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Abstract

In this paper, we study the Tiered Reinforcement Learning setting, a parallel
transfer learning framework, where the goal is to transfer knowledge from the
low-tier (source) task to the high-tier (target) task to reduce the exploration risk
of the latter while solving the two tasks in parallel. Unlike previous work, we do
not assume the low-tier and high-tier tasks share the same dynamics or reward
functions, and focus on robust knowledge transfer without prior knowledge on the
task similarity. We identify a natural and necessary condition called the “Optimal
Value Dominance” for our objective. Under this condition, we propose novel
online learning algorithms such that, for the high-tier task, it can achieve constant
regret on partial states depending on the task similarity and retain near-optimal
regret when the two tasks are dissimilar, while for the low-tier task, it can keep
near-optimal without making sacrifice. Moreover, we further study the setting with
multiple low-tier tasks, and propose a novel transfer source selection mechanism,
which can ensemble the information from all low-tier tasks and allow provable
benefits on a much larger state-action space.

1 Introduction

Comparing with individual learning from scratch, transferring knowledge from other similar tasks or
side information has been proven to be an effective way to reduce the exploration risk and improve
sample efficiency in Reinforcement Learning (RL). Multi-Task RL. (MT-RL) [29]] and Transfer
RL [26) 118}, 137] are two mainstream knowledge transfer frameworks; however, both are subject
to limitations when dealing with real-world scenarios. MT-RL studies the setting where a set of
similar tasks are solved concurrently, and the main objective is to accelerate the learning by sharing
information of all tasks together. However, in practice, in many MT-RL scenarios, the tasks are not
equally important and we are more interested in the performance of certain tasks. For example, in
robot learning, a few robots are more valuable and hard to fix, while the others are cheaper or just
simulators. Most existing works on MT-RL treat all tasks equally and focus primarily on the reduction
of the total regret of all tasks as a whole [3 18,36} [11]], with no guarantee of improving a particular
task. In contrast, transfer RL distinguishes the priority of different tasks by categorizing them into
source and target tasks and aims at transferring the knowledge from source tasks (or some side
information like value predictors) to facilitate the learning of target tasks [21} 27, 9, [10]. However, a
key assumption in transfer RL is that the source task is completely solved before the learning of the
target task, and this is not always practical. For example, in some sim-to-real domain, the source task
simulator may require a long time to solve [5], and in some user-interaction scenarios [13]], the source
and target tasks refer to different user groups and they have to be served simultaneously. In these
cases, it’s more reasonable to solve the source and target tasks in parallel and transfer the information
immediately once available.

Recently, [[13] proposed a new “parallel knowledge transfer” framework, called Tiered RL, which
is promising to fill the gap. Tiered RL considers the case when a source task M, and a target task
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Myy; are learned in parallel, by two separate algorithms Alg"® and Alg™, and its goal is to reduce
the exploration risk and regret in learning My; by leveraging knowledge transfer from M, to My;.
[13]] showed that under the strong assumption that M;, = My;, it’s possible to achieve constant
regret in learning My; while keeping regret in M|, optimal in gap-dependent setting. Yet, their
algorithm based on Pessimistic Value Iteration (PVI) [16] can be hardly applied when the assumption
My, = My; breaks, given its pure exploitation nature, making their result very restrictive.

In this paper, we study the general Tiered RL setting without prior knowledge about how similar
the tasks are[ﬂ The key question we would like to address is: Can we design algorithms s.t.: (1)
Regret in M, keeps near-optimal; (2) Regret in My; achieves provable benefits when 1/;,, and
My; are similar while retaining near-optimal otherwise? Note for Alg™®, we expect it to achieve
near-optimal regret bounds, which is reasonable since the source task is often important and our
results still hold if relaxing it. As for Alg™, we expect it to be robust, i.e., it can adaptively exploit
from M, if it is close to Mpy;, while avoiding negative transfer in other cases. Notably, our setting
strictly generalizes [[13] and is much more challenging, for balancing the exploitation from M, and
exploration from My; without prior knowledge of task similarity. We give positive answers to the
above question in this paper and demonstrate provable benefits with robust knowledge transfer for
Tiered RL framework. Below, we summarize our main contributions in three aspects.

Our first contribution is to identify essential conditions and notions about when and how our
objective is achievable. We first provide a mild condition called Optimal Value Dominance (OVD),
and in Sec. [3| we justify its necessity to our objective by a lower bound result. Our lower bound
holds even if My, is fully known to the learner, and therefore, it also justifies the necessity of
similar assumptions in previous transfer RL literatures [9}[10]. Besides, we introduce the notion of
transferable states to characterize states on which My; is expected to achieve benefits by transferring
knowledge from M ,. We believe those findings also provide useful insights for further works.

As our second contribution, in Sec.[d] we propose novel algorithms for Tiered Multi-Armed Bandit
(MAB) and Tiered RL, which can achieve robust parallel transfer by balancing between pessimism-
based exploitation from M, and optimism-based online learning in My;. Depending on the similarity
between M, and My;, our algorithms can enjoy constant regret on a proportion of state-action pairs
or even on the entire My; by leveraging information from M ,, while timely interrupting negative
transfer and retaining near-optimal regret on states dissimilar between two tasks. Moreover, in the
bandit setting, our result implies a strictly improved regret bound when My; = M} ,,, compared with
previous results under the same setting [22} [13]].

Beyond the single low-tier task setting, in many real-world scenarios, it’s reasonable to assume there
are multiple different low-tier tasks My, = {MLo }uvfl:l available. As our third contribution, in
Sec. 5] we extend our algorithm to this setting with a new source task selection mechanism. By novel
techniques, we show that, even if each M, ., may only share similarity with M on a small portion
of states, we are able to ensemble the information from each source task together to achieve constant
regret on a much larger state-action space “stitched” from the transferable state-action set in each
individual M, ., at the expense of an additional log W factor in regret. Besides, our algorithm is
still robust to model difference and retains near-optimal regret in general. Although we only study
the Tiered RL setting in this paper, we believe our task selection strategy can be applied to standard
transfer RL setting [9, [10] when multiple (partially correct) side information or value predictors are
provided, which is an interesting direction for future work. Finally, we conduct experiments in toy
examples to verify our theoretical results.

1.1 Closely Related Work

For the lack of space, we only discuss closely related work here and defer the rest to Appx. [A.2]
The most related to us is the Tiered RL framework [13]], which was originally motivated by Tiered
structure in user-oriented applications. However, they only studied the case when My; = M, which
limits the practicability of their algorithms. Although there is a sequence of work studying parallel
transfer learning in multi-agent system [25} [19], but they mainly focused on heuristic empirical
algorithms and did not have theoretical guarantees.

Transfer RL [37]], compared to learning from scratch, can reduces exploration risk of target task by
leveraging information in similar source tasks or side information [21} 27,9, [10]. Comparing with
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transfer RL setting, our parallel transfer setting has some additional challenges. Firstly, My; can only
leverage estimated value/model/optimal policy from M, with uncertainty, which implies we need
additional efforts to control failure events with non-zero probability comparing with normal transfer
RL setting. Secondly, the constraints on the optimality of Regret, (M), although reasonable,
restrict the transferable information because in M|, estimation uncertainty can only be controlled
on those states frequently visited. Moreover, none of these previous work studies how to leverage
multiple partially correct side information like what we did in Sec.[5} In MT-RL setting, the benefits
of leveraging information gathered from other tasks has been observed from both empirical and
theoretical works [31} 1318} 24, 36, 1 1]. But MTRL treats each task equally, and the reduction of total
regret over all tasks does not directly imply benefits achieved in a particular task.

2 Preliminary and Problem Formulation

Tiered Stochastic MAB and Tiered Episodic Tabular RL In Tiered MAB setting, we consider a
low-tier task M, and a high-tier task My; sharing the arm/action space A = {1,2, ..., A}. By pulling
the arm ¢ € [A] in My, or My, the agent can observe a random variable r,(¢) or i (2) € [0,1]. We
will use p1o(7) = E[rLo(7)] and ppi(i) = E[ryi(¢)] to denote the expected return of the i-th arm in
M, and My;, respectively, and note that it’s possible that pyo(7) # pmi (7).

For Tiered RL, we assume that two tasks My, = {S, A, H,PL,, L0} and My; = {S, A, H, Py, r; }
share the finite state S and action space A across episode length H (i.e. S, = S, 4, = A
for any h € [H]), but may have different time-dependent transition and reward functions P, =
{PLO’h}thl,rLo = {rLo,h}ﬁI:l and Py; = {PHi,h}thl,THi = {THLh}}If:l. W.l.o.g., we assume the
initial state s; is fixed, and the reward functions 7, and ry; are deterministic and bounded by
[0, 1]. In episodic MDPs, we study the time-dependent policy specified as 7 := {7y, ..., 7y } with
7h + S — A(Ap) for all h € [H]|, where A(Ay) denotes the probability simplex over the action
space. With a slight abuse of notation, when 7, is a deterministic policy, we use 7y, : Sp, — Ay, to
denote the deterministic mapping. Besides, we use Q7 (s,a) = E[Zgzh rh(Spryap )|sn = s,ap =
a,m], ViT(s) = Equur[QF (s, a)] to denote the value function for 7 at step h € [H], and denote
dp(-) == Pr(sp = |m)and d} (-,-) := Pr(sp, = -, as, = -|m) as the state and state-action occupancy
w.r.t. policy m. We use 7* to denote the optimal policy, and V}*, Q} , d as a short note when m = 7*.
To avoid confusion, we will specify the policy and value functions in My, and My; by Lo and Hi in
subscription, respectively. For example, in My, we have 7o := {701, -..; TLo, 1 }» QE(L):‘,L / VLE;L and
Qfon/Vions disn, dio > and similarly for My;.

Gap-Dependent Setting Throughout, we focus on gap-dependent setting [17, 23} 34} [7]]. Below we
introduce the notion of gap for M, as an example, and those for My; follows similarly. In MAB case,
the gap in My, w.r.t. arm 4 is defined as Ar (@) := max;e[a] fiLo(J) —firo(), Vi € [A], and for tabular
RL setting, we have Ar,(sp, ap) := VL*o,h(Sh) — Qﬁo’h(sh, ap),Yh € [H|, sp € Sh,ap € Ap. We
use Apo min to refer to the minimal gap such that A(sp, ap) > Apo min for all non-optimal actions
ap, and use A, = min{ALo’min, Ammin} to denote the minimal gap over two tasks. In the
gap-dependent setting, we assume Ap;n > 0.

Knowledge Transfer from Multiple Low-Tier Tasks In this case, we assume there are W >
1 different source tasks My, = { Mo}V, and all the tasks share the same state and action
spaces but may have different transition and reward function. We defer the extended framework
for this setting to Appx. [Al We specify the task index w € [W] in sub-scription to distinguish
the notation for different source tasks (e.g. Pro w,h, Ql("o)’w’ ). Moreover, we define Ay, =
min{Aro 1.min; ---» ALo,W,min, AHi,min }- FOr convenience, in the rest of the paper, we use TRL-MST
(Tiered RL with Multiple Source Task) as a short abbreviation for this setting.

Performance Measure We use Pseudo-Regret as performance measure: Regrety (My,) :=

k k

E S, Vi(s1) —Vf“(sl)}; Regrety (Myi) = E [0 Vi(s1) — V™ (s1) |, where K is
the number of iterations, {7f } X | and {nf;,} /< are generated by the algorithms.

Frequently Used Notations We denote [n] = {1, 2, ...,n}. Given a transition matrix P : § x A —
A(S), and a function V' : S — R, we use PV (sp,, a) as a short note of By p(.|s,0)[V (5")]. We will
use 4;, /ify; to denote the optimal arm in bandit setting, and 7", /7};; denotes the optimal policy in RL
setting. In TRL-MST setting, we use i}, ,, /7, ,, to distinguish different source tasks.



2.1 Assumptions and Characterization of Transferable States

Throughout the paper, we make several assumptions. The first one is the uniqueness of the optimal
policy, which is common in the literature [22} 4].

Assumption A. Both M, (or {MLO,M}ZI,/: 1) and My; have unique optimal arms/policies.

Next, we introduce a new concept called “Optimal Value Dominance” (OVD for short), which says
that for each state (or at least those states reachable by optimal policy in Mj,), the optimal value of
M, is an approximate overestimation for the optimal value of My;. In Sec. E], we will use a lower
bound to show such a condition is necessary to attain the robust transfer objective.

Assumption B. In single source task setting, we assume M, has Optimal Value Dominance (OVD)
over My, s.t., VYh € [H], for all s, € Sy (or only for those s;, with dy,, n(sn) > 0), we have:

L*o,h(sh) > Vﬁ"hh(sh) 2(1?3—“1) In TRL-MST setting, we assume each M, ., has OVD over ]\JH1

We remark that Assump. [B|is a rather mild condition that naturally holds with reward shaping. Note
that since Vi3, ;,(-) < H — h, by shifting the reward function of My, to 7, ,(-,-) = TLon(", ) + 1,
we immediately obtain the OVD property. Even though, such a reward shift may impair the set
of transferable states as we will introduce in Def.[2.2] We provide several reasonable settings in
Appx. @] including identical model [13]], small model difference, and known model difference,
where Assump. [BJis satisfied and there exists a non-empty set of transferable states. We also point
out that several existing work on transfer RL assumed something similar or even stronger [9, [10]],
which we defer a thorough discussion to Appx.

Assumption C. The learner has access to a quantity ﬁmin satisfying 0 < ﬁmin < Anin-

The final one is about the knowledge of a lower bound of A;;,, which can always be satisfied by
choosing Amm = 0. Nevertheless, it would be more beneficial if the learner has access to some

quantity Amm closer to Ap;, than 0. As we introduce below, the magnitude of Amm is related to
how we quantify the similarity between My, and My; and which states we expect to benefit from
knowledge transfer. Below we focus on the single source task setting and defer the discussion for
TRL-MST setting to Sec. [5

Definition 2.1 (¢-Close). Task My; is e-close to task My, on s, at step h for some ¢ > 0, if
Vion(sn) = Vigin(sn) < e and miy(sn) = 7o (sn)-
Definition 2.2 (\-Transferable States). State sp, is A-transferable for some A > 0, if df',(sn) > A

and Mpy; is i ﬁrl) -close to My, on sp,. The set of A-transferable states at h € [H| is denoted as Z,’L\.

We regard sj, in My, has transferable knowledge to My;, if it can be reached by optimal policy in
M;, and the optimal value and action at s, for two tasks are similar. Here the condition d} (sp) > 0
is necessary since in M, only the states reachable by 7|, can be explored sufficiently by Alg™ due
to its near optimal regret. Combining with Assump. [B} one can observe that the value difference on

transferable states are controlled by |Vi*, 1, (sn) — Vi 5 (1) = O( "“") <04 Smin) . As we will
show in Thm.[3.2)in Sec. [3] the term O(A ;) is indeed unimprovable if we expect robustness.

3 Lower Bound Results: Necessary Condition for Robust Transfer

Now we establish lower bounds that show Assump. [B]is necessary and how the magnitude of Ay
restricts the robust transfer objective. The results in this section are based on two-armed Bernoulli
bandits for simplicity, and the proofs are deferred to Appx. Bl By extending these hard instances to
RL case, there is a gap caused by the add1t10na1 in Assump. [Bland Def.|2.2f which comes from the
requirement of our algorithm design, and we leave it to the future work.

Justification for Assump. [B|We show that if Assump. [Blis violated, it is impossible to have algorithms
(AlgLO, AlgHi) to simultaneously achieve constant regret when My, = My;, while retaining sub-linear
regret for all the cases regardless of the similarity between M|, and My;. Here we require constant
regret on My, = Mpy; since we believe it is a minimal expectation to achieve benefits in transfer when

2For convenience, we include the bandit setting as a special case with H = 0; see also Def. and



the two tasks are identical. Intuitively, without Assump. [B] even if we know pyo(if,) = pmi(if,), we
cannot ensure %[, is the optimal arm in My;. Then, if (Alg™°, Alg"") can achieve constant regret on
My, = Mpy;, the algorithm must stop exploration on the arm 4 # i;  after finite steps, and thus, it
suffers from linear regret in another instance of My; where ], # ify;.

Moreover, Thm. holds even if the learner has full information of Mj,, where the setting de-
generates to normal transfer RL since there is no need to explore Mj,. This explains why similar
assumptions to Assump. [Bfare considered in previous transfer RL works [9}[10]].

Theorem 3.1. Under the violation of Assump. E] even regardless of the optimality of Alg™, for each
algorithm pair (AlgLo,AlgH'), it cannot simultaneously (1) achieve constant regret for the case when
My, = Mpy; and (2) ensure sub-linear regret in all the other cases.

A i in Tolerance Error is Inevitable Next, we show that, if My; and M, are A-close for some
A > AT, in general we cannot expect to achieve constant regret on My; by leveraging M , without
other loss. Similar to Thm. the main idea is to construct different instances for My; with different
optimal arms and cannot be distinguished within finite number of trials.

Theorem 3.2. [Transferable States are Restricted by A,y ] Under Assump. [B} regardless of the
optimality of Alg™, given arbitrary A, and arbitrary A € [A‘é‘“‘ , Amin), for each algorithm pair
(AlgL”,AlgHi), it cannot simultaneously (1) achieve constant regret for the case when My, and Mpy;

with minimal gap Anin are A-close, and (2) ensure sub-linear regret in all other cases.

