Supplementary Material: A Comprehensively Tight Analysis of Gradient Descent for PCA

Zhiqiang Xu, Ping Li

Cognitive Computing Lab
Baidu Research
No. 10 Xibeiwang East Road, Beijing 100193, China
10900 NE 8th St. Bellevue, Washington 98004, USA
{xuzhiqiang04,liping11}@baidu.com

Theorem 2 The Riemannian gradient descent for Problem (1) in the main text with step-size $\eta = O(1) \le \frac{1}{\lambda_1 - \lambda_n}$ converges in $T = O(\frac{1}{\epsilon} \log \frac{n}{\epsilon})$ iterations, i.e., $\lambda_1 - \mathbf{x}_T^{\top} \mathbf{A} \mathbf{x}_T < \epsilon$.

Proof We assume again that $\lambda_1 > \lambda_n$, and $\eta \leq \frac{1}{\lambda_1 - \lambda_n}$ such that $h_t(\lambda_i) = 1 + \eta(\lambda_i - \mathbf{x}_t^\top \mathbf{A} \mathbf{x}_t) \geq 0$ for all i and t. In what follows, we show that no matter whether λ_1 is significantly larger than λ_2 in the sense that $h_0(\lambda_1) \geq (1 + \frac{\delta}{2})h_0(\lambda_2)$ for $0 < \delta \leq 2$, it always holds that $\lambda_1 - \mathbf{x}_T^\top \mathbf{A} \mathbf{x}_T < \frac{2}{\eta} \epsilon$. Throughout the proof, we take $T = \lceil \frac{2}{\delta} \log \frac{n(1 + \tan^2 \theta_0)}{\epsilon} \rceil + 1$, where $\theta_0 = \theta(\mathbf{x}_0, \mathbf{v}_1)$.

Case 1 that $h_0(\lambda_1) \ge (1 + \frac{\delta}{2})h_0(\lambda_2)$. Consider the polynomial

$$p_T(x) = \sqrt{(1 + \frac{\delta}{2})h_0(\lambda_2)} \prod_{t=0}^{T-1} \frac{h_t(x)}{(1 + \frac{\delta}{2})h_t(\lambda_2)}$$

and its matrix form $p_T(\mathbf{A}) = \sum_{i=1}^n p_T(\lambda_i) \mathbf{v}_i \mathbf{v}_i^\top = \mathbf{V}_n p_T(\mathbf{\Sigma}_n) \mathbf{V}_n^\top$, where $p_T(\mathbf{\Sigma}_n) = \operatorname{diag}(p_T(\lambda_1), \cdots, p_T(\lambda_n))$. Since $\eta \leq \frac{1}{\lambda_1 - \lambda_n}$, $h_t(x)$ for all t and thus $p_T(x)$ are nonnegative for $x \in [\lambda_n, \lambda_1]$. Particularly, on the one hand,

Fact 1. For $x \in [\lambda_n, \lambda_2]$, $h_0(\lambda_1) \ge (1 + \frac{\delta}{2})h_0(x)$ implies that $h_t(\lambda_1) \ge (1 + \frac{\delta}{2})h_t(x)$ for all t, by the following lemma

Lemma 4 If $\eta \leq \frac{2}{\lambda_1 - \lambda_n}$ then $\mathbf{x}_{t+1}^{\top} \mathbf{A} \mathbf{x}_{t+1} \geq \mathbf{x}_t^{\top} \mathbf{A} \mathbf{x}_t$.

Thus, the first property of $p_T(x)$ is that

$$p_T(\lambda_1) = \sqrt{(1 + \frac{\delta}{2})h_0(\lambda_2)} \frac{h_0(\lambda_1)}{(1 + \frac{\delta}{2})h_0(\lambda_2)} \prod_{t=1}^{T-1} \frac{h_t(\lambda_1)}{(1 + \frac{\delta}{2})h_t(\lambda_2)} \ge \sqrt{h_0(\lambda_1)}.$$
 (6)

