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Theorem 2 The Riemannian gradient descent for Problem (1) in the main text with step-size
n=0(1) < /\1i/\ converges in 1" = O(% log %) iterations, i.e., \; — X;AXT < e

Proof We assume again that \; > \,,, and 7 <5—— such that b, (\;) = 1 +n(X; —x/ Ax,) > 0
for all 7 and ¢. In what follows, we show that no matter whether \; is significantly larger than /\2
in the sense that h(A1) > (1 + 2)ho(A2) for 0 < & < 2, it always holds that \; — x]. Axy < 56'

Throughout the proof, we take 7" = [% log w] + 1, where 6y = 0(xg, v1).

that ~g(A1)>(1 4+ g)ho(/\g). Consider the polynomial
T-1

pr(z) = (1+ 0 Yho(A2) H ht( )

1+ )ht(/\g)

and its matrix form pr(A) = Y7 1pT(/\ wiv! = Vupr(E,)V,), where pr(E,) =
diag(pr (A1), -+ ,pr(An)) . Since n < 5—5—, hi(z) for all ¢ and thus pr(z) are nonnegative
for x € [An, A1]. Particularly, on the one hand

Fact 1. For x € [A,, Ao], ho(A1) > (1 + g)ho(a:) implies that k(A1) > (1 + g)ht(az) for all ¢, by
the following lemma

Lemmad4 /fn < 5

— then Xt+1AXt+1 > x, Ax;.

Thus, the first property of pr(z) is that

_ é 0()\1) = ht(/\l)
pr(A) = (1+2)h0(>\2) 5)ho(ha) t1;[1 i )ht(/\Q) ho(A1) - (6)

On the other hand, noting that h;(A2) > h:(\;) forall i > 2, it’s easy to see pr(x)’s second property:

h
1+

pr(v) < VD214 57T, iz, )
We then can rewrite x7 from Eq. (4) in the main text as
tT}}(I +n(A - x/ AxD)xg tTj} h(A)xo  pr(A)xo
TS @+ (A —x AxiD)xoll, 1 TTS he(A)xolls— lIpr(A)xol2”
Let [ - ]; be the best rank-1 approximation of a matrix for the Frobenius norm. For example,

[pr(A)]1 = pr(A)vivy, due to that pp(Ay) > \/ho ) > \/h() ) > pr(A;) >0foralli > 2,
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by Eq. (6)-(7). By Lemma 14 in Musco et al. [10], we have the following Frobenius-norm rank-1
approximation inequality:

lpr(A) = xrx7pr(A)[|7 < (1+ tan® 6) [pr(A) — [pr(A)h |- ®)
For the remainder on the right, by Eq. (7), we have that

lpr (A) = [pr(A)hL]IE

I
g
s

=

Avivi B =3 pr(A
i=2

< (n—1ho(X)(1 + g)*QT“, )
where

1+ 272 < (14 572D = exp{—2(T — 1) log(1 + 3)}

n an2
< exp{—% log (H—t6 60) 1j{52/2} < 1+tan2 R (10)
For the rank-1 approximation error on the left, it holds that
lpr (A) = xrxppr(A)lE = llpr(A)lF — Ixrxppr(A)|E
= lpr(E)lF — %7 Vapr (Sn) 15
= > (1= (xpvi))pr(N) = (1= (x7v1)*)pr (M)
i=1

> (1= (x7v1)*)ho(A), (11

where the second equahty is due to the orthogonal invariance for the Frobenius norm. By Eq. (8)-(11),
we then get that (1 — (x7v1)?)ho(A1) < eho()2). Hence, it holds that

ho(M) — xpho(A)xr = ho(M) — Y _(%7v4)? ) < (1= (x3v1)®)ho(A1) < ehg(Na),
i=1

which gives us \; — x . Axy < *6 by noting that hg (A1) — x7-ho(A)xr = n(\1 — x7 Ax7) and
ho(As) = 14+ n(\; — xg Axq) S 141\ — M) < 2forall i.

that ho(A1) < (1 + £)ho(X2). Consider the polynomial

T-1
ho(A1)
We can write that
thf he(A)xo ar(A)xo
XT = = .
[ t 0 ht(A)X0||2 llgr (A)xoll2
Define the index set
o= {’L : lighO(Al) < hO()\z) < ho(Al)}
Note that || > 1 since 2 € «. Let
Vo=[va - Vi), Vea=[Vi Viape o val,

Ea:diag(>@7 e 7>\|QH-1)7 2—04 = diag()\la A\o¢|-§—2a e a/\n)

We then can have g7 (A) decomposed into

ar(A) = D arM)viv] + X0, ar(N)viv)