4 Robust Tiered MAB/RL with Single Source Task

In this section, we study Tiered MAB and Tiered RL when a single low-tier task My, is available.
The key challenge compared with [13]] is that we do not have knowledge about whether M|, and
My are similar or not so the pure exploitation will not work. Instead, the algorithm should be able
to identify whether M, and My; are close enough to transfer by data collected so far, and balance
between the exploration by itself and the exploitation from M, at the same time.

To overcome the challenge, we identify a state-wise checking event, such that, under Assump. [B]
if sy, is transferable, the event is true almost all the time, and otherwise, every mistake will reduce
the uncertainty so the chance the event holds is limited. By utilizing it, our algorithm can wisely
switch between optimistic exploration and pessimistic exploitation and achieve robust transfer. In
Sec. we start with the MAB setting and illustrate the main idea, and in Sec. we generalize
our techniques to RL setting, and discuss how to overcome the challenges brought by state transition.

4.1 Robust Transfer in Tiered Multi-Armed Bandits

The algorithm is provided in Alg. |1l We choose Alg™ as UCB, and Alg™" as an exploitation-or-UCB
style algorithm branched by a checking event in line[7] which is the key step to avoid negative transfer.

Algorithm 1: Robust Tiered MAB

1 Imitilize: o > 2; N (i), Nk (i), it (i), ff; (i) < 0, Vi € A; f(k) := 1+ 16A4%(k +1)2
2 Pull each arm at the beginning A iterations
fork=A+1,A+2,..,K do

— . -~ . 2al (k — — . —

Ao () 4 Ato(i) + /2 argmaxi it (1), ity ¢
. N 2alog [ (k ,

b (6) = (1) — /P I ke argman k(i)

ko ks 2alog J(F) — ks
iy (1) < ifs; (4) + \/ %7 Ty < arg max; i (i).

if H]lio (Ellio) S ﬁllfh (E]]fo) +e€ and Nllfo (E]Ifo) > k/2 then 7TI]-CIi A Ellio else 7TI]—CIi A ﬁfﬁ’

+1 /~k+1
0 /:u‘Hi .

Interact Myy; / My, by 7k, /nf,; Update NJ5M /NEFL and empirical mean fif
end

Key Insights: Separation between Transferable and Non-Transferable Cases To understand our
checking event, we consider the following two cases: (1) M, and Myy; are e-close, and (2) 1}, # i},



(in the rest cases we have ify; = if, but po(if,) > pmi(if,) + €, so exploiting from My, is harmless).
Recall Assump. l in Case 1, we have pro (41 ,) < pmi(if,) + €, while in Case 2, with an appropriate

choice of ¢ (e.g. € = ;f‘“ < 34“’“ ), we have ppo (i) > pm(ify;) — ”““ > um(if,) +e+ M,

which reveals the separation between two cases. As a result, if we can construct an uncertalnty based
upper bound 7z, (i) for pui(if ), we should expect the event £ := ,uLo(lLo) < ik (iF,) + € almost
always be true in Case 1, while in Case 2, everytime & occurs and Alg™" takes i 1] - the “self-correction”
is triggered: the uncertainty is reduced so the estimation 7z, (i7", ) gets closer to pu (i}, ), and because
of the separation between p,(4f,) and i (i), ), the number of times that £ is true is limited. The
remaining issue is that we do not know py1,(7f,) and i}, and we approximate them with LCB value
¥ () and its greedy policy. The additional checking event Ny, (xf,) > k/2 is used to increase the

confidence that 7, = i}, once transfer, which also contributes to reducing the regret. Finally, to

achieve constant regret, we use « to control the total failure rate to be Zfi k=9(@) = O for some
constant C. We summarize the main result in Thm. and defer the proof to Appx.

Theorem 4.1. [Tiered MAB with Single Source Tasks] Under Assump. [A] [Bland[Q] by running Alg. [I]
with e = AZ‘“‘ and o > 2, we always have Regret j.(My;) = (ZAH,»(z‘)>O ﬁ(i) log K). Moreover,

if My; and M, are Lwin win-close, we have: Regrety(Mpi) = O3, (i)>0 ﬁ_(i) log Aﬁm ).

Comparison with [22,/13] As we can see, our algorithm can automatically achieve constant regret
if tasks are similar while retaining near-optimal otherwise. Notably, even when My; = My, our

regret bound 6(ZAHI(1)>0 AHl( )) is strictly better than O( \/AA \/ZAm(i)>0 ﬁm) in [22]] and

5(2Am(i)>0(’4 — z)(m — Af(“li‘g)z)) in [13]] under the same setting.

4.2 Robust Transfer in Tiered Tabular RL

In this section, we focus on RL setting. We provide the algorithm in Alg. [2] where we defer the
details of ModelLearning function and the requirements for Bonus function to Appx. In the
following, we first highlight our main result.

Theorem 4.2. [Tiered RL with Single Source Tasks| Under Assump. E] @and @ Cond. for Alg™

and Cond. for Bonus function, by running Alg. 2|with ¢ = 461}“4"1), a > 2, an arbitrary A > 0,
we have
Regret . (Mp;) = (SH Z Z ( il A ! ) log(SAHK)).
Amin AHi(sha ah)

h=1 (sh,ah)GSh XAh\Ci\

Here the set C; C Sj, x Aj, captures the benefitable state-action pairs to be introduced later. For
simplicity, in Thm. |4.2|above, we omit all constant terms independent with K that may include A~!,
A, orlogl/d; (- ) The complete version of Thm. can be found in Thm. As we can

serélmcomparing with pure online learning algorithms [23} |34} [7]], in our setting, My; only suffers

non-constant regret on a subset of the state-action space. The S H factor may be further improved by
choosing better Bonus functions than our Example given in Appx.

Different from the bandit setting, the state transition causes more challenges. In the following, we
first explain the algorithm design to highlight how we overcome the difficulties, and then provide the
analysis and proof sketch. Detailed proofs can be found in Appx.|[D}

Technical Challenges and Algorithm Design Similar to MAB setting, for M, we choose an
arbitrary near-optimal algorithm, and for My; we set up a state-wise checking event Z{lf(), R() <
éfﬁ, (s w]’fO, ) + € in line[15|to determine whether to exploit from M, or not. Here K,’fm 5, and @]’fn h
serve as lower and upper bounds for V{* and Qyy;, and V’fo 5, and w’fo ;, are constructed by Pessimistic
Value Iteration [16], which can be shown to converge to V[* Lo.h and 7rL0 1> Tespectively. Similar to [13],
for the choice of Alg™ and the bonus term used to construct lower/upper confidence estimation, we
consider general algorithm framework under Cond. and Cond. in Appx.

To overcome challenges resulting from state transition, we make two major modifications when
moving from MAB to RL setting. First of all, because of the constraint on the optimality of Alg"°



Algorithm 2: Robust Tiered RL
1 Input: Ratio A € (0,1); @ > 2; Auxiliary functions Bonus and ModelLearning; Sequence of
confidence level (Jy)x>1 with 6, = 1/SAH]§CY €= Amm/él(H + 1) for some Anin < Amin
2 Initialize: DY /DY < {}; Vk, V()HH,Q H+1’Vl‘];1 H+17QH1 a1 < 0.
sfork=1,2,...do

4 TLo < Alg™*(DF1);
s | {Pf,,}iL, < ModelLearning(Df; "), {bf, ,}/_, « Bonus(Df ", 6;).
6 forh=H, H—1...,1do
7 leo,h(.’ ) — InaX{O, 7nLO,h('a ) + IPILCO,hKEO,h-&-l('v ) - bfo,h(" )}
Kijo,h(') = InaXg Qlkjo,h(.7 a’)7 Eﬁo,h(') < argmaxg Ql]io,h(.7 Cl).
9 end
0 | {Pk Lhthey ModelLearnlng(Dfﬁ_l); {bfi; w1, < Bonus(Dj ', 6;).
11 forh=H,H—1...,1do
k. ™
1 Q. () maX{Q P () + Pl Vi () = b ()}
13 Qﬁi,h('v ) — min{H, rHiJl('v ) + I[DII?ILhVI-IICi,thl( ’ ) + le h( ) >}
14 for s;, € Sp, do
15 if VLO n(sn) < Qm n(8n, 7L, ) + € and max, Nf, , (sp, a) > 2k then
16 ‘ Wﬁl(sh) <+ arg max, Nfoﬁh(sh, a). // “Trust and Exploit” Branch
17 end
18 else 7. (-) < argmax, QH1 1 (-, a). // “Explore by itself” Branch ;
~ . ok
19 Vf’fi,h(sh) < min{H, QHi,h(ShaWﬁi) + %(Qﬁi,h(shaﬂﬁi) - QH?:h(Sha )}
k. xk
20 Viion(sn) = Qi (sn, )
21 end
22 end
23 Deploy mio/mhi to Mi,/My; and get 1%, /7k:; and update DF, | DE..
24 end

we cannot expect My, to provide useful information on those (s, ap) with df (sn,ar) = 0 since
they will not be explored sufficiently. Therefore, in the checking event in line we include
max, NfO’ n(8n,a) > ©(Ak) as a criterion, where X is a hyper-parameter chosen and input to the
algorithm. Intuitively, for all s, ap,, we should expect Nfo n(sn,an) =~ 6(dfo(5h, ap) - k) when k is
large enough. Therefore, by comparing [V, 0 5, With Ak, we can filter out those s, with df (s5) < A
to avoid harm from inaccurate estimation.

Secondly and more importantly, different from MAB setting, besides the error occurred at a par-
ticular step, we also need to handle the error accumulated during the back-propagation process of
value iteration. In our case, this is reflected by the loss of overestimation when we incorporate
selective exploitation into the optimism-based exploration framework. To see this, suppose at some
sh, we have an overestimation on optimal value Qyj; ;, denoted as QF; ,. When the checking cri-
terion is satisfied, if we mimic the MAB setting, i.e., assign 7 , to 7. , and update value by
Vik  (sn) < QE., (sn,mk ), when @it (sn) # mfy , (sn)» Vi, (s5) is no longer guaranteed to be
an overestimation for Vi%, , (s). As Vik, (s;,) involves in back-propagation, it will pull down the
estimation value for its ancestor states, thus reducing the chance to visit s; and slowing down the
“self-correction process” which works well in MAB setting.

The key insight to overcome such difficulty is that, if the checking event holds yet 7" (sp) #

i h Esh) the gap between @I]fh 1 (8hs o) and Qfy; 4, (sn, 7f,) should not be small, and we can show
that Qﬁi’h(sh,g’fo) ~ Qﬁi’h(sh, ) > Q;jn’h(sh, 7o) + @(—Hﬁl Awi(sn, ) with the choice of



& = O(Amin/H). Therefore, revising Q% , (s, mf,,) by adding 1/H of the gap Qf; ,, (sn,7F,) —
Qi n (5h, o) (line is enough to guarantee the overestimation. Lastly, since Qfy; ;, (sn, 77, in
unknown, we construct an underestimation Qg?h(sh, 7r,,) and use it instead. As a result, we have
the following theorem, where the clip function is defined by Clip[z|w] := x - I[z > w].

Theorem 4.3. There exists k,s; = Poly(S, A, H, A7, A;nm) such that, for all k > k., on some
event E with P(Ey,) < 30k, we have Qfy; 1,(sh, an) < QH,’ (8hyan), Vigin(sn) < Vlf,-,h(Sh),Vh €

[H], sn € Sh, an € Ayp, and

H
. . Amjn A i\Sh,Q
Vigia(s1) — VH i(51) < 2eE, x lz Clip [mln{H, b (snoan)}| i v H(4Z h)” - (D

Benefits of Knowledge Transfer We first take a look at k& > k. As implied from Eq. (I)), we can
upper bound the regret on each sy, a, by summing over the RHS of Eq. (T). Note that by Cond.

b p (sn,an) = O(%) and E[N, . (sn, an)] = ],2;11 d”lﬁi(sh, ay), we can establish the
Hi,h »@h

near-optimal regret bound with similar techniques in [23]] regardless of the similarity between My; and
My ,. Moreover, because of the knowledge transfer from M ,, we can achieve better regret bounds

for My;. In the following, we characterize three subclasses of state-action pairs, on which Alg only
suffers constant regret. First of all, for those s, € Z ,i‘ we can expect the checking event almost
always hold for arbitrary k. Hence, when k is large enough, Wﬁi’h(sh) = E’fo)h(sh) ~ T (Sh)s
implying Alg™ will almost never take sub-optimal actions at s;, since then. We denote this first
subclass as C',ll”\ = {(sh,an)|sn € 2, an # T n(Sn)}. Secondly, note that, given a state sy,

if all possible trajectories starting from s; to s; have overlap with Ci;A for some h' € [h — 1],
when F is large enough, 7y, will almost have no chance to reach s and will not suffer the regret
at s,. For convenience, we define function Block({C,; by A 17, sn) which takes True for those
states described above, and takes False for the others. Then, we define the second subclass by
cr A= = {(sn,an)[Block({C}; }h, 1»8n) = True, s, € Z;, a € Ap}. Finally, for those s, ay,
with dl*{l(sh,ah) > 0, we can show Ny, (sn,an) = dij;(sn,an)k. Therefore, bfy , (s, an) o

log k/ 4 /N{ji’ 1 (8n,an) in Eq. (I) will decay and the clipping operator will take effect, which leads to

constant regret. This third subclass is denoted by C; := {(sp,an)|df;;(sh, an) > 0}. Based on the
above discussion, we define Cﬁ = C;"l U C,)L"2 U C;; to be the benefitable states set in Thm.

For k < k¢, for the lack of overestimation, we simply use H to upper bound the value gap V* — Vi,
This results in a Poly(S, A, H,A~! Amm) burn-in term, which was omitted in Thm. since it
is independent with K. Bemdes by the definition of k,4; in Thm. we can see the trade-off of
choosing A: a smaller A can enlarge C 2 so we have constant regret on more state-action pairs, while
it also results in the delay of overestimation by the larger &, ;.

Constant Regret in the Entire MDP We may expect constant regret in the entire My; in some
special cases. Note that, if Vh € [H], Vs, with djy;(sn) > 0, s, € 27, we have Cp = S), x Ay,
Regret ;. (My;) will be independent w.r.t. K. From this perspective, if A is chosen appropriately, e.g.
A < ming, djy;(sn), we can recover the constant regret under the setting My, = My; in [13].

Choice of \ In this paper, we do not treat A as a parameter to optimize. In practice, without
prior knowledge about max,, df,(sp), one may choose A = O(1/5) to ensure some chance that
transferable states exist, since there exists at least some states satisfying dj (sn) > 1/S.

5 Robust Tiered MAB/RL with Multiple Low-Tier Tasks

Now, we focus on the case when a source task set My, := { ML, w}w 1 is available (see Frw Im
Appx.|A). Our objective is to achieve benefits on those states s, as long as there exists some task
w E [W] such that M, ., and My; are close on sy, while retaining near-optimal regret in other cases
under Assump. @ The key challenge comparing with single task case is that, Alg™ has to identify for
each state which task in M|, is the appropriate one to leverage. The main novelty and contribution
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in this section is a task selection mechanism we call “Trust till Failure”, which can automatically
adapt to the similar task if it exists. We first highlight the main results for MAB and RL setting.

Theorem 5.1. [Tiered MAB with Multiple Source Tasks] Under Assump. [A] [B| and [C] by run-
ning Alg. |3| with My, = {M&w,}}f:l and Mj,, with ¢ = % and o« > 2, we always have:
Regret ;. (My;) = O(ZAm(i)>o ﬁ(b) log(WK)). Moreover, if at least one task in My, is A‘Z‘“ -

close to Mpy;, we further have: Regret,(Mp;) = O(ZAH;(i)>O ﬁ(i) log X‘W ).

Theorem 5.2. [Tiered RL with Multiple Source Tasks] Under Assump. [A} [B| [ and Cond.

by running Alg. Elin Appx. with €= 4(%;1"1), a > 2 and any X > 0, we have
u H 1
Regret . (Mpy; :O(SH A 1 SAHWK).
egre K( H) Z Z (Amin AH{'(S}“ah)) Og( )

h=1 (sp,an)esSn x An\Cp T

Algorithm 3: Robust Tiered MAB with Multiple Source Tasks
Initilize: v > 2; N (i), N (3), L, (i), fig: (i) <= 0, Vi € A; f(k) :== 1+ 16T A%(k + 1)?
Pull each arm at the beginning A iterations. Set w* < Null.

fork=A+1,2,..,K do

forw=1,2....,W do
k(N ok (s 2alog f(K)  ~k k(s ! —k
/J‘Lo,w(l) — MLo,w(Z) + %7 7TLo,w < arg max; MLo,w(Z)v 71—Lo,w A 7rLo,w'

E N 2alog f(k k k-

HLO,’w(Z) — :uLo,w(Z) - %f(g))a ELo,w < argmax; HLo,w(Z).

end

k. PR 2alog f(k — ko

Ml’fn(l) — M’Ifn(l) + 7(11\25({)( )7 771]?11 < argmax; Mﬁi(l)-

k k k —k (. k k k

1% {w € [W] |HLo,w (ELo,u)) < /J’Hi(lLo,w) + ¢ and NLo,w(lLo,w) > k/Z}

if 78 = () then w* < Null, =f « 75

else
if wh~! #£ Null and wk=! € IF then w" + wk1!, Wfﬁ — Ellfo,wk ;
else if w* ! # Null and 3w € I* such that 7h; ' = arg max; NP, ., (i) then

\ wk —w, wfy —xf,,

end
else w* ~ Unif(Z%), = < zf .:

end

Interact with My; /{ My, }}V_, by ﬂ'ﬁi/{ﬂ'{foyw W

Update {ij AW N[ and empirical mean {ﬁ]’f;r}u W, [k for each arm.

end

For the lack of space, in the following, we only analyze the bandit setting to explain the key idea of
our task selection strategy. For the RL setting, we defer to Appx. [ the aithm Alg.[7] detailed

version of Thm. (Thm. , defintion of transferable set C;)’[W (Def.