On the other hand, noting that $h_t(\lambda_2) \ge h_t(\lambda_i)$ for all $i \ge 2$, it's easy to see $p_T(x)$'s second property:

$$p_T(\lambda_i) \le \sqrt{h_0(\lambda_2)} (1 + \frac{\delta}{2})^{-T + \frac{1}{2}}, \quad i = 2, \dots, n.$$
 (7)

We then can rewrite x_T from Eq. (4) in the main text as

$$\mathbf{x}_T = \frac{\prod_{t=0}^{T-1} (\mathbf{I} + \eta (\mathbf{A} - \mathbf{x}_t^{\top} \mathbf{A} \mathbf{x}_t \mathbf{I})) \mathbf{x}_0}{\| \prod_{t=0}^{T-1} (\mathbf{I} + \eta (\mathbf{A} - \mathbf{x}_t^{\top} \mathbf{A} \mathbf{x}_t \mathbf{I})) \mathbf{x}_0\|_2} = \frac{\prod_{t=0}^{T-1} h_t(\mathbf{A}) \mathbf{x}_0}{\| \prod_{t=0}^{T-1} h_t(\mathbf{A}) \mathbf{x}_0\|_2} = \frac{p_T(\mathbf{A}) \mathbf{x}_0}{\|p_T(\mathbf{A}) \mathbf{x}_0\|_2}.$$

Let $[\cdot]_1$ be the best rank-1 approximation of a matrix for the Frobenius norm. For example, $[p_T(\mathbf{A})]_1 = p_T(\lambda_1)\mathbf{v}_1\mathbf{v}_1^{\mathsf{T}}$, due to that $p_T(\lambda_1) \geq \sqrt{h_0(\lambda_1)} \geq \sqrt{h_0(\lambda_i)} \geq p_T(\lambda_i) \geq 0$ for all $i \geq 2$,

by Eq. (6)-(7). By Lemma 14 in Musco et al. [10], we have the following Frobenius-norm rank-1 approximation inequality:

$$||p_T(\mathbf{A}) - \mathbf{x}_T \mathbf{x}_T^{\mathsf{T}} p_T(\mathbf{A})||_F^2 \le (1 + \tan^2 \theta_0) ||p_T(\mathbf{A}) - [p_T(\mathbf{A})]_1||_F^2.$$
 (8)

For the remainder on the right, by Eq. (7), we have that

$$||p_{T}(\mathbf{A}) - [p_{T}(\mathbf{A})]_{1}||_{F}^{2} = ||\sum_{i=2}^{n} p_{T}(\lambda_{i})\mathbf{v}_{i}\mathbf{v}_{i}^{\top}||_{F}^{2} = \sum_{i=2}^{n} p_{T}^{2}(\lambda_{i})$$

$$\leq (n-1)h_{0}(\lambda_{2})(1 + \frac{\delta}{2})^{-2T+1}, \tag{9}$$

where

$$(1 + \frac{\delta}{2})^{-2T+1} < (1 + \frac{\delta}{2})^{-2(T-1)} = \exp\{-2(T-1)\log(1 + \frac{\delta}{2})\}$$

$$\leq \exp\{-\frac{4}{\delta}\log\frac{n(1+\tan^2\theta_0)}{\epsilon}\frac{\delta/2}{1+\delta/2}\} \leq \frac{\epsilon}{n(1+\tan^2\theta_0)}.$$
 (10)

For the rank-1 approximation error on the left, it holds that

$$||p_{T}(\mathbf{A}) - \mathbf{x}_{T}\mathbf{x}_{T}^{\top}p_{T}(\mathbf{A})||_{F}^{2} = ||p_{T}(\mathbf{A})||_{F}^{2} - ||\mathbf{x}_{T}\mathbf{x}_{T}^{\top}p_{T}(\mathbf{A})||_{F}^{2}$$

$$= ||p_{T}(\mathbf{\Sigma}_{n})||_{F}^{2} - ||\mathbf{x}_{T}^{\top}\mathbf{V}_{n}p_{T}(\mathbf{\Sigma}_{n})||_{F}^{2}$$

