). For SSL, the poison data has prevented
the correct classes from having very similar representations (d). The failure of most UDA methods
with a small amount of watermarked data makes our attack practical and raises serious concerns
about the success of these methods.

E Bilevel formulation for clean-label attacks

In this section, we present the bilevel formulation for a clean-label data poisoning attack
against UDA methods. Let u = {u1, ..., un} denote the poisoned data and D̂valtarget =

{(xvaltarget
i , y

valtarget
i)}

Nvaltarget

i=1 , be a small set of labeled target domain data accessible to the at-
tacker. To ensure a clean label, each poison point ui must have a bounded perturbation from
a base point xbase

i i.e, ‖ui − xbase
i ‖ = ‖δi‖ ≤ ε and has label of the base i.e., ybase

i . Thus,
D̂poison = {(ui, ybase

i)}Npoison

i=1 . The clean-label poison data u is such that when the victim uses
D̂source

⋃
D̂poison and D̂target for UDA, the accuracy on D̂valtarget is minimized. The bilevel formu-

lation for this attack is as follows:

max
u∈U

L(D̂valtarget ; θ∗) s.t. θ∗ = arg min
θ
LUDA(D̂clean

⋃
D̂poison, D̂target; θ). (9)

The solution to the lower-level problem θ∗ are the parameters of the generator and the classifier
learned from using a UDA method on the poisoned source domain data and unlabeled target domain
data. Solving bilevel optimization problems [11, 23, 24] to generate clean-label poison data has
previously been shown to be effective. We used an alternating optimization to avoid the computational
complexity of solving the bilevel optimization (Eq. 4). However, we believe the attack success can be
boosted by solving the bilevel formulation proposed in Eq. 9 and is left for future work.

F Additional experiments

F.1 Effect of changing the percentage of poison data and divergence between the domains

We use a simple two moons dataset to illustrate the effect of changing both the poison percentage
and the divergence between the two domains. The target domain data is the translated version of the
source domain data along the x-axis. The amount of translation is used to measure the divergence
between the source and the target domains. For this experiment, we use mislabeled target domain data
as our poison points. This is referred to as wrong-label incorrect-domain poisoning in the main paper.
The results of this experiment are present in Table 5. Consistent with the results present in rows
marked with Poison_target of Table 1 and 2 of the main paper and Table 4, we see that increasing the
divergence between the source and target domains makes it easy to poison UDA methods with small

5

Table 5: Effect of using different percentages of wrong-label incorrect-domain poisoned data on the
target domain accuracy when the divergence (D) between the source and target domain is changed.
(mean±s.d. of 5 trials).

Method Dataset Target domain accuracy(%)
D=0.25 D=0.5 D=0.75

Source Only
Clean 99.60±0.01 87.92±0.96 68.4±0.13

Poisoned (5%) 79.76±2.94 55.24±4.42 59.44±2.77
Poisoned (10%) 53.16±2.44 46.52±3.51 42.56±2.65

DANN
Clean 98.48±1.45 97.24±1.27 71.80±3.92

Poisoned (5%) 95.36±2.54 83.08±1.43 62.72±3.63
Poisoned (10%) 85.52±10.1 65.56±8.44 40.92±5.97

CDAN
Clean 100±0.0 94.52±1.31 76.08±4.49

Poisoned (5%) 91.36±2.98 77.48±6.23 64.28±4.95
Poisoned (10%) 87.12±1.35 73.16±0.81 46.04±8.73

MCD
Clean 100±0.0 91.88±2.35 69.28±2.77

Poisoned (5%) 79.68±5.52 70.48±10.69 58.88±9.96
Poisoned (10%) 65.81±2.66 44.28±5.73 40.96±16.4

Table 6: Decrease in the target domain accuracy for DAN trained on poisoned source domain data
(with poisons sampled from the target domain) compared to accuracy attained with clean data on the
Office tasks (mean±s.d. of 3 trials).

Dataset A→ D A→ W D→ A D→ W W→ A W→ D

Clean 82.3 80.1 68.9 98.0 66.1 99.0
Poisoned 59.8 51.4 6.7 53.7 7.6 79.9

amounts of poisoned data. Moreover, at a fixed divergence level increases the amount of poisoned
data leads to a larger drop in the target domain accuracy.