Algorithm Design and Proof Sketch for Bandit Setting The algorithm is provided in Alg.
Comparing with Alg. [T]in single task setting, the main difference is the task selection strategy from
line [9] to line We first examine each source task with a checking event similar to single task
setting, and collect those feasible tasks passing the test to Z¥. Intuitively, for those My, .~ close
to My, we expect My ., € 7% holds almostly for arbitrary £ > 0, while for the other My, if it
takes the position of wk, following My, ,+ Will reduce the uncertainty and it will be ruled out from
T*, eventually. So we expect w* can “escape” from dissimilar source tasks but be absorbed to the
similar task if exists. Therefore, if Z* is empty, Alg" will do exploration by itself. Otherwise, we
choose one from Z* to transfer the action until it fails on the checking event. However, for any ¢ the
algorithm chosen, those “marginally similar” source tasks (denoted as My, ), which are £’-close to
My; for some €’ only slightly larger than €, may cause some trouble. Because the checking event

2), and technical details.



will finally eliminate M, g since they are not e-close, but it may occupy the position wk for a long
time before elimination, especially when ¢’ is extremely close to €. After eliminating M, z, Alght
needs to re-select one from Z%. Now since other sub-optimal arms in My; haven’t been chosen for
a long time and the confidence level §;, = O(1/k®) is decreasing, Z* will include those dissimilar
tasks again, which causes difficulty to identify the true similar task. To solve this issue, once the
previous trusted task fails, we give priority to the task recommending the same action as the previous
one (line. Asa result since My, i and My, .~ share the optimal action, after the elimination of
My, ., we can expect w” to only switch among those tasks My, ., with 7TL0 w = Thi- We highlight
this technical novelty to Lem. [5.3]below, and defer all the proofs to Appx.|E]

Lemma 5.3. [Absorbing to Similar Task] Under Assump. E] [Bland|C] there exists a constant c*, s.t.,

if there exists at least one w* € [W] such that My, .+ is "“" -close to My;, by running Alg. |3 wnh

€= % and a > 2, for any k > k* .= ¢* AO‘ZA log ZAW. e have Pr(nfy; # ify;) = O(12=2).

min

6 Experiments

In this section, we evaluate our most representative algorithm, Alg. 7, in multiple source tasks setting.

Experiments Settin We set S = A = 3 and H = 5. The details for construction of source and
target tasks are defered to Appx.|Gl We adapt StrongEuler in [23]] as online learning algorithm to
solve source tasks, and use the bonus function in [23] as the bonus function in our Alg. 7. We
evaluate our algorithm when W = 0, 1, 2, 5, where W = 0 means the high-tier task My; is simply
solved by normal online learning method (StrongEuler) without any parallel knowledge transfer. We
choose A = 0.3 ~ 1/S in Alg. 7, and in the MDP instance we test, across all S - H = 15 states, for
W =1, 2,5, the number of transferable states would be 6, 9 and 13, respectively.

We choose iteration number K = le7, where we start the transfer since k& = 5eb to avoid large
“burn-in” terms. As we can see, after the transfer starts, the regret in target task will suddenly increase
for a while, because the target task has to make some mistakes and learn from it as a result of the
model uncertainty. However, because of our algorithm design, the negative transfer will terminate
after a very short period. As predicted by our theory, by adding more and more source tasks which
can introduce new transferable states, the target task will suffer less and less regret.

6100

6000

5800

Regret

5700

===
o

VN RO

5600

4 6 8

o
o

0.5
(transfer starts)
Iterations (1e6)
Figure 1: Regret in the Target Task given Multiple Source Tasks We report the result when W
source tasks are available with W = 0, 1, 2, 5. The shadows indicate 96% confidence interval.

7 Conclusion and Future Work

In this paper, we study how to do robust parallel transfer RL when single or multiple source tasks are
avilable, without knowledge on models’ similarity. The possible future directions include relaxing
assumptions, better strategies to leveraging multiple source tasks, and identifying mild structural
assumptions allowing for more aggressive transfer, and we defer to Appx. [A.4]for more details.

3Code is available atlhttps: //github.com/jiaweihhuang/Robust-Tiered-RL
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A Extended Introduction

A.1 Tiered-RL Framework

Algorithm 4: The Tiered RL Framework with Single Low-Tier Task

Initialize D}, D}, < {}.
fork=1,2,.... K do
mf « Alg*(DF,); o, interacts with My, and collect data 7%;  DFF' = DE U {7}
mh «— Alg"(DE); 7k, interacts with My, and collect data 7f%;  Dfi' = Df, U {7k}
end

Algorithm 5: The Tiered RL Framework with Multiple Low-Tier Tasks
Initialize Df, < {}; Dy, « {}, Yw € [W].
fork=1,2,.... K do
for w € [W] do
T AlgLO(D§i71l]); 7o 4 interacts with My, ., and collect data 7%, .
Difl =Dk U {10}

Lo,w

end
mh < Alg"(DE); ki interacts with My, and collect data 7f%;  DEFT = DE U {7},
end

A.2 Other Related Works

Online and Offline RL.  In normal online RL/MAB setting, the learner targets at actively explore the
environment while balancing the trade-off between the exploration and exploitation [17} 1,123} 7,12} [15]]
Differently, motivated by many real world scenarios where historical data are available, offline RL
considers how to do pure exploitation given the pre-collected dataset without additional exploration
and new information collection, and theoretical works mainly focus on methods for sufficiently
exploitation [35} 28l 32} 16} 20, [14, 4]].

Recently, there is also a line of work studying the settings lying between pure online and offline RL,
such as hybrid setting where offline data is available for online exploration [33}130], and efficient
batched exploration with limited policy deployments [12]. Tiered RL framework can be regarded
as another approach to bridging the online and offline setting, where we do online learning in the
high-tier task with a gradually updated dataset from low-tier task for reference.

Detailed Comparison with Previous Transfer RL Paper about Assumptions The most recent
works in transfer RL are [9] and [10]]. In general we are not comparable because of our different
settings, but we can observe some similarity of our assumptions and the way to capture the transferable
states.

[9] considered the case where a predicted Q-function {Q (-, ) }L | is provided for each state action
pair, which can be regarded as {Qf, (-, )HL | in our setting. The key assumption in their paper
is the “approximate distillation” condition (Def. 3.1 in [9]]), which assumed that for each sy, there
exists ap, € Ay, such that A(sy, ap,) + max{0, Q7. (sn, an) — Qn(sn,an)} < e. However, according
to Eq. (2) in their Thm. 3.1, there is an ¢’T'H = 4¢(H + 1)T H term in the regret of their algorithm
(where T is the episode number). Therefore, in order to achieve regret sub-linear to 7', they need
€ =T~ for some o > 0. As T — +00, we have ¢ — 0, then their “approximate distillation”
condition will reduce to V{7, , (sn) > Vi, 1, (sn), which is a stronger version of our OVD condition in

Assump. [B]

As for [[10], the authors assumed that there is a value function and parameter 3 such that 5 ‘7;L (sn) (e.
V1% (sk) in our setting) forms an overestimation for V,*(sp,) in target task, which is also similar to our
Assump. [B| Besides, although they didn’t make it explicitly, to achieve provable benefits, they also

require such a overestimation 3V}, (s5) should not deviate too far away from the true value Vi (sn).
To see this, in Sec. 5.1 of [10], they use V;*(s) > A + Q}(sp, ap) to characterize state-action pairs
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with regret reduction, where @%(sm ap) =By [r(sp,an)+ BIN/hH (s")], and thﬂ has to stay close
to V;*(s) for such condition to be realizable.

Finally, both [9} [10] assumed the condition holds for each state action pair, while our Assump. |Bfcan
only require the overestimation on states reachable by optimal policy.

A.3 Examples for Assump.

Example A.1 (Identical Model [13])). For arbitrary h € [H], sp, € Sp,an € Ap, TLon(Sh,an) =
raih (Shs an)s Pain (|Shy an) = Pron(|sh, ar).

Example A.2 (Small Model Error). For arbitrary h € [H], s, € Sh,an € Ap, |Lo.n(Sh,an) —
THi,h (Shyan)| < %, IPri,n (- [80y an) — Pron(-[snyan)|li < m

Example A.3 (Known Model Difference). Suppose there exists known quantities &, and p such
that, for arbitrary h € [H], s, € Sh, ap € Ap:
ITLo.n (Shyan) — Taih(Sn, an)| < &y ||Puin(-ISh, an) — Pron(:Ish, an)ll1 < &p.

Then, one can revise the reward function of M, to r{  defined by r{  ,,(sh,an) = rion(Sh,an) +

& + (H — h)&p, and the new MDP M, = {S, A, PL,,7{,, H} has optimal value dominance on
My;.

Proofs for Examples Above Ex.[A.T]is obvious, we just prove the rest two. First of all, for arbitrary
h € [H] and sy, € S}, we should have:

Vitin () = Vion(sn) < Qi n(Sh, Ti) — Qron(Sh, M)
=i, h (Shs Tin) — TLo.h (Shs Tin) + (Prih — Pro.n) Vit ng1 (8hs i) + Pron (Vg pyr — Vo ng1) (8, )
STHi,h(Sha i) — TLo,h(Sh: i) + (]P)Hi,h - ]P)Lo,h)vﬁki,h-s-l(sha ) + ]PLo,h(Vﬁki,hH - Qfo,h+1('a ) (Shy i)

<..

H
SEMLD,W;;JZ THih (Shrs @nr) = "o, (Shry anr) + (Painy — Prons ) Vi g1 (Shrs ans)|sn]
h'=h
H
Bt [ Y Prin($ns ant) = riom (sny an)| + (H = B) - |Pripr (1 snrs ane) = Prop (-|snr, ans)|[1]sn],
h'=h
Therefore, in Example[A.2] we should expect:
A A A
Vit (sn) — V! S(H—h) 20 (= h)- (H—h) —in < _Zmin_
Hl,h(sh) Lo,h(sh)—( ) 4H(H—|—1) +< ) ( ) 4H2(H+1) = 2(H—|—1)
Besides, for Example we have:
H
Vitin(8n) — Vi n(sn) S]EMLO,Tr;i[Z THi,h (Sh/s Q') — TLoh (S ans) + &
h'=h

+(H —h)ép + (H — h) - [|Pine (|50, anr ) — Pron (-[Snrs ans) || 1]sn)
<0

Therefore, both Example [A.2] and [A.3]satisfy Assump. [B]

A.4 Detailed Discussion on Open Problems

We believe there are many interesting directions to follow in the future and highlight in three aspects:

First of all, we conjecture our unique optimal policy assumption can be relaxed and the O(%) factor
in Def.[2.2]and Def. [F.I| can be removed by advanced techniques. It’s also important to study how to
get rid of lower bound knowledge in Ay,

Secondly, in TRL-MST setting, for those s; such that there are multiple source tasks
Moy s Miowss s ML(,’wj € My, close to My;, beyond the constant regret, one may consider to

16



integrate the information from those source tasks together to further accelerate the learning; Moreover,
although we do not make it explicitly, it’s possible to combine our techniques in Sec. [5| with existing
MT-RL algorithms to develop algorithms with guarantees about the reduction on not only the total
regret but also some specific tasks.

Finally, although we show in Sec. |3| that robust transfer objective requires OVD assumption, and
the model difference tolerance is at most O (A, ), we conjecture that, there might exists milder
assumptions about the structure of source and target tasks and the prior knowledge about it, which
may eliminate out our hard instance. Additionaly, in some cases, it may be reasonable to relax the
objective by allowing some chance of negative transfer in part of target tasks. Then, we can do more
aggressive transfer without too much concern on the algorithm’s overall performance. These potential
directions are left for future work.

B Proofs for Lower Bound

Theorem 3.1. Under the violation of Assump. @ even regardless of the optimality of Alg™, for each
algorithm pair (AlgLo,AlgH’), it cannot simultaneously (1) achieve constant regret for the case when
My, = Mpy; and (2) ensure sub-linear regret in all the other cases.

Proof. Consider the two-armed bandit setting. Given arbitrary A, p € (0, 1) satisfying 0 < p— A <
<+ A, we can construct two two-armed Bernoulli bandit problem M and M’ such that:

pav (1) = par (1) =5 pu(2) = p— A5 par(2) = p+ A
We choose M to be the low-tier task, i.e. M}, = M, and choose M and M’ to be the hlgh -tier task.
Note that the minimal gap in M and M’ is A, and pps(1) = ppr (2) — A < pp (2) — 5, which
implies M, does not have optimal value dominance on My; when My, = M and My; = M !

Now, we consider the following learning process: the learner will get access to the low-tier task
My, = M, and the high-tier task Miy; will be uniformly randomly selected between M and M’, while
the learner does not know which it is. Without loss of generality, we consider deterministic algorithms

Alg™ and Alg" (since one can first generate the randomness before the learning process), i.e. for

arbitrary step k, given the interaction history 7j, := (ajy, Thi, Gfgs Thos s Gb i af ot pf oty

the policy (", 7k) produced by Alg™(7;) and Alg" () is fixed, where a’fo,rm (or af, k)
denotes the arm pulled and the reward observed in task M|, (or My;) at iteration k.

Mo, Mg
Alglo, AlgHi ‘
(Alg™°, Alg") and solve task pair (My,, My;). Note that the pseudo-regret of Alg when My; = M
can be written as:

Regret ;e (Mui; My = M) = Z Pr ng\fAlgH.(TK)NHi(Q; Ti)A. (2)
(tx)>0

In the following, we will use Pr (+) to denote the probability if the learner use algorithm pair

M, M

TK:
K Algl—0 AlgHi

where Ny;(¢; Txc ) denotes the number of times the 4-th arm is pulled in task My; in trajectory 7.

Because both M, and My; are two-armed Bernoulli bandits, and each arm in those MDPs has
non-zero probability mass on both value 0 and 1 and the algorithms are deterministic, for arbitrary

k > 1 and 7, prM > ( if and only if pr4 > 0.

AlgLo AlgH‘ (Tk) AlgLn AlgH' ( k)

Now, we consider the following probability ratio, for arbitrary 7, with pr (1)) > 0:

A, M
1 Lo AlgH‘
M, M’ M, M’
Pr Alglo, Algl-h( k) :Pr MY (THl = THl 1|ak 1) Pr Alglo AlgHi (Tk 1)

M,M -1 IM M
P AlgLo Alng (Tk}) Pr M (THI - rHl |a ) Pr AlgLo Alng (Tktfl)

(Pr ps(+) denotes the probability of event on model M)

B H Pr i (rg = TH1|aHl) > (1 — K= A)NH.(2 ) (3)

o=y Pro (rui = i lakl) 1-—pu+A

where for the first equality, we use the fact that the algorithms are deterministic, and the randomness

of r ! only depends on aIIiO 150 it cancels out; the last inequality is because that the ratio is 1 if
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afi = 1 and the ratio can be lower bounded by (1 — y — A)/(1 — p + A) otherwise, Therefore,
combining with Eq. @ we have:

Regret; (Mpi; Mpi = ZPT ﬁ/llgi\nglgm (7 ) Nui(1; 70 ) A
prtM
- Z Prﬁéﬁ{AlgH‘(TK >P ?}g;\nriAlng( K)NHi(l;TK)A
TP M (T >0 T Atglo alghi \TK
M, M 1—p-— AN,QT) .
2 > Prjato aign (7K )(m) W) Ny (15 716 ) A
TH: PrAl LZ}KA] i (TK)>0

4)

Suppose the algorithm pair (Alg™®, Alg") can achieve constant regret C' when (Myo, My;) =
(M, M), i.e

EA]gL",AlgHi,M,]\4[NHi(Z;TK)A] S 07 VK Z 1.

then, according to Markov inequality, for arbitrary constant § € (0, 1) we have:

C
M,M
PI‘A]ng7A1gH1(NH1(2 TK) < E) >1-6, VK>1. (5)
which is equivalent to (note that 7 is the random variable)
M,M
Z Py gto algh (Tk) = 146

TKZNHi(Qﬂ'K)SAL(;

Combining with Eq. @), by choosing an arbitrary constant 6 € (0, 1), for arbitrary X > 1, we have:

1-— A
Regret e (Myi; My = M') > Z Pr /]gg%mé’,m (Tk )(H/jﬁ)zvﬂ,(z ™) Ny (15 75 ) A
TKtNHi(2;TK)§%
l—p—A ¢ C

M,M
> ), P wign (T) (T 1) T (K = 05)A

7'1(:N(.|i(2'7';()<Ag
—p—=A c C
>(1-96) (——+r K- —)A
>(1-0)- (RS (K - 1)
=0(K).
which finishes the proof. O

Theorem 3.2. [ Transferable States are Restricted by A, ] Under Assump. [B] regardless of the
optimality of Alg™°, given arbitrary Ay, and arbitrary A € [ win A i), for each algorithm pair

(AlgL”, AlgH’), it cannot simultaneously (1) achieve constant regret for the case when My, and My;
with minimal gap Anin are A-close, and (2) ensure sub-linear regret in all other cases.