$$= \sum_{i=1}^{n} (1 - (\mathbf{x}_{T}^{\top}\mathbf{v}_{i})^{2})p_{T}^{2}(\lambda_{i}) \geq (1 - (\mathbf{x}_{T}^{\top}\mathbf{v}_{1})^{2})p_{T}^{2}(\lambda_{1})$$

$$\geq (1 - (\mathbf{x}_{T}^{\top}\mathbf{v}_{1})^{2})h_{0}(\lambda_{1}), \qquad (11)$$

where the second equality is due to the orthogonal invariance for the Frobenius norm. By Eq. (8)-(11), we then get that $(1 - (\mathbf{x}_T^{\mathsf{T}} \mathbf{v}_1)^2) h_0(\lambda_1) < \epsilon h_0(\lambda_2)$. Hence, it holds that

$$h_0(\lambda_1) - \mathbf{x}_T^{\top} h_0(\mathbf{A}) \mathbf{x}_T = h_0(\lambda_1) - \sum_{i=1}^n (\mathbf{x}_T^{\top} \mathbf{v}_i)^2 h_0(\lambda_i) \le (1 - (\mathbf{x}_T^{\top} \mathbf{v}_1)^2) h_0(\lambda_1) < \epsilon h_0(\lambda_2),$$

which gives us $\lambda_1 - \mathbf{x}_T^{\top} \mathbf{A} \mathbf{x}_T < \frac{2}{\eta} \epsilon$, by noting that $h_0(\lambda_1) - \mathbf{x}_T^{\top} h_0(\mathbf{A}) \mathbf{x}_T = \eta(\lambda_1 - \mathbf{x}_T^{\top} \mathbf{A} \mathbf{x}_T)$ and $h_0(\lambda_i) = 1 + \eta(\lambda_i - \mathbf{x}_0^{\top} \mathbf{A} \mathbf{x}_0) \le 1 + \eta(\lambda_i - \lambda_n) \le 2$ for all i.

Case 2 that $h_0(\lambda_1) < (1 + \frac{\delta}{2})h_0(\lambda_2)$. Consider the polynomial

$$q_T(x) = \sqrt{h_0(\lambda_1)} \prod_{t=0}^{T-1} \frac{h_t(x)}{h_t(\lambda_1)}.$$

We can write that

$$\mathbf{x}_{T} = \frac{\prod_{t=0}^{T-1} h_{t}(\mathbf{A}) \mathbf{x}_{0}}{\|\prod_{t=0}^{T-1} h_{t}(\mathbf{A}) \mathbf{x}_{0}\|_{2}} = \frac{q_{T}(\mathbf{A}) \mathbf{x}_{0}}{\|q_{T}(\mathbf{A}) \mathbf{x}_{0}\|_{2}}.$$

Define the index set

$$\alpha = \{i : \frac{1}{1 + \frac{\delta}{2}} h_0(\lambda_1) \le h_0(\lambda_i) < h_0(\lambda_1)\}.$$

Note that $|\alpha| \geq 1$ since $2 \in \alpha$. Let

$$\mathbf{V}_{\alpha} = \begin{bmatrix} \mathbf{v}_2 & \cdots & \mathbf{v}_{|\alpha|+1} \end{bmatrix}, \quad \mathbf{V}_{-\alpha} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_{|\alpha|+2} & \cdots & \mathbf{v}_n \end{bmatrix},$$

$$\mathbf{\Sigma}_{\alpha} = \operatorname{diag}(\lambda_2, \cdots, \lambda_{|\alpha|+1}), \quad \mathbf{\Sigma}_{-\alpha} = \operatorname{diag}(\lambda_1, \lambda_{|\alpha|+2}, \cdots, \lambda_n).$$