Effect of poisoning on [17]: Following the original and follow-up works on MMD [6], we also
evaluated the effect of our poisoning attacks against this method using the Office-31 dataset. The
results of poisoning on DAN (Table 6) with 10% mislabeled target domain data, consistent with the
other results shown in Table 2 of the main paper, demonstrate the effectiveness of our poisoning
attack against this method. We used the Pytorch version of the implementation for DAN available
from the official code [6] to generate these results.

Effect of poisoning on [30]: Here we present the results of our poisoning attack against the DIRT-T
method proposed by [30], using the Digits dataset. This method uses virtual adversarial training and
conditional entropy minimization whose effectiveness is contingent on the quality of the pseudo-
labels of the target domain data. In the main paper, we presented results of using a similar method,
CDAN[18], which relied on the idea of using pseudo-labels for the target domain data in the
discriminator. Consistent with our results of CDAN presented in Table 1, we see our poisoning
attacks (Table 7) are effective at reducing the target domain accuracy obtainable by using the DIRT-T
method. We used 10% mislabeled target domain data as our poisons (same as that used in Table 1)
and used a similar setting to the official implementation of the paper for our evaluation.

Table 7: Decrease in the target domain accuracy for DIRT-T trained on poisoned source domain data
(with poisons sampled from the target domain) compared to accuracy attained with clean data on the
Digits tasks (mean±s.d. of 5 trials).

Data SVHN→ MNIST MNIST→ MNIST_M MNIST→ USPS USPS→ MNIST

Clean 92.45±0.46 91.41±0.16 98.15±0.28 98.13±0.09
Poisoned 0.09±0.02 0.37±0.01 4.62±4.33 0.31±0.24

6

Table 8: Decrease in the target domain accuracy for CYCADA trained on poisoned source domain
data (with poisons sampled from the target domain) compared to accuracy attained with clean data
on the Digits tasks (mean±s.d. of 5 trials).

Method SVHN→ MNIST MNIST→ USPS USPS→ MNIST

Transformed Source Only (Clean data) 74.5±0.3 95.6±0.2 96.4±0.1

Feature level (Clean data) 90.4±0.4 95.6±0.2 96.5±0.1
Feature level (Poisoned data) 84.3±2.3 93.3±0.5 60.7±3.5

Effect of poisoning on [10]: This work uses a Cycle GAN coupled with a semantic loss dependent
on the pseudo-labels for the target domain data, to enforce consistency of the two domains in the pixel
space as well as in the representation space. When using the poisoned data to train the cycle GAN, we
found that it failed to generate good transformations of the source domain. However, it could not be
concluded whether the failure of cycle GAN was due to poisoning or due to hyperparameters. Thus, in
our poisoning experiments, we omit the training of the cycle GAN and rely on the transformed version
of the source domain images provided in the official repository. We treat these transformed images as
our original source domain images. We present the results of poisoning only the feature level domain
adaptation in Table 8 (assuming cycle GAN is trained on clean data). The high target accuracy of
training using only the transformed source domain data (transformed source only) compared to the
target accuracy obtained using feature-level domain adaptation on clean data implies a high similarity
between the transformed source and the target domains. Due to this high similarity between the
transformed source and the target domains, our poisoning attacks (using 10% mislabeled target
domain data as poisoned data) have limited effect. For USPS→ MNIST, poisoning with 10% of
MNIST training data (6000 images) is comparable to the size of USPS training data (7291 images)
and thus we see a significant reduction in the target domain accuracy. These results are consistent
with the results presented in the main paper, especially on tasks W→ D and D→ W in Table 2,
where poisoning fails since the source and target domains are very similar (indicated by high source
only performance).

G Additional related work

Previous work [36], presented an information-theoretic lower bound to explain the failure of learning
a domain invariant representation when marginal label distributions differ across the source and target
domains. In comparison, our lower bound does not require any assumption on the data distributions.
Our bound presents a necessary condition for successful learning in the UDA setting. In particular,
our lower bound shows that a UDA method may succeed or fail at target generalization i.e. the
term max (eS(f̃S , f̃T), eT (f̃S , f̃T)) in our lower bound (Eq. 2) can be small or large, even when a
domain invariant representation is learnt that minimizes source error.