Proof. We can construct three two-armed Bernoullis bandit problem M, M’ and M" such that:

par(1) = gy p(2) = p— A
par (1) =p— A par(2) =p— A=A
parr () = — A, g (2) = p+ A = A

where A and y are chosen to satisfy 0 < 1 — 2A < p < p+ A, and A’ € [£ 5, A]. Note that by
construction, A is Ap;,. Now, consider the following learning process, the learner will be provided
M as the low-tier task M, and the high-tier task Myy; will be uniformly sampling from {M’, M"'}.
Easy to check that, My, = M, has optimal value dominance on My; when My; = M’ or My; = M.
Next, we want to show that, for arbitrary algorithm pair (AlgL"7 Alng), if the learner can achieve
constant regret when My; = M/, it must achieve linear regret when My; = M.
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The remaining proof is similar to the proof for Thm. 3.1} First of all, we have:

RegretK(MHi; My = M/) = Z Pr Xéi\“{;lg"" (TK)NHi(Q; TK)A' (6)
M, M’

Tr:Pr )
K Alglo AlgHi

(tx)>0

As an analogue of Eq. (3), we have:

MM’
Pr Alge, AlgH‘(T) w—A—A

M 7 ( )NH|(2 Tk)
" /
Prjgte, Alng(Tk) ptA=A
Combining with Eq. (6), we have:
M, M’ p—A—A (257
RegretK(MHi;MHi = M//) Z P AlgL" AlgH‘ (TK)(m)NH (2, K)NHI(]_,TK)A
i PrAl M ;Igm( 1)>0

)

Suppose the algorithm pair (Alg™®, Alg™) can achieve constant regret C' when (Mo, My;) =
(M, M"), we must have:

M,M’
Z Pr gt atgr (7)) =2 1—4.
T :Nui (27K )< &5
By choosing an arbitrary fixed constant § € (0, 1), for arbitrary K, we have:
1—p—A

Regret ¢ (My; My = M") > > Pr ot g (76 )(1—u+A

AlgLo Alng
7'K:NH;(2;7'K)<AL

> Y MY Lm0 S - A

)M Ny (13 750 ) A

Algho, AlgHi 1_ A AS
Tr :Nhi(2; TK)S% ILL+
—A-A" ¢ C
>(1 — 2 = " Vya(K - =
>(1-0) - (=R S (K - 5)a
=0(K).
which finishes the proof. O

C Proofs for Tiered MAB with Single Source/Low-Tier Task

Lemma C.1 (Concentration Inequality). In Alg. |l| at each iteration k, we have:

2alogf() < 2 < 1

Pr(|pzo(i) — i, (i) = N ) S e S s e
N ke s 2alog f(k) 2 1 .
Pr(| (i) — i (i)| > NEQ) ) < Tk < Sapza Vi€l

As a direct result, we have the following lemma:

Lemma C.2. [Valid Under Estimation] For arbitrary i € [A], if pr,(i) < umi(i) + €, for arbitrary
iteration k in Alg. [I| we have:

Pr(p, (i) < i) +) > 1 - .

>1— ——
F)e =1 TAme

Proof. According to Lem . w.p. at least 1 — e ) we have:

Pr(p, (1) < T (i) +2) > Pr({py (6) < jo(8)} O {pa(6) + & < Fi(6) +}) > 1

O

19

4
G

b
4AR2



Next, we recall two useful lemma: Lemma 4.2 and Lemma D.1 from [13]].

Lemma C.3 (Property of UCB; Lem 4.2 in [13]]). With the choice that f(k) = 1+ 16A%(k + 1)2,
there exists a constant c, for arbitrary i with Ar, (i) > 0 and arbitrary v € [1,4A], in UCB algorithm,
we have:

k 2 A
Pr(NE (i) > = -~ -
14

< k> —1 1+ —).
) vkzvte gyylesd 70

- k2a-1"
Lemma C.4 (Lemma D.1 in [13]). Given an arm i, we separate all the arms into two parts
depending on whether its gap is larger than Ar,(i) and define G := {1|AL, (1) > AL,(i)/2}
and G := {1| AL, (1) < Aro(i)/2}. With the choice that f(k) = 1+ 16A%(k + 1), there is a
constant ¢, such that for arbitrary i with Ar,(i) > 0, for g’fo in Algl there exists a constant ¢, such
that:
1 4|Gzpper‘

A
Pr(i =f,) < 2/k* +24/k*7Y, k> k; = Sac + ) e 5
( Lo) / / ( Le%;:m A%U(L) Aza(l) ) ( Amin )

(8)
Lemma C.5. We denote k] := 3A + ¢+ 384 log(1 + 24 )and%i =34c- A =0 log(1+ 24-),

(l) min

where c is specified in Lem. and denote kmax 1= max#i* max{k;, k}}, where k; is defined in
Lemma we have:

24 2A2

PI‘(’L* :EIZO)Zl— ZPI‘(Z:E]ZO) Z I_IQQT_W, szkmax (9)
i
k 2k k 2A
k o/ ox k %

Pr(NE, (i) > 5) > Pr(Ng, (i) > ) > 1 - ; Pr(NE (i) < 21 21 e YR K

(10)

Pr(NE (i) > &) < Pr(E (i) > &) < 2 Vk > ki 11

I‘( Lo(z) 2) I‘( Lo( ) fet 3) = W? = R (11)

Proof. By applying Lem. [C.4]and Lem. [C.3] we can obtain the results. O

Lemma C.6. For arbitrary K > A + 1 and arbitrary ko < K, and i # i}y, we have:

NHI < ko + Z {/J’L 7TL() < :qu(ﬂ-La) + 8} N {NLU(T(L()) > k/2} N {Z - 7TL()} N {Ter - Z}]

k=ko+1
2alog f(k "
+ Z H 0 > /’LHI 1) ]Vk(l()) - /J’Hi(ZHi)]
k=ko+1 Hi\'Hi
K
~k - 2aclog f(K ) _
+ Z H[MZ:‘(Z) + % — ppi(i) — Api(i) > 0] (12)
k=ko+1
Proof.
K K
NE@) =) Imfy =i <ko+ Y _ Tlmfy; =]
k=1 ko+1

<k0 + Z {/U‘L 7TL() < :U’H1(7TL0) + 6} n {NLO(TFLO) > k/2} n {7’ - 7TL()} r-){71-H1 - Z}]
k=ko+1

€1

K
3 I+ [PpE L i) - i) i)+ | S i} oty = )
k=ko+1 Hi Hi

ez
(If W}’fn = ¢ happens, one of e; and es must hold)
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For the second term, we have:
K

s 1 k . N~k 1 . .
> ot + 2B T i)~ M) > i) + [ Z5EL S i 0 (g = )
k—k0+1 i i
dalog f() .
i kzo+1 I 0 > /’I’Hl 1) Nﬁl(zﬁl) - ILLHI(ZHi)]

K
+ > T () + 20log (k) ) — Aw(i) > 0} 0 {acky = 1))

k=ko+1 Nﬁi(z)
(I[a > b] <Ta > ] +I[c > b]; I[a N b] < I[a])
s _ 201 2alog f(K
< D0 0> i) + Oj\,,‘;’iﬂ)) a3 1 by BB i) A > 0
k=ko+1 Hi\"Hi k=ko+1

where in the last step, ik (7) is defined to be the average of k random samples from reward distribution
of arm 7 in My;, and we replace Nft () in the denominator with increasing & since the indicator
function equals 1 only when {7, = z} which implies that NJ,(i) should increase by 1. O
Theorem 4.1. [Tiered MAB with Single Source Tasks] Under Assump. [A] @and [Q by running Alg. 1]
with ¢ = S22 and o > 2, we always have Regret ;. (Mpi) = O(3_A,,.(1)>0 AH( y log K). Moreover;

if My; and M, are Z““ -close, we have: Regret . (Mpy;) = (ZAm(i)>0 W log r)'
Proof. We first study the case when My; and My, satisfy Def. 2.1]

Case 1: Mpy; and My, are e-close In this case, since ¢, = ify;, we use ¢* to denote the common
optimal arm. As a result of Lem. [C.2] we have:

1
Pr(k (i) < (i) +€) 21— o
We consider the same k.« defined in Lem. as a result of Lem. [C.3] for arbitrary K > kpax + 1,
K K
k -k k
Z Pr(my; # i) < Z PT(H (%) > ity (i) + ) + Pr(Ng, (i) < 5) + Pr(i* # o)
k=Fkmax+1 k=kmax—+1

ZK: 1 24 242 24

4 A2 + k2o + k20—1 + L2a—1

k=kmax+1
o0
A? A?
S Z iaf 1 S : 20—2 °
. (20 = 2)kimax

Therefore, all we need to do is to upper bound the regret up to step knyax. In the following, we

separately upper bound E[N} k"‘a"( )] for i # i* for two cases depending on the comparison between
Ay (7) and A, (7).

Case 1-(a) 0 < AHl( ) < 4AL0(‘) Recall k; in Lem. In this case, since A (i) < Ay (i),
we have k =0(5=~ A2 0 log A ) and by taking expectation over Eq. (12):

K S 2alog f(k) .,
B[N ()] <ki + Z Pr({Nf,(x,) > } ZPT (0> Jiy (i) + NE (i) pii (4y;))
k= k +1 i

B k(i) + 1 2T i) — Ay > 0)
k=1
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K
1 2
<k; + Z k2a1 meLlJrAZ(.)(alogf )+ malog f(K) +1)
k=k;+1
(Lem. 8.2 in [17]])

Case 1-(b) Agi(i) > 4AL0(7) > 0 We introduce k; := ZHQ(% log % where cy; ; is the minimal
Hi

constant, such that when &k > S ’( ) log AQTI,?,,’ we always have k& > 256a log f(k) . Therefore, for all

INAO)
k > k;, NE (i) > % implies N]’fo( ) > %ﬁ.{(k) and we have:
Hi

Iy, (0) < i (0) + €} N NG () > }m {i = ai} 0 {mfy = i}]

:H[{Efo(@) — ,LLLo(i) + AHTI(Z) < ﬁllfh(l) + NHi(i) + ﬂHi(i*) + ,uLo(i*) — /LLO( ) +e+ A}Z( )}

) = Iy g = ) 0 gy = )
< () = ) + 25 < ) - i) — (i) + 20y Bl Auld)  Buli)
(AL (i) < A“‘(l) ; Optimal value dominance (g (i*) — pro(i*) < A'g‘“ < A“‘(l ) e < “““ < A”‘( Dy
R ar IEEARIC R
<t ) = o)+ 50 < ) — ) — 24y 0 (0t () > BT 0 i = ab) (o = )
(ALo(i) mm +e+ AHI() < Al—h(l) + AH;(l) + AH[() + A1—11( ) < 3AH1( ))
<t () — o) + 250 < 0y 1 (s 3) mff{”} N i = b} 0 = )]
PO < 7y 0) — (i) — 28Dy i = w0 ey = )]
S — o) < 2“@555 L 2oy it i) > Ay
+ I[{7a (1) — o (6) + 2a]12§(§)(k) AHl( )} N{i =l } n{rfy =i}]
<0 ~ paa() < 2T 1) — ot + ([T > S0y 0 g gy =
(13)
By taking the expectation over both sides of Eq. (12), we have:
E[NE ()
K K
kit 30 A ) < PR 3P0 = A i)+ 5 i)
k=Fk Lo k=1 Hi
K
Z ]I {lu’Hl NHI(Z) + QQJI\?E({)(]C) > AHI(Z) } N {7’ - 7TL0} N {ﬂ-Hl - Z}H
K
+ B3l i 2T i) — i) > 0]
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K K
_ 2alog f (k) X 2alog f(k) .
<ki + Z Pr(fi, (i) — po(i) < — o)t ZPT(O > Jir (i) % Hi (i)
. N, (i) N (i)
k=k;+1 0 k=1 1
K .
~ 2alog f(k Agi(i
+28[) 1) BI) _ iy » 2l
k=1
5 64
<k; + Z a7 T2+ RENG )(alogf +y/malog f(K) + 1) (Lem. 8.2 in [17])
k=k;+1
1 AK
=0( log )
AE{ ( ) Amin
Since kpax = Poly(A, ﬁ)’ combining both cases, we have:
K
Regret; (Mui) = Y Awi(i) - B[N (1)) < > Am(DE[Ng== ()] + > Pr(mfy # i)
i i7" k=kmax+1
~o(y o
A i Amin .
iF£L* H
Case 2: My; and My, are not c-close In that case, we will use {, and 7}}; to denote optimal arm
in My, and My;, respectively, and either if | = 43, but o (if,) > pLo(ify) + €, or iy, # ify; and as a
result of Assump.
ok - o o Amin % x AHi(i* )
puni (i) = pomi (i) — Dwi(iL,) < pro(ic,) + = Ani(ifo) < poify) = =52 (14)
Next, we first separate arms other than 4;, and ¢f; into three cases:
Case 2-(a) ¢ # i{,,? # ij; and 0 < AHI( ) <4Ape(i) The analysis is the same as Case 1-(a), and
we have E[NE (i)] = O(AQ( 5 log AK).
Case 2-(b) i # if,, 1 7 iy and Api(i) > 4A1e(i) > 0 The analysis is the same as Case 1-(b), and
we have E[NE (i)] = O(AQ( 5 log 2K ),
Case 2-(c) Others If if | = i}y, Mu; suffers no regret when choosing 7 = i{, and therefore:
AK AK
Regret ;- (My;) = Z ANTHO) NI—h Z Ai(7) log Z log —).
i i£i ( ) Amln i AHl ) Amm
G G Ui
In the following, we study the case when if, # if;. For arm ¢ = i, we define &k ,, =
% log 24, where ¢, is the minimal constant, such that for all k > % log 24,
we always have k > %;g)};(k) Similar to Eq. (T3), we check the following event for k& > k[
1\ "Lo
I[{py (ats) < A (ar,) + e} N NG (@) > k/2} N0 {if, = mfo} N {m = if, }]
e L [2al0g £ (k) i § ) 20 log f (k)
:H[{MEO(ZLO) - MLO(ZLO) - W < :LLI]?h(ZLo) :u’Hi(ZLo) + (/U‘Hi(ZLo) - JU’LO(ZLO)) + Nki
LO(ZLO) (’LLO)

NANG(zro) > /2 0 {if, = afy} N {7 = it }]

A (i}
ST i) = i) = | SR < i) = i) — S | 28 KO
Lo Lo

(As aresult of Eq. (T4), pmi(if,) — pro(if,) +¢ < —AHiéiE") + A;‘j"‘ < —Aﬂ'yi"))
n {Nfo(lllfo) > k/2} n {ilto = Ellfo} N {Trll-cli = Zlio}]
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<UL ) = ina(i) = | SRy < =2y 0 (8 ab) > b2} 1 (i = ko) 0y = i)

b))+ | SRl > )y 0 ) > /204 =m0 ek = i)
Lo

2alog f (k) . 2alog f(k) AHl(ZL(,) .
m] + ]H HI(ZLO) ,U’Hi('LLO) + Nk (ZLO) > } N {ﬂ'H] ZLO}]'

(15)

Therefore, by taking the expectation on both side of Eq. (I2) and leveraging the above bound, we
have:

<I[igo(ito) — pro(ite) < —

X 2alog f(k)
E[Ni(if0)] <klnax +EL Y T[Af(if,) — pwo(ify) < — ~NF ey )
k=k/ +1 To(ils)
K
~k (% <% 2a log f AH (Z -
FEL ST I ) = i) + R > S =i, )
k‘_k;na +1 (ZLO)
X 2alog f(k)
+ Z Pr(0 > fify (ify) TNEGRY fi (7))
=1 wi (i)
X [2a log F(K
+ E[Z H Ml—h ZLo AHi(iIto) > OH
k=1
2alog f(
<hfax + Z Pr(i, (i) — pro(ify) < — N’“(z)))
k:k;nax—"_l Lo
& 2orlos /(K)
+ Z Pr(0 > figg (ify) + W — pmi (i)
k=1 Hi

K .
2aclo i A (3,
+2B[Y ] 1 i) + ) 28T > Al
k=1

2 128
<kl oxt+2 +2-(1+ — (alog f(K) + v/malog f(K) + 1))
Z T PN v
1 1 AK )
" og

A%{i (l]_o) Amin

As a result, for arbitrary K, we also have:
1 AK 1 AK

Regret o (M) = ; Ai(i) - B[N (4) ; A (i) - Hl( jlog 3 —) = 0(; A %R )

et Gt Ll

O

=0(

D Proofs for RL Setting with Single Source/Low-Tier Task
D.1 Missing Algorithms, Conditions and Notations

Condition D.1 (Condition on Alg"®). Alg"® is an algorithm which returns deterministic policies at
each iteration, and there exists C, C5 only depending on S A, H and A,;, but independent of &,
such that for arbitrary k > 2, we have Pr(Exjgro 1) > 1 — ka for Eplgio i, defined below:

k _
‘ﬂ'k
Entgo ke =1 E Vio1(51) = Vig5(s1) < C1 + aCalogk}.
k=1
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Algorithm 6: ModelLearning

Input: Dataset D.
forh=1,2,...,H do
for s;, € Sh, ap € Ah do
Use Ny, (sp, ap) and Ny (sp, an, sp+1) to denote the number of times state, action (next
state) occurs in the dataset D.