We then can have $q_T(\mathbf{A})$ decomposed into

$$q_T(\mathbf{A}) = \sum_{i \in \alpha} q_T(\lambda_i) \mathbf{v}_i \mathbf{v}_i^{\top} + \sum_{i \notin \alpha} q_T(\lambda_i) \mathbf{v}_i \mathbf{v}_i^{\top}$$

$$= \mathbf{V}_{\alpha} q_T(\mathbf{\Sigma}_{\alpha}) \mathbf{V}_{\alpha}^{\top} + \mathbf{V}_{-\alpha} q_T(\mathbf{\Sigma}_{-\alpha}) \mathbf{V}_{-\alpha}^{\top} \triangleq q_T(\mathbf{A}_{\alpha}) + q_T(\mathbf{A}_{-\alpha}),$$

and accordingly,

$$\mathbf{x}_{T} = \frac{q_{T}(\mathbf{A}_{\alpha})\mathbf{x}_{0}}{\|q_{T}(\mathbf{A})\mathbf{x}_{0}\|_{2}} + \frac{q_{T}(\mathbf{A}_{-\alpha})\mathbf{x}_{0}}{\|q_{T}(\mathbf{A})\mathbf{x}_{0}\|_{2}} = \mathbf{V}_{\alpha} \frac{q_{T}(\mathbf{\Sigma}_{\alpha})\mathbf{V}_{\alpha}^{\top}\mathbf{x}_{0}}{\|q_{T}(\mathbf{A})\mathbf{x}_{0}\|_{2}} + \mathbf{V}_{-\alpha} \frac{q_{T}(\mathbf{\Sigma}_{-\alpha})\mathbf{V}_{-\alpha}^{\top}\mathbf{x}_{0}}{\|q_{T}(\mathbf{A})\mathbf{x}_{0}\|_{2}}$$

$$\stackrel{\triangle}{=} \mathbf{V}_{\alpha}\tilde{\mathbf{y}}_{T}^{(\alpha)} + \mathbf{V}_{-\alpha}\tilde{\mathbf{y}}_{T}^{(-\alpha)} \stackrel{\triangle}{=} \tilde{\mathbf{x}}_{T}^{(\alpha)} + \tilde{\mathbf{x}}_{T}^{(-\alpha)} \stackrel{\triangle}{=} \|\tilde{\mathbf{x}}_{T}^{(\alpha)}\|_{2} \mathbf{x}_{T}^{(\alpha)} + \|\tilde{\mathbf{x}}_{T}^{(-\alpha)}\|_{2} \mathbf{x}_{T}^{(-\alpha)}.$$

In order to analyze $\mathbf{x}_T^{\top} h_0(\mathbf{A}) \mathbf{x}_T = \|h_0^{\frac{1}{2}}(\mathbf{A}) \mathbf{x}_T\|_2^2$, we first check $\|h_0^{\frac{1}{2}}(\mathbf{A}) \mathbf{x}_T^{(\alpha)}\|_2^2$ as follows:

$$\|h_0^{\frac{1}{2}}(\mathbf{A})\mathbf{x}_T^{(\alpha)}\|_2^2 = \frac{(\tilde{\mathbf{y}}_T^{(\alpha)})^\top \mathbf{V}_{\alpha}^\top h_0(\mathbf{A}) \mathbf{V}_{\alpha} \tilde{\mathbf{y}}_T^{(\alpha)}}{\|\tilde{\mathbf{y}}_T^{(\alpha)}\|_2^2} = \frac{(\tilde{\mathbf{y}}_T^{(\alpha)})^\top h_0(\mathbf{\Sigma}_{\alpha}) \tilde{\mathbf{y}}_T^{(\alpha)}}{\|\tilde{\mathbf{y}}_T^{(\alpha)}\|_2^2}$$

$$\geq \frac{1}{1 + \frac{\delta}{2}} h_0(\lambda_1) \geq (1 - \frac{\delta}{2}) h_0(\lambda_1), \tag{12}$$

where the first inequality is by the definition of the index set. To check $\|h_0^{\frac{1}{2}}(\mathbf{A})\mathbf{x}_T^{(-\alpha)}\|_2^2$, similarly to Case 1, we consider the rank-1 approximation by $q_T(\mathbf{A}_{-\alpha})\mathbf{x}_0$. Note that $\mathbf{x}_T^{(-\alpha)} = \frac{\tilde{\mathbf{x}}_T^{(-\alpha)}}{\|\tilde{\mathbf{x}}_T^{(-\alpha)}\|_2} = \frac{q_T(\mathbf{A}_{-\alpha})\mathbf{x}_0}{\|q_T(\mathbf{A}_{-\alpha})\mathbf{x}_0\|_2}$. We then have the approximation inequality:

$$\|q_T(\mathbf{A}_{-\alpha}) - \mathbf{x}_T^{(-\alpha)}(\mathbf{x}_T^{(-\alpha)})^{\top} q_T(\mathbf{A}_{-\alpha})\|_F^2 \le (1 + \tan^2 \theta_0) \|q_T(\mathbf{A}_{-\alpha}) - [q_T(\mathbf{A}_{-\alpha})]_1\|_F^2.$$
 (13)

Here, noting $q_T(\lambda_1) = \sqrt{h_0(\lambda_1)} \ge q_T(\lambda_i)$ for all $i \ge 2$, it holds that

$$\|q_{T}(\mathbf{A}_{-\alpha}) - \mathbf{x}_{T}^{(-\alpha)}(\mathbf{x}_{T}^{(-\alpha)})^{\top}q_{T}(\mathbf{A}_{-\alpha})\|_{F}^{2}$$

$$= \|q_{T}(\mathbf{\Sigma}_{-\alpha})\|_{F}^{2} - \|(\mathbf{x}_{T}^{(-\alpha)})^{\top}\mathbf{V}_{-\alpha}q_{T}(\mathbf{\Sigma}_{-\alpha})\|_{F}^{2} = \sum_{i \notin \alpha} (1 - ((\mathbf{x}_{T}^{(-\alpha)})^{\top}\mathbf{v}_{i})^{2})q_{T}^{2}(\lambda_{i})$$

$$\geq (1 - ((\mathbf{x}_{T}^{(-\alpha)})^{\top}\mathbf{v}_{1})^{2})q_{T}^{2}(\lambda_{1}) \geq (1 - ((\mathbf{x}_{T}^{(-\alpha)})^{\top}\mathbf{v}_{1})^{2})h_{0}(\lambda_{1}). \tag{14}$$

At the same time, since it holds at t=0 by the definition of α , then by Fact 1 we must have that $h_t(\lambda_i) \leq \frac{1}{1+\frac{\delta}{2}}h_t(\lambda_1)$ for any $i \notin \{1\} \cup \alpha$. Thus, similarly to Eq. (9)-(10), we get that

$$\|q_T(\mathbf{A}_{-\alpha}) - [q_T(\mathbf{A}_{-\alpha})]_1\|_F^2 = \sum_{i \notin \{1\} \cup \alpha} q_T^2(\lambda_i) \le (n - |\alpha| - 1)(1 + \frac{\delta}{2})^{-2T} h_0(\lambda_1) < \frac{h_0(\lambda_1)}{1 + \tan^2 \theta_0} \epsilon.$$
 (15)

By Eq. (13)-(15), we can write that

$$h_{0}(\lambda_{1}) - (\mathbf{x}_{T}^{(-\alpha)})^{\top} h_{0}(\mathbf{A}_{-\alpha}) \mathbf{x}_{T}^{(-\alpha)} = h_{0}(\lambda_{1}) - \sum_{i \notin \alpha} ((\mathbf{x}_{T}^{(-\alpha)})^{\top} \mathbf{v}_{i})^{2}) h_{0}(\lambda_{i})$$

$$\leq h_{0}(\lambda_{1}) - ((\mathbf{x}_{T}^{(-\alpha)})^{\top} \mathbf{v}_{1})^{2}) h_{0}(\lambda_{1}) < h_{0}(\lambda_{1}) \epsilon.$$