Unlike the bounds presented by previous works [36, 14] which fail to provide insights into the
behavior of UDA when marginal label distributions are the same across the two domains, our bound
remains tight. In particular, the information-theoretic lower bound of [36] (Theorem 4.3 of [36])
becomes vacuous when dJS(pYS , p

Y
T) = 0. However, our lower bound will be non-vacuous in this

scenario as long as UDA methods are used i.e., eS and D1(p̃S , p̃T) are minimized. A concrete
example where our bound is tighter than the bound of Theorem 4.3 of [36] is their example in section
4.1 where the true target risk is 1. As discussed in their paper (last paragraph below Corollary 4.1),
their lower bound on the example is vacuous and says that the target risk will be greater than 0. In
comparison, our lower bound in Theorem 1 says that the target risk is greater or equal to 1 which is
tighter and much more informative.

Compared to the previous work of [34] which decomposed the target risk into source risk, represen-
tation conditional label divergence, and representation covariate shift and explained the reason for
the failure of DANN to be its inability to account for representation conditional label divergence.
Our lower bound suggests a similar explanation for the failure of DANN i.e, without access to any
labeled target domain data, DANN may learn a representation that induces labeling functions (f̃S)

and (f̃T which do not agree with each other on the source and target domains. This difference in the
induced labeling functions is captured by max(eS(f̃S , f̃T), eT (f̃S , f̃T)) term in our lower bound.
Our explanation for UDA failure also extends beyond DANN as we illustrated through our data

7

poisoning attacks, which are concrete ways to lead UDA algorithms to learn a representation that
incurs high error on the target domain.

H Details of the experiments

All codes are written in Python using Tensorflow/Keras and were run on Intel Xeon(R) W-2123 CPU
with 64 GB of RAM and dual NVIDIA TITAN RTX. Dataset details and model architectures used
are described below.

H.1 Dataset description

Here we describe the details of the datasets used for the Digits and Office-31 tasks.

Digits: For this task, we use 4 datasets: MNIST, MNIST_M, SVHN, and USPS. We evalu-
ate four popular tasks under this, namely, SVHN → MNIST, MNIST → MNIST_M, MNIST
→ USPS and USPS→ MNIST. For SVHN→ MNIST, we train on 73,257 images from SVHN and
60,000 images from MNIST while testing on 10,000 MNIST images. For MNIST→ MNIST_M, we
use 60,000 from MNIST and MNIST_M for training and test on 10,000 MNIST images. Lastly, for
MNIST→ USPS and USPS→ MNIST, we use 2,000 images from MNIST and 1,800 images from
USPS for training. We test on the 10,000 MNIST images and 1,860 USPS images.

Office-31: The dataset contains a total of 4110 images belonging to 31 categories from 3
domains: Amazon (A), DSLR(D), and Webcam(W). We evaluate the performance of UDA on all six
tasks, namely, A→ D, A→W, D→ A, D→W, W→ A, W→ D.

H.2 Model architecture

Here we describe the model architectures used for different tasks. To fairly compare the performance
of different UDA methods and eliminate the effect of architecture changes in improving the perfor-
mance of different methods, we make use of similar model architectures for different methods, as
described below. The effectiveness of these architectures has also been shown by previous works.

Digits: The architectures used for MNIST→ MNIST_M, MNIST→ USPS and USPS→ MNIST
involves a shared convolution neural network. The output of this shared network is fed into a
softmax classifier and the discriminator. The architecture of the shared network consists of a
convolution layer with a kernel size of 5x5, 20 filters, and ReLU activation, followed by a max-
pooling layer of size 2x2. This is followed by another convolution layer with a 5x5 kernel, 50
filters, and ReLU activation followed by similar max pooling and a dropout. Then we have a fully
connected layer with ReLU activation of size 500 followed by a dropout layer. For the discriminator,
we use two dense layers with 500 units each followed by a ReLU and a dropout layer. This is
followed by a 2 unit softmax layer. For MCD, we use the following architecture for the generator
on MNIST→ MNIST_M task. A convolution layer with a kernel size of 5x5, 32 filters, and ReLU
activation, followed by a max-pooling layer of size 2x2. This is followed by another convolution
layer with a 5x5 kernel, 48 filters, and ReLU activation followed by a similar max-pooling layer.
We use 2 dense layers for the classifier with 100 units followed by ReLU activation and dropout
layers. This is followed by the softmax layer. Unlike the original work MCD[27], we do not use
batch normalization layers in these tasks to make architectures consistent across different methods.

Figure 10: Watermarked poison data for
MNIST → MNIST_M task with α in
{0.05, 0.10, 0.15}.