A 0,
Pr(-[Shyan) <= § Nu(sn.an.)
Np(sh,ap) ?

if Ny (sn,an) = 0;
otherwise.
end

end
return {P1, Py, ...,Py}.

Remark D.2. We consider such condition to avoid unnecessary discussion on analyzing Alg™.
Although most of the existing near-optimal algorithms fixed the confidence level before the running of
algorithm, as analyzed in Appx. G in [13], one may combine those algorithms with doubling trick to
realize Cond.|D.1|for Alg™"', only at the cost of increase the the regret of Alg" to O(log? K).

Condition D.3 (Condition on function Bonus in Alg. . Given a confidence sequence {Jy, }5_, with

d1,02,...,0 € (0,1/2), we define the following event at iteration k& € [K| during the running of
Alg.[2

P log(Bs /6
Eoomsic =[] {{H' IBE) 4 (snsan) = Py a(sns an)ll < 0 (snean) < By kg(iz/k) }
), 0, NE. (oman)
(-)€{Hi,Lo}, (),n\Sh> Ch
he[H],

ShESH,anEAp

we consider the choice of Bonus such that there exists such a B; and B only depending on S, A, H
but independent of dj, k or A, and Pr(Egonus k) > 1 — 0k holds for any k € [K]E]

For simplicity, in Cond. we directly control the /;-norm of the error of model estimation. Our
analysis framework is compatible with other bonus term for sharper analysis. We provide a simple
example for the choice of By and B for completeness:

Example D.4. By Hoeffding’s inequality and union bound, w.p. 1 — 9, for all s1, sp, an, we
should have:

~ 1 S2A
Pk -P. S !
| (_)’h(sh+1|sh,ah) (),h(8h+1|3hyah)‘ = \/2N(’?)7h(8h7ah) o8 1

which implies:

log(SA/9)

H - |[BY, 1, (Isnyan) — Poyn(lsn an)|li = O(SH, [0
IPCy,n ) =Pyl )L ( N(’?)7h(8h,ah)

Therefore, one can choose B; = O(SH) and By = O(SA).

Finally, we introduce the following concentration events about the deviation of the empirical visitation
frequency and its expectation:

k k
1 % %
Econ = [ ) {{5 N dmo (s, an) — alog(2SAHK) < NI, (sn,an) <> d™(sy, a) + alog(2SAHK)}
h€[H], F=1 F=1
ShESHh,
apE€Ap

k k
1 % %
N3 S d™(sp,an) — alog(2SAHK) < Nf; 1 (sn,an) < ey d™(sp,an) +a 1og(2SAHk)}}.
k=1 %

k=1
(16)

*Note that we do not require the knowledge of A;’s to compute by, ..
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D.2 Some Basic Lemma

Lemma D.5 (Underestimation). Given a Bonus satisfying Cond. at each iteration k during the
running of Alg. |2| on the events Egonus.1; defined in Cond. Vh € [H],Vsp, € Sp,an € Ap, we
have:

k k. %
Qp,(8ny an) <Qpity (shyan) < Qi (s, an) (17)
ok *
@, (snan) Qi (snyan) < Qo p(snyan) (18)
H
Qron(5n,an) —leo’h(sh,ah) SQEﬂZU[Z min{H, b, (s, an) Ysnr, ane).- (19)
h'=h

Proof. Note that the relationship between Q™ and Q* will always hold, and therefore, we only
compare the underestimation part.

k
According to the initialization, we have Q’:h L (Shsan) = Qut, (sn,an) = Qion(sn an) at h =

H + 1. Under the event of Egenus k- at iteration &, suppose we have the inequality Eq. (T7) holds for
step h + 1 for some h € [H], then at step h, we have:

71']1.;- 77}1-% ok ﬂJI—?i k “ﬁi
QHL‘;L(SM an) = Qi'p(sh,an) = ]P)Hi,hZHi,h+1(sh7 an) = b p (Shs an) — Puin Vig'h 11 (s, an)

~ k. k k

=P, — Prin) Vi1 (5nsan) = bl (sny an) + P (Vi o — Vi 1) (sn, an)
k 5
SPHi,h(QHLh+1('a i) — Quia (s ™)) (s> an) < 0.
: - Dk T Dk
where the first inequality is because (Py; ;, — Puin) Vi), i (snyan) < H - [|Pg; ,(sh,an) —

Puin(sn,an)|i < b}’fn,h(sha ap). The proof for Eq. (I8) is similar (except Qfo , is the greedy

value 7f instead of 7). Besides,
Qon(snan) = @, , (sn,an)
=min{H, Pron Vo pi1(sh, an) — @I]fo,hzﬁo,thl(Sm an) + bfo p(sn.an)}
<min{H, (Pron — By ) Vo py1 (S an) + bfo n(snran)} + Pron (Vi a1 — Vi nr1)(sn, an)
<2min{H, by (s, an)} +Prop(Vioni1 = Qff jyy (7o) (55, an)

H
<..< QEWEU[Z min{ H, b]’fo,h, (shrsan )} sh, an]-
h'=h

O
Theorem D.6 (Extended from Thm. 4.7 in [13]]). For an arbitrary sequence of deterministic policies
b, w2, ..., 7K, there must exist a sequence of deterministic optimal policies ©'*, w%* ..., w5*, such

thatVh € [H], sp € Sp,an € Ap:

K

K K
|};dﬁ’“(sh,ah) _ I;dﬂ’“’* (sp,yan)| < Aiﬁn (];Vl*(sl) _ Vlﬂk(&))'

Proof. We first define the following events:

h H
i = A{Tkn(Sh) # Th(sn)}s Eknr = Ekpn N m 5;5,h/_1,7m Epyr 1= U Ek -
hi=1 h=1

From Thm. 4.7 in [13], we already know Z,If:l d”k(sh,ah) - fo:l d”k’*(sh,ah) >

Al. (Zszl Vif(s1) — Vfrk (51)) Next, we start with the second step in the proof of Lem.
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E.3 in [13]: by choosing ds, 4, := I[Sy, = su, A, = ap] (which equals one if the state action is
(sn,ap) at step h and otherwise 0) as reward function, we have:

A" (spyan) — d™ (sn,an) =Vi (81560, .an) — Vi (513 04,0,
h

5 k
=E » [ Z H[gkﬁ',ﬂ](vl—?;(sh'; 6Shyah) - V}:; (Sh’ ; 63h7ah)>]
h'=1
(Vir = V7' =0forall b’ > h+1)

Starting from here, we do something differently:

h
d"(snyan) = d™ (snyan) ZEe[ Y <Lk alViF (073 8sy01)] (Vi > 0)
h'=1
h
~ k
> = B[ Y 1€ a]] Vi <1
h'=1
2 - ]Esl,al,SQ,ag...,SH,aHNﬂk []I[gk\ﬂ']] = - Pr(gkﬂ'h-rk)

Therefore, combining with the results in Lem. E.3, we can conclude that:
A (sn,an) — d™ (sn,an) > — Pr(Ep.|m)

We define 7%* to be a policy that equals 7% on those states where 7* is optimal, and takes the optimal
action when 7* is non-optimal, then we have:

H
Vi (s1) = Vi (51) =B [ Y LEppar (VI (50) — Vi (1))
hljl _~ k,* k,*
B [> WEpme Vi (s0) = QR (50,7 (50)))]

1

>
Il

ZEwk [ ]I[gk,h,'frkv*]Amin] = Amin Pr(gk,wk** |7Tk)

M=

>
Il

1
k

>Amin(d™ (s, an) —d™ " (sn,an)).

Sum over all k € [K], we have

which completes the proof. O
Corollary D.7 (Unique Optimal Policy). Under Assump.[A] Thm. [D.6|implies that:

K K
ok - 1 N ok
| i (sn an) = K (s, an)| < (3 Vi als1) = Vi (s1))
k=1 g

Lemma D.8. Let F; for i,1... be a filtration and X1, ...X,, be a sequence of Bernoulli random
variables with Pr(X; = 1|F;,—1) = P; with P; being F;_1-measurable and X; being F; measurable.
It holds that

n 1 n n n
Pr(3n: » X; < 523 ~W)<e ™ Pr(@n: Y Xy>e) P-W)<e V.
t=1 t=1 t=1 t=1

Proof. The first inequality has been proven in Lemma F.4 of [6]]. Here we adopt similar techniques
to prove the second one.
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We first define m; := et~ since X, is a Bernoulli random variable with Pr(X;=1)= P, we
should have:
GPt+(1—Pt) < €Pt+(].—Pt) <1

Ex,[en ™ Fia] = ecP - el +1 T

where in the last but two step, we use e > = + 1. Therefore, M, := H?Zl my = exi=1 Xt—ePt jg g
supermartingale. By Markov inequality, we have:

E[M,]
eW

r(d Xi—eP, > W) =Pr(M, > ") < <e W,

As a result, for a fixed n, we have Pr(zzl:l Xy > eP, + W) < e=W. After a similar discussion
about stopping time as [6], we have Pr(In: Y/ | X; > eP, + W) <e V. O

As a direct result of Lem. [D.8] we have the following result:
Lemma D.9. For arbitrary k > 1, and arbitrary a > 2, Pr(Econ ;) > 1 — k%

D.3 Analysis of Alg™°

Lemma D.10 (The relationship between df, and Nfo). There exists a constant Cyccup Which is

independent of \, S, A, H and gap A, s.t., for all k > koccup = Coccup /\13"’02 log(“c/{gQSAH ),

on the events of Eqjgo ), and Econ, NE , (sh,an) > %kj implies that dj (S, an) > % > 0, and

conversely, if dj,(sn, an) > A\, we must have Nf., | (sp) > NE , (sn,7},) > 3k.

Proof. On the event of 5A1 Lo, and Econ,k- as a result of Cor. NLO n(sn,an) > %k implies:

A 1
3k < NE, 1 (snyan) < ekdio(sp,an) + alog(2SAHE) +

(C1 + aCslogk)

min

There should exists a constant ey, Such that, 2 25°Ak > alog(2SAHE) + A (01 + aCsylogk)

can be satisfied for all k£ > coccup C;X:? log( "‘Cl CQS AH ), which implies that:
)\ —e
2k — e
d* > 37 Z
Lo(Sh,an) = e Z g

On the other hand, if df ,(sp, ar) > A, on the event Econ 1, and Cor. we have:

1
NLkO’h(sh, ap) Zikdfo(smah) —alog(2SAHEk) — (C1 4+ aCylogk)

min

A 1
Zikfalog(QSAHk) -+ (C1 + aCslogk).
with the same coccup, We have:
A 3—e 3+ 2e A
NE 1 (sn) = NE 4 (snoan) > ok = =g Ak = =g Ak > Sk

which finishes the proof. O

Lemma D.11 (Convergence Speed of PVI). There exists an absolute constant cz, such that for
arbitrary fixed £ > 0 and X > 0, and for arbitrary

27172
k Z - InaX{ aBlH S log(O[HngBlBQ

A2¢2
on the event Econ, ks Eponus,k and Eygto 1, for arbitrary h € [H|, s, € Sy, with NLko,h(Sh) > % we
have

(Cl + QCQ)SH lo ClC’QSAH
Amilﬂ)‘§ s Ami]ﬂ)‘g

), 2 (20)

‘/Lt),h(sh) - ZILCU,h(Sh) < g
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Proof. As a result of Lem. @ considering cz > Coccup, ON the events of Exjgro ; and Econ, k-
NE, L (sn) > 2 implies dj,(s,) > 3. According to the Lem. for arbitrary s;, with df%, (s,) > 0

H

Vi n(sn) = Vi 5 (sn) SQEw;jO,ML(,[Z min{bg', s (s, 710), HY|sn]
h'/=h

=2 Z Z d °(Spr, T olSH) mln{bLO w(Sn, ), H}

p—
h!'=h spr,m,

= Z d °(Spry T mm{bL0 w(Shsmle)s H}
dLn ( h) h'= hsh/ 5
18

= )\ EWL07ML0 [ Z min{bllfo,h' (Sh’v ﬂ-zo)v H}|31]

h'=h

Given threshold £, we define the following set: yg n = Upspisnldiy(sn) > see7 - Note that for
those s, € S\ y;h, we have:

18 X ¢
Z Z XEWL Mo [mln{bLo h/(sh' 7TL0) H}|81] = SH )\ 36SH 5

Sh’ GS;L/\y>h

In the following, we study the bonus term for s, € yih. According to Lem. on the event of
Engo,, and Econ,k, We have:

k 1
Nfo’h(sh,ah) > §dio(5haah) ~ A (C1 + aCslogk) — alog(2SAHE).
We define:
ks, = argmin  s.t. kdf (sh,an)/4 > (C1 + aCylogk) + alog(2SAHEK), VK >k
L X X Ci+aCs)SH L

for some absolute constants ¢ and ¢, where the second step we use d}(sp,an) > A/365H.

Therefore, for k > ks, , we have:

log(B2 /) <98, log(Bs/dk)

b (Snyan) < < p :
Lo,h Nfo,h(sh’ ah) deO(sh, ah)

which implies that:

. . . . log(Ba2/6) di o (s, ) log(B2/dy)
Ew:o,MLo [mln{bfo,h(sha o) H}s1] =2di,(sh, ) - m =25 Lo Lok .
Lo » Lo

Therefore,

1 18

Z Z TEﬂf(,’MLo[min{bﬁo,h’(sh’ﬂWE0)7H}‘81]

h'=h spr €Y,

H

36 di (sp,mi,) log(Bg/ék log Bg/ék

=75 Yl v O SRS
hI:h’ShIESh/\th Sh/esh/\y>h
H

36 10g(32/5k « % 36 Slog(BQ/(Sk)

§7B1 — SH Z Z di (snr,m,) < TBIH — 5

h'=h Sp/ Esh/ \yih
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Recall that 6, = O(1/SAHk®), the RHS is less than % when:

OKB%HQS OéHSABlBQ
k> cy g log( Y ).

for some constant cj. Therefore, by choosing cz = max{c, ¢{j } we can conclude that, as long as:

aB?H?S aHSAB1By, (Cy +aC2)SH CiC,SAH
log( )s log b
>\2€2 /\f Amin>\§ Amill)\§

we have Vi% , (sn) — Vi, 5 (sn) < & O

k > cg max{

D.4 Analysis of Regret on My;

For the simplification of the notation, in the following, we will denote:

~ A
CHon) = THQY, ) (snmon) < Qhiin (s mon) + 3 N {NE b (50) > SR}

In another word, ¢ "”'(s r) = 1if and only if we will trust My, at state sj, in Alg. and therefore set
wﬁi by exploiting information from My ,. Next, we define the surplus.

Definition D.12 (Definition of Surplus in Pessimistic Algorithm setting). We define the surplus for
pessimistic estimation in My, and optimistic estimation in My;:
k Ak Tk o ik
Egii n (sn, an) =Qui p (51, an) = Prin Vg p1 (8n, an) + PrinVig'y o (sn; an) — Q) (sn, an)-
We also define:

Amin Ani(Sn,an)
4eH’ 4e

}

B85, (51 an) = Clip [E() max{

and

Qfin(shan) = ruin(sn, an) + P s Vi g (sn, an) + eBf (snoan), VAT (sn) = Qfp(sn, ).

We first show that ‘N/I_’fl 5, Will be an overestimation eventually.

Theorem 4.3. There exists k,s; = Poly(S, A, H, A7, Ar;iln), such that, for all k > ks, on some

event E with P(E),) < 30k, we have Qj; 1, (sh, an) < Q’;,m(sh,ah), Vi n(sn) < Wfi,h(sh)?Vh c
[H], sp € Sh, an € Ap, and

k. A Amin AH‘(SI a})
Viia(s1) = Vi (s1) < 2eEq [Z Clip [mln{H, 4bf,i,h(sh,ah)}| ol V; 4; L ] - (D

h=1
Proof. In this theorem, & denotes the event E oo 1, M Eonus,k N Econ k-

Part 1: Proof of Overestimation We do the proof by induction. First of all, note that the
overestimation is true for horizon h = H + 1, since all the value is zero. Next, we assume the

overestimation is true for step 2 + 1, we will show it holds for step h. We first show QF, , is an
overestimation:

Qﬁi,h(sh, an) — Q:Ii,h(sha an)
=min{H — Qfy; ,(5h, ah)aﬂpllfli,hvl-llci,h-t,-1(5hy an) + b]l—CIi7h(Sh7 an) — PuinVigi py1(Snyan)}
=min{H — Qf ,(sn,an), (Pisp, — Prin) Vit 1 (> an) + b n (sny an) + Prrin (Vi pat — Vilina1) (5noan)}

>min{H — Qi (s, an), Prtih (Vik 1 — Vitinar) (5nsan)} > 0

where the first inequality is because of event Egonus,;- In the following, we separate to three cases:

Case 1: (¥(sp,,a,) =0 In this case,

VL’Z,h(sh) = max Qllfli,h(sha a) > Qﬁi,h(sha i) = Qi pn(Shs i) = Vigin (Sn)-
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Case 2: (¥ (sp,an) = 1 and xif, , (sn) = 7y, (sn)  In this case, as a result of Lem. we have:
17 ~ * 1 ~ k. * ~ * * * *
VL]E,h(Sh) = Qllfli,h(sha ) + E(Qllfli,h(shvﬂ-f-kﬁ) - Q;?,‘h(shaﬂm)) > Qfﬁ,h(sha ) > QHi,h(3h77THi) = VHi,}L(Sh)'

Case 3: (¥(sp,,ap) = 1and ¥, ; (sn) # 7y, (sn)  This case is more complicated. Intuitively, we
want to show that after ks, in case 3, the “uncerntainty” must be high, and therefore, adding 1/H of
the uncerntainty interval will ensure the overestimation.