Thus, it holds that

$$\|h_0^{\frac{1}{2}}(\mathbf{A})\mathbf{x}_T^{(-\alpha)}\|_2^2 = \|h_0^{\frac{1}{2}}(\mathbf{A}_{-\alpha})\mathbf{x}_T^{(-\alpha)}\|_2^2 = (\mathbf{x}_T^{(-\alpha)})^{\top}h_0(\mathbf{A}_{-\alpha})\mathbf{x}_T^{(-\alpha)} > (1 - \epsilon)h_0(\lambda_1).$$
(16) By Eq. (12) with $\delta = 2\epsilon$ (assuming $\epsilon < 1$) and Eq. (16), we get that

$$\mathbf{x}_{T}^{\top}h_{0}(\mathbf{A})\mathbf{x}_{T} = \|h_{0}^{\frac{1}{2}}(\mathbf{A})\mathbf{x}_{T}\|_{2}^{2}$$

$$= \|h_{0}^{\frac{1}{2}}(\mathbf{A})\tilde{\mathbf{x}}_{T}^{(\alpha)}\|_{2}^{2} + \|h_{0}^{\frac{1}{2}}(\mathbf{A})\tilde{\mathbf{x}}_{T}^{(-\alpha)}\|_{2}^{2}$$

$$= \|\tilde{\mathbf{x}}_{T}^{(\alpha)}\|_{2}^{2} \|h_{0}^{\frac{1}{2}}(\mathbf{A})\mathbf{x}_{T}^{(\alpha)}\|_{2}^{2} + \|\tilde{\mathbf{x}}_{T}^{(-\alpha)}\|_{2}^{2} \|h_{0}^{\frac{1}{2}}(\mathbf{A})\mathbf{x}_{T}^{(-\alpha)}\|_{2}^{2}$$

$$> (\|\tilde{\mathbf{x}}_{T}^{(\alpha)}\|_{2}^{2} + \|\tilde{\mathbf{x}}_{T}^{(-\alpha)}\|_{2}^{2})(1 - \epsilon)h_{0}(\lambda_{1})$$

$$= (1 - \epsilon)h_{0}(\lambda_{1}),$$

and thus $h_0(\lambda_1) - \mathbf{x}_T^\top h_0(\mathbf{A}) \mathbf{x}_T < \epsilon h_0(\lambda_1)$, i.e., $\lambda_1 - \mathbf{x}_T^\top \mathbf{A} \mathbf{x}_T < \frac{2}{n} \epsilon$.

Therefore, we have proved that $\lambda_1 - \mathbf{x}_T^{\top} \mathbf{A} \mathbf{x}_T < \frac{2}{\eta} \epsilon$ in both cases for $T = \lceil \frac{1}{\epsilon} \log \frac{n(1 + \tan^2 \theta_0)}{\epsilon} \rceil + 1$ (noting that we have taken $\delta = 2\epsilon$ in Case 2). Finally, as long as $\eta = O(1)$, we could write with ϵ rescaling that $\lambda_1 - \mathbf{x}_T^{\top} \mathbf{A} \mathbf{x}_T < \epsilon$ for $T = O(\frac{1}{\epsilon} \log \frac{n}{\epsilon})$.

We are left with proving Fact 1 and Lemma 4.

Proof of Fact 1 For any t and $x \in [\lambda_n, \lambda_2]$,

$$\begin{split} &h_t(\lambda_1) - (1 + \frac{\delta}{2})h_t(x) \\ &= 1 + \eta(\lambda_1 - \mathbf{x}_t^\top \mathbf{A} \mathbf{x}_t) - (1 + \frac{\delta}{2})(1 + \eta(x - \mathbf{x}_t^\top \mathbf{A} \mathbf{x}_t)) \\ &= 1 + \eta(\lambda_1 - \mathbf{x}_0^\top \mathbf{A} \mathbf{x}_0) - (1 + \frac{\delta}{2})(1 + \eta(x - \mathbf{x}_0^\top \mathbf{A} \mathbf{x}_0)) \\ &+ \eta(\mathbf{x}_0^\top \mathbf{A} \mathbf{x}_0 - \mathbf{x}_t^\top \mathbf{A} \mathbf{x}_t) - (1 + \frac{\delta}{2})\eta(\mathbf{x}_0^\top \mathbf{A} \mathbf{x}_0 - \mathbf{x}_t^\top \mathbf{A} \mathbf{x}_t) \\ &= h_0(\lambda_1) - (1 + \frac{\delta}{2})h_0(x) - \frac{\delta}{2}\eta(\mathbf{x}_0^\top \mathbf{A} \mathbf{x}_0 - \mathbf{x}_t^\top \mathbf{A} \mathbf{x}_t) \geq 0, \end{split}$$

where the last equality is by the hypothesis and Lemma 4.