1€a

= Vaqr(Za)VE + Vowar(E_a) VI, 2 ¢r(Ad) + ar(A_y),
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and accordingly,

X = qr(Aa)xo | qr(A-a)xo0 _ 9r(B)Ving |y ar(E-a)Viixo
llar(A)xoll2  [lgr(A)xoll2 * llar (A)xoll2 ~% llar (A)xollz
L Vay + Voo Y 2 Y xS R 1 a2

In order to analyze x; ho(A)xy = ||h§( A)xr||3, we first check ||hg( )% |12 as follows:

G TVIh(A)Vays”  (357)Tho(Za)35

1 «
1hg (A)x |12

195113 19511
)
2 Eh o(A1) > (1— *)ho(/\l) (12)
where the first inequality is by the definition of the index set. To check ||h%( A)xy (T |2, similarly
Z(-)
to Case 1, we consider the rank-1 approximation by ¢r (A _,)xo. Note that x( a) Hf{(T,u) =
X 2
% We then have the approximation inequality:
lar(A—a) =< (™) Tar(A—o)llf < (1+ tan® 60)lar (A—a) — lar (A—a)lllF (13)
Here, noting ¢ (A1) = y/ho(A1) > qr(N;) for all ¢ > 2, it holds that
lar(A—a) = x (< ™) Tar (Aol
= lar(E-)lF = 165V oaar(B-a)F = Ciga (1 — (x5 ™) Tv0)2)gd(\)
> (1= (™) V)Rab () 2 (1= () Tva)*)ho(Mw). (14)

At the same time, since it holds at ¢ = O by the definition of «, then by Fact 1 we must have that
hi(N\;) < ht(A1) forany i ¢ {1} U c. Thus, similarly to Eq. (9)-(10), we get that

= 1+6
1) ho( A
lar(A—a) — lar(A_)lilZ = Y qT<A><<n—|a|—1><1+5>*2Tho<A1><10(—2
, + tan” 6y
i¢{1}Ua
By Eq. (13)-(15), we can write that
ho(A1) — (x5 ) Tho(A_a)x ™ = ho(hy) — z@(( x5 ) Tvi)?)ho(As)

IN

ho(M) — (x5 ) Tv1)?)ho(A1) < ho(Ar)e.
Thus, it holds that

h% A (=) 2 _ h% A (=) 2 (—a)\T ho(A (—a) 1—eha( )\ 16
Ihg (A)xz V15 = [1hg (A—a)xg VI3 = (k¢ ) Tho(A—a)xy @ > (1= €)ho(A1).  (16)
By Eq. (12) with 6 = 2¢ (assuming ¢ < 1) and Eq. (16), we get that

xpho(A)xr = [[hd (A)xr 3

1h3 (AR5 + b (A)ZE ™3

1552013 1h (A3 + 155113 11 (A)x |3
(=SB + 11=513)(1 = €)ho (M)

= (1 —=eho(h),
and thus hO()\l) — X}—ho(A)XT < Eho(/\l), i.e., A\1 — X;AXT < %6.

V

Therefore, we have proved that \; — x7 Axr < Zein both cases for T' = [ ¢ log w] +1

(noting that we have taken § = 2¢ in Case 2). Finally, as long as 7 = O(1), we could write with ¢
rescaling that \; — xJ Axy < e for T = O(1log ). O

We are left with proving Fact 1 and Lemma 4.
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Proof of Fact 1 For any ¢ and x € [\, A2],
he(A) = (1+ §)he(2)
=1+n(\ - x{ Axe) = (1+ 3)(1 +n(z — x} Axt))
=1+n(A —xg AXO) (1+ %)(1 +n(z —xg AXO))
+ n(xg Axg — x; Ax;) — (1 + ) (xg Axo — x; Ax;)
= ho(A\1) — (1 §)h0( T) — 577(Xo Axg —x] Ax;) > 0,
where the last equality is by the hypothesis and Lemma 4.

Proof of Lemma 4 Let g, = Vf(x;). Then
% = ngell3 (%1 Axpir — x{ Axy)

= (x = &) T A(xs — 1&1) — x| Axi]|x; — g3

=x¢ Ax, — 2ix] A& + 08 Ag — (1+1°(|&3) %/, Ax,

=28, & + 1’8 A& — X} Axy[|&:13

=ng/ (2L+nA — x| AxD)g

> 02+ 0(An = M))II&N3 = 02 — (1 = An))lI&e]13,
where we have used that x; g; = 0 and

—x]Ag = —x]AI-xx])Ax,
= -x A(I —xx) )2Ax; = g/ ;.

Thus, when 2 — (A1 — A) > 0, i, < =5, it holds that x| Ax¢ 1 > x/ Axy.
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