As aresult of Lem. , we choose k,4; by plugging £ = 461‘,“_;_“1) into Eq. (20), which yields:

B%HQS (Cl + CYCQ)SH C1CSAH
kost 1= Cost - max{am log(aHSAB1 Bs), NAZ lo A 1 (21)

for some constant c,s;. Then, for arbitrary k > k¢, on the event of Egonus, ks Econ k> Ealgto k> CaSE 3
implies that:
A
Ve (sp) = VE (sp) < ——2m
Lo,h( h) fLo,h( h) = 4(H ¥ 1)

Combining with Lem. it directly implies that 7}, ;, (s5) = 7}, 1, (sn). Therefore, in the following,
we directly use 7}’ ;, to refer E’fo h(sh). Then first observation is that, under Cond. [B| in this case,
we have:

Vﬁki,h(sh) - Qllfli,h(shv o) SVI—iki,h(Sh) - leoﬁh(sha Wfo,h) +e

=Vigin(sn) — Kfo,h(sh) +e€

which implies that:

* ~ * 1 ~ *
Vii,n (sn) SQI]fIi,h(Sha o) + H(Q’fn,h(shaﬂm) — Qfyi,n (8hy o)

~ * 1 ~ * ok *
SQfﬁ,h(Sha o) + ﬁ(Qfﬁ,h(Sha o) — QH';‘h(Shv o) (Lem.[D.5)

:‘7Llf),h(sh)

which finishes the proof for overestimation.

Part 2: Proof for Eq. (T) The following proof relies on Lem. and Lem. whose proofs
we just provide after finishing the proof for this theorem. The first observation is, for arbitrary policy

THi»
VI;,}L(Sh) - V}ﬁH}L(Sh) :Q;:Ii,h(shvﬂfli) - Q:Ii,h(shvﬂ'Hi)
=Avui(sn, mi) + Qtpip (Shy i) — Qtyi,n (Shs Thi)
=Ani(shs i) + Prin (Vi n1 — Vinha) (Shy i)

H

:EﬂHi,Mﬂl[Z AHi(sh’a ah’)|sh]' (22)
h'=h

Besides, according to the definition of EHL n, We have:
w Kk

H
. k, .

Vlg?h(sh) - V};Tif{h(sh) :e]Ew’gi[Z Efiy (snr, ans)|sn]

h'=h
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H

A ilSh’, Qp’
>6’]E Z Eth/ Sh’, ah/) - 5C11p %bh]
h'’=h €
u Ayi(spr,ans) A
Hi\5h’, Ap’ min
ZeEﬂgi [};hEﬁihl (Sh’7ah’) — IT‘S}L] —eH - ToH .
1k a Lo i Anmin
ZVHi,h(Sh) - VHi,h(Sh) - Z(VHi,h(sh) - VHi,h(Sh)) VIR

(Eq. (22) and Lem.

3 k A o
LY (Overestimation)

> (Vi) = Vith (sn) = =

k
If k. (s) # w5y (sn), since Vitin(sn) — VI;H,‘l(sh) > Agi(sp, T ), we further have:

Ayi(sp, T Amin 1

ﬂ_)l_ﬁlt k 1 ﬂ'l’ji 7Tl}-}’i
T (1) = Viih (sn) 2 5 (Vi () — Vit (o) + SHI I Smin s 2yt 3 — Vi (5m)-

otherwise,

Vﬂ'rﬁl V”)ﬁi E E_ . Vﬂ'si Vﬂ-gi
th(sh) Hi,h(sh) = th(3h77TH1)+ wH,MH;[ Hi,h+1(sh+1) - Hi,h+1(5h+1)|3h]

2Bk aig [V};;'j;z+1(sh+1) — Vi1 (8ng1) [snl.

Therefore, we have:

H
Vﬂ-gi _ Vﬂ-gi > I gk V”Si _ Vﬂ'll-lci
Hi,1(31) Hi,l(sl) = m‘}i,MHi[Z (i) ( Hi,h(sh) Hi,h(sh))]
h=1
1 T i
2§E7r’gi,MHi [Z H[Eﬁi,h](VJi,h(Sh) - VI;Hh(Sh))]
h=1

Combining Lem. |D.13|and the definition of Vl-;ﬁl (s1), we can finish the proof for Eq. (I). O

Lemma D.13 (Upper and lower bounds of the surplus). For arbitrary k, on the event of Egonus, i, we
have:

Vh € [H], Vsp, € Sp,ap € Ap, 0< EZi,h(5h7a'h) < min{H, 4b§i,h(sh,ah)}

Proof. According to Alg. [2| we should have QF; ., Vik 1. :ﬂhh+1> QH ', € [0, H]. By Lem.
and Thm. we also have V}’ﬁhﬂ( ) > ng“hﬂ( ), which implies that Ef;; , (-,-) < H. Besides,

-~ ~ o~ 7rkv
Egii n(sh:an) = (P, — Prin) Viti i (sno an) + (Prin — P )V 4 (shy an) + 26 g, (sn, an).
On the event of Egonus, &, We have 0 < Ellfn,h(Shv ap) < 4bfﬁ,h(5h» ap,), which finishes the proof. [

Lemma D.14 (Relationship between surplus and overestimation gap). Under the same condition of
Thm.

H

~ ﬂ,k_
Vign(sn) — Vi (sn) < 6Eﬂgi,Mﬁi[Z Efin (Shy )| sn).-
h'=h
Proof.
~ ok ~ —
Vl-ﬁ,h(sh) - VHit{Ilz(Sh) < Vk]ﬁ,h(sh) Vi h > (sn) (Lem. @)
1., = . . ~ -
<(1+ ﬁ)(Qfﬁ,h(sh, Th) — QHT“h (5p, ) (Update rule in Alg. and an’h > QH?";;“)
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1

—a+ E)(QHI W (sn, T — Py hVH1 h+1(8ha7TH1) + Pui hVH1 ,l+1(8h,7r§n) Q:,?j}f(Sh,Wﬁi))
1 ~
+(1+ E)Pm,h(vlfi,hﬂ = Vit 1) (5, i)

1 1 ~
=(1+ H)Em n(sn, ) + (14 H)PHi,h(Vl-ﬁ,hH - Zl;li,h+l)(sha7‘—l]?li)
H

SE“Si’MHi [ Z (1 +
h'=h

1 .,
—)" 7h+1El]fli,h(5hv7rI]-€Ii)]

H
<@EW{;,MH;[Z Eﬁi,h(shaﬂﬁi)]-
h=h

In the following lemma, we show the benefits of transfer action between similar states.

Lemma D.15 (Benefits on Similar States). If sy, in My; is e-close to sy, in My, i.e. satisfying the
property in Def. n 2.1} and df,(sp) > A\ where X is the hyper-parameter in Alg. @ then, for arbitrary

. Ci+alC C,C: SAH
k > koccup = Coceup ;Azif Og(a A ), on the events Onglg’",ka5Con,kagBonus,k; we have

Wllgi(sh) = mpi(sn)-

Proof. As aresult of Lem. [D.10} we have, for arbitrary s;, with df ,(sp) = d},(sn,m],) > A, after

Ci+alCs aC1CSAH .
k > coccup FA 2 log (#3225 ), we should have:

Wl >

NLO h(sh) > NLo }L(Sh77TLO) Z k.

On the events of Epgnus, > and the value dominance condition Def. EI, we also have:

fo h(sh77TLo ) < QHI B(shon) + &

which implies that the algorithm will choose the “trust” branch and choose fy; ; (sp) = &, (sn).

On the other hand, if there is another a;, # 7], (sy) satisfying meh(sh, ap) > %k, by applying
Lem. again, we can make a contradication and therefore, we must have

A
NE b (sno ) > gk > NE o (shean),  Van # 70(sn)-

which implies that 7, (s5,) = 77 (s5) in Alg. [2| Given that sy, is e-close between My; and My, we
directly have 7f5; (s5) = 775 (sn)- O

Theorem D.16 (Detailed Version of Thm. Under Assump. E @ and @ Cond.|D - for Alg™ and

Cond. for Bonus function, by running Alg. with €= 4(AH+1) a > 2, anany \ > 0, we have

3SH4 H AH
Regret ;. (My;) :O(H . max{a)iT log(aSAH), (1 —;2202)5 log CIAC%?)\ }

min min

A SH? | o, 1
+>> X log(SAH (K 7AAmind,§i(sh)))

h=1 (Sh,ah,)GC; min

H
H 1
+ SHZ Z (Amin " AHi(Sh,ah))log(SAHK)>
h=1 (sp,an) €S X Ap\C}

:O(SHZH: 3 Ny )log(SAHK)). (23)

JAN. Apgi(sy,a
h=1 (sp,an)eSn x A\CE " #i($h: @n)
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Proof. We consider ksiqrt := max{kost, Koccup - We first study the regret part after k > kszqre

E[ Z VH11(51) V (1)]
k= k'start+1
K H
. . Amin AHi (5h7 ah)
< > 2E[) Clip [mm{HAbﬁi’h(sh,ah)} o VT i
k=ksrari+1 h=1
K

c c C
+ Y HPr(Ef s s UE ok U o).
k=kstart+1

H[(C:Bonus,k N gAlgLO,k N gCon,k]]

Since the failure rate for events Eponus ks Ealgle ks Econ, & 18 Only at the level of k~©() the second part
is constant, and we mainly focus on the first term. For all state action (sy, ay ), and for all k > kgiar,
we have:

min A i s
E. .« [Chp {mm{H 4le W (Sh,an) }‘ T Hi(5n ah)}

]I[gBonus,k N EAlgLO,k N EC()n,kH

k
5} o n)Clp i .45,

log(BQko‘) Arnin V AHi(Shva/h)
Nfiin(snyan)” | deH de

alog(BaK)
N}};Lh(slu ah)

(24)

k. . . Amin A i 3
<d7¥ (s, ap)Clip lmln{H, 4B, oV H (ih ah)]
e e

Under the event of Econ, k. as a result of Lem. [D.6] we have:

k! k!

1 1
NHl n(Sh,an) Z dl—h Sh,ap) —alog(2SAHE) > Z dl—h shyap) —alog(2SAHK)

20 20
We denote 7% ay, = ming s.t.VE > k, I Z, 11 dﬁ“‘(sh,ah) > alog(2SAHK). Then we have:
log(Bo K Anin . Agi(sh,
@8 <d (s, an)Clip | min{H, 8B, | —108B2K) v Bulsn a”)] e
k=1 g 4eH 4e Tsnan:
w—1 i (sh; an)

Therefore, for arbitrary sy, ay, there exists an absolute constant ¢, ,,, such that:

3 A i(sn,an)
Z E. .« [Chp min{ H, 4bH1h(5haah }‘ min Hi(Sh, an }
deH 4e
k=kstart+1
K
Sh Ah K
. . alog(BoK) | Amin . Ami(sn,an)
<H- A (s, E,. [C] H,4B ‘ y
Z Hl Sh ah)+ Z ”]ﬁa[ 1p mln{ 1 ﬁ.h(é’h,ah) de 4e ]
k=t k_TSI; ah,+1 1,
K
Tk . . 1 By K Amin A ; ,
<Copa Hog2SAHK)) + > di*(sp,a,)Clip |min{H,8B; kalog( 2 K) j| iy H(ih an)
I d HI(S a ) € e
= TSK” “h + k'=1 hsy th
o alog(B A Shyap)
<cs Hlog(2SAHK , . Cli \/72 min Hi(5n, an d
SCsy,ap Og( )+Céh7(lh /alog(QSAHK 1p 46H o "

H 1
=0 (H log(2SAHK) + Bl(A — A Ao ah))IOg(B2K)> .

As aresult, we can establish the following regret upper bound (note that kszqrt = O(Kost)):

val (s1) H11(31)}
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K H
. . Amin A ilSh,a
< Z 2B n [Z Clip [mm{H, 4bﬁi7h(sh, ap)} 1ol v = (42 h)} I[Eonus,k N Eatgro,x N Econ,k]]

k=kstart+1 h=1

K
+ Hksta'r‘t + Z H- Pr(ggonus,k U g/ElgL°7k U ggon,k)
k=kstart+1
1
=0 | kstart - H+ SAH?10g(2SAHK) + By log(B K )] -
(s > Y G A

(25)

As introduced in maintext, because of the knowledge transfer, we may expect to achieve constant
regret on some special state action pairs, and we analyze them in the following.

Type 1: (sp,ap) € C’1 U C,’}’Q: Constant Regret because of Low Visitation Probability As
discussed in Lem. , for Shp € 287/\, since kstart Z koccup ‘= Coccup C)}X:SQ IOg(aC,{giffH),

on the event of Exjeto 1 EBonus,k and Econ,k» We have Vay, # mij;(sn), dHl (sn,ar) = 0. Moreover,

according to the definition of C,’)’Q, we also have V(sp, ap) € 62’2, d;;" (sn,an) = 0. Therefore, for
al] h - [H] and (Sh7ah) c C;L\J U 62,2:

K
. . Amin A ilSh, @
> Eq[Clip {mm{H, Abfs (s an)} oV il 4’; ) T[Eponus, e N Entgto s N Econ,k]] = 0.

k=kstart+1

Type 2: (sp,an) € Cj, ie. di(sn,an) = di(sn) > 0 Because of the sub-linear regret in
k

Eq. (23), we may expect that N, ,, (s, an) ~ Zszl g‘f‘(sh, ap) ~ O(Kdf;(sh,an)) when K is

large enough. To see this, note that Zﬁ (Vi (1) — VHIH‘1(51)) [Ei Vi, 1(31) Vi (s1)] is

a martmgale difference sequence with bounded dlfference We define E i f, 1= {Z et Vi (s1) —

V}E”i(sl) > H+/2aklogk + E[Zk Vi (s1) — VHi_l(sl)]}, according to the Azuma-Hoeffding
1nequahty, we have:
72aH2k10gk) < 1
2kH? = ke
On the event of Egonus,k» Eatgle ks Econk and Eqjgii 1, as a result of Thm. @, we have:

Pr(Epgn 1) < exp(

koo
| Z ™ (snyan) — kdi(sn, an)| < Hy/2aklogk + @3)

k=1
To make sure Z%Zl d”ﬁi(sh, an) > Edii(sn, an), we expect:
k
§d1*{i(8h7 an) > H+/2aklogk + 23)
which can be satisfied by:
- s 1

for some constant c3, . As aresult, for k > max{

Poly(S, A, H, A7, A1)

min

,Ts, } + 1, we should have:

3} sap?
min A i )
Clip {mm{H 4bf, n(sn,an) }‘ 1ol i (ZZ ah)}
<Clip |min{H,8B o log(kB;) Bumin | i |88, , [ 22108k B2) | Amin
<Clip S ERY v deH | = PPN kdr (sn, an) | deH
k=1 dHi (Simah) Hi ’

(Awi(sh,ap) = 0)
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Note that 8B;,/2%MskBa)  _ gp  [2alog(kBs) %E}if can be satisfied when k£ >

kd* (gh ah) kd])-k[i(sh)
/ aH?B? aB1 By H /
Th = CL, AT (g’)l og(z- o )) for some absolute constant cf, Therefore,

min{H, 4le (sh,ah)} < %;";I“ and the regret will not increase after k: > T an

Capan max{kgfmt,Tg,“ah,Tgh, g,} = Poly(S, A, H,\7! Amlln, (dj;(sn))~1), for some absolute
constant c;, ., which implies that,

K
Inln A ilSh,Qh
[Chp min{ H, 4le n(Shyan)} i(5h, @n) [[EBonus,k N Etgto ks N Econ,k]]
4eH de
k=kstart+1
R min A i
Z Chp {mln{H 4bk. w(sh,an }‘ o H (iZ’ ah)} [[EBonus,k N Etgto ks N Econ,k]]
=kstar
! log(SAH By min{K, —— 1)
min T — .
m1n Og ? )\Amind;[i(sh)

where in last step, we use the fact that for Ay;(sp,, ap) = 0:

H 1 _ _(HB
O(Hlog(?SAHK) + Bulog(BoK) - (5 A 5 (Swh))) = O(Elog(SAHBQK))

As a summary, recall kgqre = max{kost, koccup }» We have:

BQHQS (Cl + OéCQ)SH C1C3SAH
AT log(« HSAB; Bs), AT og AN }

min min

HB, 1
log(SAHBy (K N ———
Amin Og( 2( )\Amind;:[i (Sh) )

Regret ;- (My;) =0 (H max{a———

)

an

(Sh ah)GC;i

H
+2 > Hlog(2SAHK) + By( AH_ A A (51 - ))log(BgK)>.
h=1 (sp,an)ESh x Ap\Cp min Hi(Sh, an

By considering By = O(SH) and By = O(SA) in Example[D.4} and omitting all the constant terms
independent w.r.t. K, we can rewrite the above upper bound to:

S H4 (Cl —|—O¢Og)SH C1C3SAH
AT log(aSAH), AL, log A\ }

min min

Regret ;. (Myi) =0 (H -max{e————

H
SH? 1
he=1 (Sh,,ah)GC; min minQpyj

H
H 1
sy 3 (G N o) log(SAHK))
h=1 (sp,an)ESH X Ar\C)

H
H 1
= H I AHK) ).
O(S ; Z )\(Amin A AHi(shaafh)) Og(s ))
=1 (sn,an)EShL X AR\Cy

E Proofs for Tiered MAB with Multiple Source/Low-Tier Tasks

Lemma 5.3. [Absorbing to Similar Task] Under Assump. E] @and [ there exists a constant c*, s.t.,

if there exists at least one w* € [W] such that M, is Amin_close fo My, by running Alg. |3 wzth
€= % and o > 2, forany k > k* :=c *A’A log SV we have Pr(wf, # if,) = O(w5=).

min
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Proof. In the following, we denote W* := {w € [W]lif, ., = ij5i> firo(ify o) < pomi (i) + Z’f“ }.