Proof of Lemma 4 Let $\tilde{\mathbf{g}}_t = \widetilde{\nabla} f(\mathbf{x}_t)$. Then

$$\begin{split} &\|\mathbf{x}_{t} - \eta \tilde{\mathbf{g}}_{t}\|_{2}^{2} \left(\mathbf{x}_{t+1}^{\top} \mathbf{A} \mathbf{x}_{t+1} - \mathbf{x}_{t}^{\top} \mathbf{A} \mathbf{x}_{t}\right) \\ &= \left(\mathbf{x}_{t} - \eta \tilde{\mathbf{g}}_{t}\right)^{\top} \mathbf{A} \left(\mathbf{x}_{t} - \eta \tilde{\mathbf{g}}_{t}\right) - \mathbf{x}_{t}^{\top} \mathbf{A} \mathbf{x}_{t} \|\mathbf{x}_{t} - \eta \tilde{\mathbf{g}}_{t}\|_{2}^{2} \\ &= \mathbf{x}_{t}^{\top} \mathbf{A} \mathbf{x}_{t} - 2 \eta \mathbf{x}_{t}^{\top} \mathbf{A} \tilde{\mathbf{g}}_{t} + \eta^{2} \tilde{\mathbf{g}}_{t}^{\top} \mathbf{A} \tilde{\mathbf{g}}_{t} - \left(1 + \eta^{2} \|\tilde{\mathbf{g}}_{t}\|_{2}^{2}\right) \mathbf{x}_{t}^{\top} \mathbf{A} \mathbf{x}_{t} \\ &= 2 \eta \tilde{\mathbf{g}}_{t}^{\top} \tilde{\mathbf{g}}_{t} + \eta^{2} \tilde{\mathbf{g}}_{t}^{\top} \mathbf{A} \tilde{\mathbf{g}}_{t} - \eta^{2} \mathbf{x}_{t}^{\top} \mathbf{A} \mathbf{x}_{t} \|\tilde{\mathbf{g}}_{t}\|_{2}^{2} \\ &= \eta \tilde{\mathbf{g}}_{t}^{\top} (2\mathbf{I} + \eta \mathbf{A} - \eta \mathbf{x}_{t}^{\top} \mathbf{A} \mathbf{x}_{t} \mathbf{I}) \tilde{\mathbf{g}}_{t} \\ &\geq \eta (2 + \eta (\lambda_{n} - \lambda_{1})) \|\tilde{\mathbf{g}}_{t}\|_{2}^{2} = \eta (2 - \eta (\lambda_{1} - \lambda_{n})) \|\tilde{\mathbf{g}}_{t}\|_{2}^{2}, \end{split}$$

where we have used that $\mathbf{x}_t^{\mathsf{T}} \tilde{\mathbf{g}}_t = 0$ and

$$\begin{aligned} -\mathbf{x}_t^{\top} \mathbf{A} \tilde{\mathbf{g}}_t &= -\mathbf{x}_t^{\top} \mathbf{A} (\mathbf{I} - \mathbf{x}_t \mathbf{x}_t^{\top}) \mathbf{A} \mathbf{x}_t \\ &= -\mathbf{x}_t^{\top} \mathbf{A} (\mathbf{I} - \mathbf{x}_t \mathbf{x}_t^{\top})^2 \mathbf{A} \mathbf{x}_t = \tilde{\mathbf{g}}_t^{\top} \tilde{\mathbf{g}}_t. \end{aligned}$$

Thus, when $2 - \eta(\lambda_1 - \lambda_n) \ge 0$, i.e., $\eta \le \frac{2}{\lambda_1 - \lambda_n}$, it holds that $\mathbf{x}_{t+1}^{\top} \mathbf{A} \mathbf{x}_{t+1} \ge \mathbf{x}_t^{\top} \mathbf{A} \mathbf{x}_t$.