For SVHN→ MNIST we use the following architecture
for the generator. A convolution layer with a kernel size of
5x5, 64 filters, the stride of 2 followed by batch normaliza-
tion, dropout, and ReLU activation layer. This is followed
by another convolution layer with a kernel size of 5x5,
128 filters, the stride of 2 followed by batch normalization,
dropout, and ReLU activation layer. Then another convo-
lution layer with a kernel size of 5x5, 256 filters, the stride
of 2 followed by batch normalization, dropout, and ReLU
activation layer. This is followed by a dense layer with
512 units followed by batch normalization, ReLU activation, and a dropout layer. We use the softmax

8

(a) Base data chosen from the source domain (b) Base data chosen from the target domain

Figure 11: Poison data (top rows) obtained after solving Eq. 4 by using DANN as the UDA method,
with base data (bottom rows) initialized from the source domain (left) and the target domain (right).
Attack success with poison data initialized from the target is significantly higher than the attack
success obtained with poison data initialized from the source, from under the same maximum
permissible distortion constraint (ε = 0.1 in `∞ norm) as seen in Fig. 7.

layer for classification. For the discriminator, we use two dense layers with 500 units each followed
by a ReLU and a dropout layer. This is followed by a 2 unit softmax layer. For MCD, we use the
same architecture for the generator except that we use max-pooling instead of convolution layers with
stride 2 to downsample the representation. The classifier uses the output of the generator and feeds
into a dense layer with 256 units followed by batch normalization and ReLU activation layers. This
is followed by a softmax layer.

Office-31: For office experiments, we use the publicly available code of the work3 [6] and supply the
poisoned data by adding them to the input files being used by the code. We use all default options
of the code and use DAN, CDAN, IW-DAN, IW-CDAN algorithms. This is done to eliminate the
effect of hyperparameters on the performance of the UDA algorithms on the Office-31 dataset and be
able to fairly compare the performance of poisoning. To obtain the representation trained only on the
source domain data, we initialize a ResNet50 model with weight pre-trained on Imagenet. We then
update the representation by training on respective source domain data for different tasks.

H.3 Clean-label attack on MNIST→MNIST_M

For this experiment, 1% poison data is used to prevent the alignment of a target test point to its
correct class. We test the attack on the binary classification problems (3 vs 8). Two approaches to
initializing the poison data are evaluated. In the first approach, the poison data is initialized from the
source domain data, and in the second approach, it is initialized from the target domain data. In both
cases, the poison is picked from the class opposite to the true class of the target test point. Moreover,
the poison data is initialized using the points closest in the input space to the target test point. The
poison data obtained after solving Eq. 4 is added to the source domain data and UDA methods are
retrained from scratch. The attack is considered successful if the target test point is misclassified after
this retraining. For the results shown in Fig. 7, we randomly targeted 20 points and obtained poison
data corresponding to each UDA method. Attack success is reported after evaluating UDA methods
on five random initializations by adding the generated poison data in the source domain. To control
the amount of maximum distortion between experiments, we add a constraint on the maximum
permissible distortion to poison data using `∞ norm and use a value of ε = 0.1. The poison data
obtained after solving the optimization with base data chosen from the source and target domains
with DANN as the UDA method are shown in Fig. 11. To generate poison data that remains effective
even after UDA methods are trained from scratch, we make use of multiple randomly initialized
networks during poison generation. Following the work [11], we reinitialize the models at different
points during optimization. This re-initialization scheme helps train UDA methods with different
random initializations and for a different number of epochs making the poison data more resilient to
initialization change that can happen at test-time.

3https://bit.ly/34EFb52

9

https://bit.ly/34EFb52

	Introduction
	Background and related work
	When does learning fail in the unsupervised domain adaption setting?
	Lower bound on the target domain error
	Illustrative examples showing the sensitivity of UDA methods to data distributions

	Breaking unsupervised domain adaptation methods with data poisoning
	Poisoning using mislabeled source and target domain data
	Poisoning with mislabeled watermarked data
	Poisoning using clean-label source and target domain data

	Conclusion
	Acknowledgment
	Proof of the lower bound on the target domain loss
	Illustrative examples of UDA failure
	Details of the figures explaining the effect of poisoning on UDA methods
	Effect of poison percentage on attack success with mislabeled poison data
	Bilevel formulation for clean-label attacks
	Additional experiments
	Effect of changing the percentage of poison data and divergence between the domains

	Additional related work
	Details of the experiments
	Dataset description
	Model architecture
	Clean-label attack on MNIST MNIST_M