W = {w € (Wlifo . = 45}~ In another word, W* includes all transferable tasks, while W
includes all the tasks which share the optimal action ¢fj; regardless of whether the value function are
close enough or not.

Consider the event £ := {Ik’ € [£ k], s.t. WNZF = 0}u{3k e [5,K], 3w € W], s.t.g’f;w £
i%;}, note that on its complement: £& := {Vk' € (5, k], W* NI £ 0y n{vk ¢ [5,k], Vw €
(W], ofy . = ifow}s if 7l # dfy still happens, we must have: {Vk' € [5,k], 3w ¢ W, w €
I’“/7 wk = w}. That’s because, if ge holds, and 7K < W* for some k', no matter which task in W*
is chosen as wk', for all k € [k, k], no matter whether wk changes or not, the action we transfer is
always iy, (i.e. T, = iy;), because of the action inheritance startegy. Therefore,

Pr(nfy; # ity) <Pr(€) + Pr(E8 N {nfy; # ify})
<Pr(€) + Pr(&f N {vk' € [g,k], Jw g W, we IV, w = w))

k w
< Z gzk + Z Z PI‘ 7TLO,uJ # Z?:0,w)

k'=% k/=% w=1

PrW* NIF =0) < Pr(w* ¢ V)
+ Z ZPr (8N {vK € [ kK, Jw g W, we IV, v =w}). (26)
k! = kw 1

For the first and second term, by considering f(k) = 1+ 16 AW (k + 1)2, with a similar discussion
as Lem. and Lem we have, for arbitrary k > ke = max,,ew{kmax t» Where

kv i=c (A + A2 (2) log(l + o““W)) for some constant c is an analogue of ky,,x defined in Lem.
[C:3specified on task t:
k Wk
22 2-229AW  2.2271APT 3.22071A2
* k

> Pr(w ¢ 1%) Z > Pr(Eo # iow) < T k2a—1 " . f2a-1 T k202 = j2a-2
k=% w=lr'=3

27

Therefore, we mainly focus on the second term. We denote k" := ¢ A‘EA log (ZAW for some constant

min

¢, such that for all & > k", we always have k> 2A4. %W, Therefore, for arbitrary w ¢ W*,

min

and arbitrary k > max{kzr[r‘le(, K"} we have:

7 T 512alog f (k)
Pr(fw € ) 0 (N (i) > T8 By
= T 512a logf(%) B k T k
S PI‘({’UJ € Ik} N {Ngi(ZLo,w) 2 T} N {Nlljo,w(ZLo,w) > 5}) + Pr({Nfo,w(zLo,w) S 5})

24 E T k T 5120410gf(%)
Sm ({ML (ZLO w) < p“f—h (ZLO w) + 6} N {Nlljo,w(ZLo,w) > 5} N {Ngi(ZLo,w) 2 ﬁ})
For the second part, it equals:

k. ‘ 2alog f(k) _ ' : ' 2alog f(k)
P k (%) o ® 0\ eI < . * . * 0\ R * Vs J V)
r({/‘LLo(zLo) ML (ZLO) N]i) w(ZLO) /u’Hl(lLo) HH (1Lo) + (:u’H (1Lo) HL (7’L0)) + Nk (ZLO)
. k - 512alog f(k)
n {Nlljo,w(ZLo,w) > 5} N {N}lii(ZLo,w) 2 T})

min

20{1ng( ) ~k ik Amin 2a10gf( )
m < I (i1o) — pomi (77 1 + NE(it.) }

< Pr({ﬁllio(ilto) - MLO(iEo) -
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e k e 512alog f(k
O i) > 53 0 (Vi) > 22D

min

2alog f(k ))—i—Pr(

2108 f(k) _
NI]fo w (ZLo)

” i
Nllgi(ZLo) '

(22l S0 [20T08T () < Au

< Pr(ft (ifo) — pLo(ife) < — (ito) — puni (ir,))

Nll,co,w(i[fn ’ Hi(ZLo) - 16
1
=T k2’
Therefore, we can conclude that
. 512alog f(k) 4 2A 3A
w k k [k
vk Z max{kr[nalm k//} PI‘({U} €T } N {NHi(lLo,w) 2 Arznm }) S T . k2o + T . k2a—1 S T . k2a—1 :

Next, we are ready to upper bound the second term in Eq. (26). The key observation is that, as long
as the event {Vk' € [£ k], 3w ¢ W*, w € 7%, w* = w} happens, no matter what the sequence
{wk/}ﬁ,:k/2 is, since we only have A — 1 sub-optimal arms, and i* ., # ijy forall k' € [k/2, k],

there must be an arm which has been taken for at least ﬁ times from step k/2 to k, therefore,

k — ’ /
Pr(Vk' € (5K, FwgW", we 7, wh = w)
k YA Tk k -k k 4
<Pr(3k' € [§»k]» Jw g W, s.t. Ny (i) = NHi/Q(ZLo,w) + WA-1) 1L, weI")
a k
K k' (% K
< Z ZV PI‘({U}EI }ﬁ{NHi(ZLO,w) Z m—l, 'LUEI })
k! :g wEW*
k
, co 512alog f (k)
€Y 3 Pl TN N i) 2 =)
2 wQW* min
3. 22a IA
< sz (28)

According to the definition of k‘nlfg( and k", there must exists a constant c¢* such that
max{k”, k,[KZx} <A log AW ~. By choosing such c*, and combining Eq. (27) and Eq. (28), we
have:

3.2207142 3.920-14 164 A
k - x —
Pr(my; 7 i) < L2a—2 + L2a—2 =< (k/2)20-2 — O(k.2a—2)'
O
Lemma E.1 (Extension of Lem. [C.6). For arbitrary K > A + 1 and arbitrary 1 < ky < K, we
have:
NHl <I€0+ Z {w #NUII}O{/LL)UJI»(//T]LCO wk) <MHI(7T§0’LU]“)+€}
k=ko+1
{ Lo wk (ﬂ-fﬂ,wk) > k/2} N {7’ = lﬁ),wk} n {ﬂ-;-cli = Z}]
2alog f(k .
+ Z > (i) + N;c(.*())—ﬂm(z )]
k=ko+1 Hi\l
K 2alog f(K)
> M) + | = — (i) — Api(i) > 0] (29)
k=ko+1

We omit the proof here since it is almost the same as Lem. except that we need to specify w*.
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Theorem 5.1. [Tiered MAB with Multiple Source Tasks] Under Assump. [A] [B| and [Q by run-
ning Alg. |3 wzth My, = {My,, w}w 1 and M, with e = A‘4’“" and o« > 2, we always have:

Regrety (Mp;) = (ZAH( )>0 AH( ) log(WK)). Moreover, 1fat least one task in My, is A‘;l"" -

Wy,

close to Mpy;, we further have: Regret(Mp;) = O(3_ 5, 1)>0 AH( ) log &

min

Proof. One key observation is that when analyzing N5, we only need to analyze the second term in
Eq. (29), since the others can be directly bounded.

We first study the case when there exists w* such that My; and M, .- are e-close. As a result of
Lem. [5.3] we only need to upper bound the regret before step k*. Similar to the proof of Thm. .1}
we separate two cases for each k and i.

Case 1-(a) w* # Null, 0 < Ag(i) < 4Ap, .+ (1) In the following, we will define %m =
3+c x= O‘( 5 log(T + C‘AT) (i.e. similar to the role of k; in Lem. with specified task index t).

Lo, w

Since Ag;i(i) < 4A1, (i), we define k[W] i i=34+c- A‘ég‘(l) log(T + aAT) In this case, obviously
Hi
k[W] > kt ;. As aresult of Lem.

I{w* #Null} 0 {pg . (E'Eo,wk) < Tt (T o) €} NANE, o (T ) > B/23 0 {i = w0} 0 iy = 1]

<Ifk < ko] + I[{w® # Nu11} 0 {k > kit 0 NE o (mhy ) > B/2}]. (30)
by taking expectation, we have:
Pr(If{w® #8011} 0 (i, |, (xh, o) < Thalmhy o) +)
N AN, b (T o) > k)23 N {i = w7y e} 0 {mfy = 1))

<I[k < k] + T2a T

Case 1-(b) w* # Null, Ag;(i) > 4Ap, (1) > 0 We consider k; 1= 55~ log £, where

Afn(z)
aAW 2560 log f(k)

CH] ,i
, we always have k& > 22,0

cHi,; 1s the minimal constant, such that when k > AZ(0) log

With a similar discussion as Eq. (13)), we have:

H[{wk 7& NUll} N {leoﬂﬂk (E]]fo,wk) < ﬁllfli(ﬂfo,w’“) + 5} n {NLlfo,wk (ﬂlzo,wk) > k/2} n {Z = Elzo,wk} n {’/Tlicli - Z}]

Sﬂ[k < El} + H[{wk 7é NUll} N {{H]]jo wk (ﬂ]zo,wk) < ﬁllfli(ﬂllio,wk) + 6}}
128alog f (k)

) _— i=mF k=
{ Lowk( ) 2 A%I(Z) }m{ —Lo}m{ Hi }]
Ik < i) + T £ Nu11} 0 (A, (i) — o () < — [ 22008 (B
NLo,wk(Z)
IR0~ ali) + [ 2B L > S0y 0 (o — ), G

We denote k7 := max{ky1, ki }. Combining Eq. (30) and (1) with Eq. (29), for arbitrary K, we

have (recall that ik (7) is deﬁned to be the average of k£ random samples from reward distribution of
arm 7 in My;):

E[Ny (i)]
K N K
< [k < kil +Zk2a1 > Uk < k]
k=1 =1
K
£ Pt £ Nl 1} O {7, e (i) — fiase (1) < — W})
k=1 Lo,wk
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B (AR — i)+ 22 E ) > S0y el — )
k=1 Hi

K
# 3P0 2 (i) + inlg(f()) )

+ 3B )y 2B ) Aw) 2 0]

N

K K .

7 2 7 1 —k 2alog f(K) o Auid)
Sk[W],i+Zm+ki+2'Zm+2ZE[H[NHi(Z)+ — — pni(1) — 1 > 0]]

k=1 k=1 k=1
1
=0(—5—= logWK). (32)
50
As a result, combining with Lem. [5.3] we can conclude that:
= AW
RegretK MHI ; AHl NHl )} . ;+1 PI‘(?THI ZH] - ; A 1 0g Amm)

Next, we study the case when there is no task among {ML()71,,}»}L'/:1 close enough to My;. Similarly,
we also decompose into three cases.

Case 2-(a) w" # Null,i # ZLO wir @ 7 iy and 0 < Ap;(i) < 4Ap k(1) The result is the same

as Eq. (30)

Case 2-(b) w* # Null, i # ZLO wio§ 7 i and Agi(i) > 4Ap, o+ (i) > 0 The result is the same

as Eq. (1)

Case 2-(c) w” # Null, i = i, 0wk If ¢ ZLO wk = 't Mui suffers no regret when choosing i zLo wh
Therefore, in the following, we only study the case when i zLO wk 7 ipy- For arm i (note that i = if
T

Lo,wk

in this case) we define krnax = A’;"(’;) log 24Z where c/, . is the minimal constant, such that for
all k > A‘“( 7 log 325, we always have k > %@%J(k). With a similar discussion as Eq. (T3),

for the following event we have:
[{w # Null} n {:uL wk( ]]fo wk) < :qu(TrLo wk) + 5} N { Lo wk (Trllfn,wk) > k/z} n {7’ = Ellfo,wk} n {ﬂ—ll—cli = Z}]

2alog f(k)

Nk

H[k < k;nax] + H[{w 7& Null} N MLO wk( ) HLo,wk (Z) < - T
Lo,wk (ZLO)

}

S . 2aclog f(k Ayi
I — () + 22BN 200y
Ny (7)
Combining all the cases above, similar to Case 1, for arbitrary ¢ # ij;;, we can conclude:
E[N (i)]
X K9 X X 2alog f(k)
~ - k /\k . .
< Z]I[k < kil + Z Toa—1 T Z]I[k < ki) + ZPY({U’ # Null} N {7ir, (i) — pro(i) < — WD
k=1 k=1 k=1 k=1 Lo,w
K
O . 2alog f A (2
+EY T — i)+ 2D = 200 0 el = iy
k=1
X 2alog f(k)
+ Y Pr(0 > fif(i*) + 7Nk( T b))
k=1

N

+ g_j 4/ 2alos SK) log S — A(i) > 0]
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K

/ = k ~k ) 2alog f(k)
+ ) Tk < Ky + Y Pr({w® # Nul1} 0 {7k, (i) — pro(i) < — m})
k=1 k=1 Lo,wk
K
FELS I — (i) + | ot ) By g iy
k=1 NHi(Z)
~ L . WO GO 2alog f(K Awi(i
<kwii+ ) T2a1 Thit2 > A T 3% Elffy (i) + %ﬂ) — pmi(0) — Hg(z)
k=1 k=1 k=1
1
O(Ax%n( ] logWK).
which implies:
Regret ;. (M) Z Ay;i(i NHl Z AHI( ] logWK).

i#£L* i#£L*

F Proofs for Tiered RL with Multiple Source/Low-Tier Tasks

We first introduce the notion of transferable states in this multi-source tasks setting. Comparing with
Def. we have an additional constraint on djy;(sp) > 0. This is because, to distinguish which
source task to transfer, we require s, in My; to be visited frequently enough for accurate estimation,
and it is only possible for those s;, on optimal trajectories given that we expect Regret ;- (My;) is at
least near-optimal.

Definition F.1 (\-Transferable States in TRL-MST). Given any A > 0 we say sp, is A-transferable if
diu(sp) > 0, and 3w € [W], such that d} , (sp) > A and My; i Amin __close t0 M, . on state

Lo,w S 1H+D
sp. Weuse Z;° W1 {0 denote the set of A-transferable state at step h € [H].

Definition F.2 (Benefitable States in TRL-MST). Similar to the single task case,
1

we define CoM"M = {(span)lsn € ZMWla, £ Tin(5n) Wiz
{(sh,ah)|Block({C/\ Whht ) = True,s, ¢ G Man e AL} and € o=
{(sh,ah)|dm(sh,ah) > 0}, which represents the three categories of state-action pairs with
constant regret. We define 62’[W] = 62’[W]’1 u C,’?’[W]’Q U Cj, which captures the benefitable
state-action pairs.

Remark F.3 (Constant Regret in Entire My;). For each individual task My, ., the additional
constraint dj;(sp) > 0 reduces the size of transferable states comparing with single task learning

setting. However, if the tasks are diverse enough, we expect C,;\’[ I'to be much larger than Ch in
Sec.[d.2land we can achieve more beneﬁts with only an additional cost of order log W. Besides, if

Vh, sp with dj;(sn) > 0 we have s, € Z;” MW , then, C)‘ W _ = Sy, X Ay, and we can achieve constant
regret for the entire Mpy;.

F.1 Additional Algorithms, Conditions and Notations

Our algorithm is provided in Alg.[7] which is extended from Alg. [2]and integrated with the “Trust till
Failure” strategy introduced in bandit setting in Alg.[3] We consider the same ModelLearning and

Bonus algorithm in Sec. m but a different condition for Alg™ listed below:

Condition F.4 (Condition on Alg"® in MT-TRL). Alg"® is an algorithm which returns deterministic
policies at each iteration for each task M;o ., € M, and there exists C, Cy only depending on
S, A, H and A,;,, but independent of k, such that for arbitrary & > 2, we have Pr(€ Alghe,[W], B) =

1-—- k% for Exjglo ()1 defined below:

k -
P
8A|gLo7[W]7k = ﬂ {Z V]j<07w71(81) — VLoI:Zu,l(Sl) < Ci + aCslog Wki}
weW L—1
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Algorithm 7: Robust Tiered RL with Multiple Low-Tier Tasks

1 Input: Ratio A € (0, 1); Bonus term computation function Bonus; Sequence of confidence level
(0k)k>1 with 0, = 1/SAHWE®; Model learning function ModelLearning.
€< Amm/4(H +1)

2 Initialize: DY <+ {} forw € [W], Dy, + {}, set

k k k
Kﬁi,hH,Q 1h+17KL0wh+1’QL0wh+17VLowh+17QL0 whir obeOforallk =1,2, ...

3fork=1,2,...do

Lo,w

4 fort:l,?,...Tdo
5 T AlgLO(D{fO i,) collect data from My, ., with 7, : update
6 {P Lo,w,h}hzl — MOdelLeaming(D’foi) {bfon oy + Bonus(Df, ., d).
7 forh=H, H—1..,1do
8 Qlli()’w)h(' ) — maX{O TLOJL('? ) + Pﬁo,w,hvllfo w, h+1(' ) - bllfo h('v )}
9 KIlfo.,w,h( ) maXg, QL 0w, h( a’)’ El}fo,w,h( ) < argmax, QLO w h( a)'
10 end
11 end
2 | {Pk it hey ModelLearmng(Dﬁfl), {bfii 1L, < Bonus(D{ ", 65).
13 forh=H,H—-1...,1do

k /\‘n'ki k . ﬂ'ki
14 Q. () maX{Ovrfn,h('v )+ P Vi (50) = 0 n (o) Vil () =

k.

7H1;tnh(.7 7Tll-cli)
15 QII-CIi,h('7 ) A min{H’ THi('ﬂ ) + Pllfli,hvl-lﬁ,h—i-l( ) + le h( ’ )}
16 for s;, € S;, do
17 Ii, « {we [ Vo w0 (50) <

QH] (Sh’ ﬂ—Lo w, h) + E} n {ma’Xa Nfo,w,h(sh7 ) 2 %k}}
18 1fIk(sh) # () then
19 if wh=t o Nulland wh! € IF then wk <« wh~!;
20 else if w1 £ Null and Jw € I¥(sp) s.t.
ﬂ'f,l 1(5;,,) = arg max, Nio w,n(Sh, ) then wfh —w;
7 else w® < Unif(ZF ). ;
2 T (sn) < argmax, N o ) (s, a).
wk,

23 end
24 else w* < Null, nfi(sy) < argmax, Qm n(Sh,a);
25 VHLh(sh) < min{H, QHi,h(shvﬂllfIi) H(QHi,h(shvﬂlﬁi) - Qg“‘h(shaﬁﬁl))}
26 end
27 end
28 | Deploy 7y; to interact with Myy; and receive 7i; update Df; < DE U {7}
29 end
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Next, we introduce some notations. As analogues of Egonus, i and Econ, i, in single low-tier task setting,
we consider the following events:

EBonus,[W],k = ﬂ {{H H]P)l(c‘),h(sha ah) - P(-)}h(sha ah)Hl < béﬂ.),h(sha ah) < B
(-)e{Hi,Loq,...,Lor },
he[H],
S$hESh,an€Ap

k
1 3
Econwie = [ {{5 > di(sy, ap) — alog(2SAHWE) < N (sn, an)

he[H], k=1
5pLESh,
ap€ApL

:!:R"l

<oy

k=1

log(Bs /)
N(k.)’h(sh, CLh)

i(Sp,ap) + alog(2SAHWE)}

k
1 %
n ( M {5 D2 dmow (snsan) — alog(2SAHWE) < N, (s1n. 1)

we[W] k=1

k N
< e dtou(sy,a) +a log(ZSAHWk)}> }

k=1
Under the choice of 6, = 1/SAHWk®, we have Pr(Eponus,jw,k) > 1 — k% Besides, as a result of
Lem. we have Pr(Econ,iw),k) > 1 — k%

F.2 Analysis

In this sub-section, we introduce the analysis for Alg.[7 We first provide several lemma and theorem
for preparation, which are extended from single task setting. We will omit the detailed proofs if they
are almost the same expect there are multiple source tasks and the additional W in the log factors.
Lemma E.5 (Lem. in TRL-MST Setting). There exists an absolute constant C[EVV ], such that for
arbitrary fixed £ > 0, and for arbitrary
W] QB%HQS aHSAB; B W (Cl +OLCQ)SH C1C3SAHW
max{ log( ), log }
)‘262 )‘5 Amin)\§ Amin)‘f

k>c[

on the event Econ (w1, k> EBonus,[w1,k And Eqjgto () ks Yh € [H], s € Sp, with NLko,h(Sh> > g‘ we
have

‘/LT),h(Sh) - ZILCU,h(Sh) < €

Lemma F.6 (Lem. in TRL-MST Setting). There exists a constant c([,lg;]up which is independent
of \,S, A, H and gap A, s.t., for all k > kLVCVC]u,, = c[oz]up C;ZO‘CQ 10g(achZSAHW) on the events

min

of Exsgro 1w,k and Econ [, k> forall w € (W], mew’h(sh,ah) > Sk implies that dm,w(sh’ah) > A 5

and conversely, if dj, w(Shyan) > A, we must have Nfaw n(sn) > N,’fo w h(shvﬂ'Za,w) > %k

Theorem F.7. [Thm. 4 m TRL-MST Setting] There exists a constant W such that, for arbitrary

overest’
k> kgz] with
27172
kost = overesf - Imnax {O[/\QT?HHI log(HSAWBlBZ), )\Afmn og AminA },

on the event of Econ, 1w, k> EBonus, (W), ks Eghe (W), 1 WE have:

Qrin(snran) <QFip(snyan),  Vigin(sn) < Vi p(sn), Vhe [H], sy € S, an € Ap.
and

Amin v Ani(sh, an)

deH de l- 63

H
ﬂ'k . .
Via(s1) — Vil (s1) < 26, [3 Clip [mm{H, AV, (s an))
h=1
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Next, we first establish a O(log K)-regret bound regardless of similarity between M, and My;, and
use it to prove Lem. [F9] which will be further used to establish the tighter bound in Thm. [5.2]

Theorem F.8 (Regret bound for general cases).

1
Regret . (M) = O (zcggt H + SAH?10g(2SAHK) + By log(BsK Z Yo (x— A% o ah))> .
h=1 sp,an Hi ’

(34)
Proof. Consider kétmt = max{k([z], k([JZLp} Similar to the proof of Thm. we can conduct
identical techniques and provide the following bounds for arbitrary sj, ap,:

K

min A i )
Z E. [Clip {mln{H 4le n(Sh,an) }‘ Toil 1 (Zh ah)}}
e
k= k‘atart+1
K
o S B Gl it ap, | 01080 B2) || A | Api(sn, an)
Z Hi Shvah)+ Z 77)1%[ 1p mln{ 5 1 Nﬁ-h(Sh,ah) deH \ de ]
k=1 k=rK 41 i
—0 (H1og(2SAHWE) + Bi(-2— A — 1 Viog(B,WK)
B & M Amin - Api(sn.an) B '
where 7% = miny, s.t. VK >k, § :, 11 dﬂ“‘(sh,ah) > alog(2SAHWK). Then, we can
conclude:

ZVHII 51) H11(81)}

K
. . Amin A ilSh, @
< Z QG]EW{; [Z Clip [mm{H, 4bﬁi,h(sh, ap)} 1cH v = (4Z h)} H[gBonus,[W],k n 5A1gL°,[W],k N gCon,[W],k“

k=) 41 h=1

star

K
C C C w
+ Z H- Pr(gBonus,[W],k U gAlgL",[W],k’ U gCon,[W],lc) +H - kLta]rt
k=h 1
1
=0 [ K™V H + SAH?10g(2SAHW K) + B log(B:;WK) | .
( K g( ! ; S;;L mm AHi(sh; ah)> g( 2 )
O

In the following, we try to show an extension of Lem. [5.3]in RL setting. To establish result, we require
some techniques to overcome the difficulty raised by state transition. We first establish sub-linear
regret bound for Alg. [7] based on the multi-task version of Eq. (I), and use it we can show that

ZZ/:k/Q diyi(sn, an) > 0 when k is large enough, which imply that 7 - (sp) = m{;;(sp) for some
ke [% k] with high probability. Under good eviznts, by our task selection strategy, we can expect if
sp € Z,;\’[W] and 7+ (sn) = 7j;(sn), from k to k, either the trusted task does not change, or it
will hand over to another one recommending the same action, which is exactly 7 (sp,).

Lemma F.9. [Absorb to Similar Task] Under Assump. BI EI Bfor all s, € Z,’L\’[W], by run-
ning Alg. H in Appx. with € = % a > 2 and arbitrary X > 0, there exists
v, = Poly(SAH, X1, mm,l/dm(sh) log W), such that, Vk > i%,, Pr(nf(sn) # mh(sn)) =
O(ga=1)-

Proof. Similar to MAB setting, we define W}, = {t € [W]|r{, ,(sn) = 75 (58), Viow,n(sh) <
Viti,w,n(50) + 302837 dioww(sh) > A} and Wy, = {t € [W|ng, . (sn) = mi5(sn), diou(sn) >
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A}. The key observation is that, when k > ka4

k 71'];-/ k
[2,143], st dyl (sp, m) > 0}
ko €2

k *
5k, Ve € Z5, mlou(sn) =l 0 (51)})-

k
k), Wi cZEYn{3K €

Pr(mi(sn) = mii(sn)) > Pr({vk' € 5

N{vk' e

Ek,3

That’s because if & 2 holds at some k', then, we can only have the following two cases: (1)

’ . . .
wk = w}, : because of & 1, we must have w® = w?, , which implies 7f;;(s,) = th(sh) as a result

Sh

Sh ’
of & 3; (2) wf; # w} : because of & 1 and & 3, w" can only transfer inside W* for k € [k, k],
k

and therefore we still have i (8n) = 7y (sp). In the following, we will provide a upper bound for
Pr(€f ), Pr(€F ), Pr(€Ly)-

On the event of Egenus,[w],k> With a similar analysis as Lem. on Q’EO Wy We have:

2

k k
PT(&EJ) < Z Pr(w}, ¢I},) < Z Pr(ggonus wk) < (/2o 1

Besides, for arbitrary s;, with dHl(sh) > 0, and arbitrary k, by Azuma-Hoeffding inequality and Thm.
- with probability at least 1 — ka , we have:

K
7Tk- * * * * 7rk-
Z dyg" (Sn, ) = Z diyi (s, miy) — H/2aklogk — E[Z Vi, (s1) — Vgt (s1)]

k'=k/2 k'=k/2

k *
:§dHi(s;L) — Hy/2aklogk — E| Z Vizia (1) (51)}

k
As a result of Thm. H+\2aklogk + E[Zszl Viiii(s1) — V};‘ji (s1)] will be sub-linear w.r.t.
k, so there exists ¢, := c5, Poly(S, A, H, 1/, 1/Amin, 1/d;y;(sn)) for some absolute constant ¢, ,

k
such that for arbitrary k > ¢, , Z:’:k /2 difi (sp, ) > 0, which implies:
1

VEk > 1, Pr(E,E,Q) Pr( Z clH1 (sp, ) =0) < T
s

Moreover, as a result of Lem. when k > kggé]up = cgﬁéhp C/{XO‘CQ log( aClC? SAH W) on the

min

event of Eyeto ], and Econ, w1,k if T € i

<, » We must have max, NLo,w,h(Sh, ) > Ak, which

implies wfo}w(sh) = arg max mew,h(sh, a). Therefore, Vk > 2 - kLVCVC]u,,:

Pr(€fs) < Z > Prft € T8} N {mig o (sn) # argmax Ni, 5 (sn,a)})

=k/2te[W]
- 4
< Z Pr(€ AlgL" wk) Pr(chn wik) < (oj2yo T

—k/2
Therefore, for arbitrary k > ls, = Inax{k:‘,,mrt7 Lsps k-LVCVCL,,} =
Poly(S, A, H, 1/, 1/ Amin, 1/df;(s1), log W), we have:

2 2 4 8
k ok
Primalon) = malon) 2 = et~ Gyt G2t 2T G

which finishes the proof. O
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Theorem F.10 (Detailed Version of Thm.[5.2). Under Assump.[A} [Bland[C} Cond.|D.3|and[F4] by
running Alg. Hm Appx.|F 1} with e = Apnin , a > 2 and arbitrary X > 0, we have|

4(H+1)
Regret - (Mpy;)
B2H25 (Cl +CKCQ)SH C1C3SAHW

=0 (H max{a NAZ log(HSAW B Bs), AT log A X }
+ Z Z Hlog(2SAHW (K A 1* ) + B log(SAHBsW (K A %))

=1 )ECA Wl AminAdHi(Sh) AHi(sha ah) AlninAdHi(Sh)

Sh,ah

u 1
+y > Hlog(2SAHW (K A s vTa—)

h— 1(5;L,a;L)EC W),2 min Hi,min

BT Vi (SAHBW(E A L )
! Amin AHi(sha ah) s ? AminAd;k],‘ymin
- B 1
1 .

+ log(SAH ByW min{ K, ——————})

h=1 (sn.an)EC} Anpin )\AmindH[(Sh)

u H 1

+3 3 H10g(2SAHWE) + Bi(5— N 3 — ))log(BgWK))

h=1 (Sh,,ah,)esh,XA;,,\(CZ\’[W]"IUCQ"[W]’Q) min Hi\5h, Uh

(35)
H 1
=O(SH Z > A log(SAHWK)).

wy Bmin  Api(sn, an)
L(sn,an)es X-Ah\ch

Proof. Consider the same kLtaL

following two types of states.

, = max {kost , occup} Similar to single task setting, we study the

Type 1: (sp,ar) € C;° MWL Cy MW12, Constant Regret because of Low Visitation Probability
For each (sp,, ap) € C’\ Wl , by leveraging Lem. [F.9] we have:

Z E,: [Clip [mln{H Ay (s an }‘ oy AHi(ZZ ah)} [Eonus,(w)k N Eatgte. (], N Econ,(w]4]]
k=klY) 41
th
= Z Ex [Chp {mm{H 4bk. w(sn,an }‘ 4“““ A (iz’ ah)} [EBonus, w1,k N Eatgte,[w),k N Econ,[w],k]]
b=kl 41
=0 (H log(2SAHW (K A ! D)+ — DU log(SAHB,W (K A ;))).
AminAdyy; (sn) Ani(sh, ap) AminAdyy (sn)
Note that different from single task setting, the convergence speed of 7k (s;,) to 5 (s5,) for s, €

2ZMW depends on dji; (sp,). Therefore, for (sp,, ap) € CA W12 e can guarantee d™(5n:21) decays

to zero only after the convergence of all its ancester states in Z 2 W1 and:

K
min A il\Sh, @
Z Ex k. [Clip |:m1n{H 4le n(8hs an }‘ deH B (42 h):| H[gBonus,[WLk N gAlgL",[W],k N 5C0n,[W]7kH
k= katart+1
ksp ap
min A i\Sh,a
< > E.[Clip [mln{H Abfs; 1 (sh, an) }‘ 1ol H1(4Z h)} I[Eonus, (w16 N Entgio, (w1,: N Econ, W), k]

h=h Lt

>We only keep non-constant terms and defer the detailed result to Eq. 3.
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1 H 1 1
=0O(Hlog(2SAHW (K N — B A log(SAHBW (K N —————)) ).
( Og( ( Alfnln)\dI’.:h min )) o ( Amin AHi(Sha ah)) Og( 2 ( Amln)\d;ﬁ ,min )))
where kg, o, = MAX,, (1] 5, €W vy, and dig g, = ming, gx (5,)>0 dg; (Sp) is the minimal
probability to reach state by opt1ma1 pohcy in Hi.
Type 2: (sp, ah) €Cr,ie. dfﬁ(sh, ap) = di;(sp) > 0 Similar to the discussion of Type 2 in the
proof of Thm. 4.2 when k > 77 for some 77 = Poly(S, A, H, A\™*, AL (diy(s)) "1, log W),
we have Zk, 1 dHi“ (sn,an) = O(kdyy;(sn)), and therefore,
K
min A ilSh,Qh
Z Ex [Clip {mln{H 4bH1h(sh,ah }‘ 1ol = (4:3 })} | EBonus, (W], k> Ealglo, (w1, k> ECon, (W], k]
ke=klyo +1
HB, 1
=0 log(SAH BoW min{K, —— .
(R toR(SAHEaW win{ K. 3 s))
Therefore, we can conclude that:
Regret ;- ( My;)
BQH2S (Cl + OéCQ)SH C1C3SAHW
—0 (H max{as) o A7 log(HSAW By By), S 52 log =222 )
1 1 B 1
+ Hlog(2SAHW (K A + L log(SAHBoW (K N ————
z_: Z & ( Arnin>\dffn(5h))> Ani(snh, an) &l 2 Amin Ay (sn)
h=1 (sh, ah)GC W1
u 1
Hlog(2SAHW (K N ———
+> > 08SAHW(K A 5y ——))
h=1 (5"}17‘7'}1)ECA (w2 ’
H 1 1
B A log(SAHBW (K N ————
* 1(Amin AHi(sha ah)) Og( ? ( AlninAd;iymin))
H
HB, 1
log(SAH BoW min{ K, ——
2 A, V0B(SAH BaW min{ K, S0 s})
h=1 (sn,an)€C};
1 H 1
Hlog(2SAHWK) + B A log(BoaWK) ).
t > o )+ Big A g o) los(BaWK))

(sh,an)€SKx AR\ (Cr VU W1h2)

We consider the similar Hoeffding bound for the choice of B; and B as Example [D.4] and by
plugging B; = O(SH) and B, = ©(SA) into the above equation and omitting all the terms
independent with K, we have:

H 1
Regret . (My;) = SHZ > Ay o ah)log(SAHWK)).
(Sh-,ah)GShX-Ah\C;);'[W] mn 1 o

G Missing Details for Experiments

Construction of Source and Target Tasks We first randomly construct the transition function of

the high-tier task My; (i.e. Py; are randomly sampled and normalized to make sure their validity).

Then, similarly, we randomly construct the reward function of My; and shift the reward function to
ensure Mpy; has unique optimal policy and Ayin g = 0.1.

Next, we construct the source tasks by randomly permute the transition matrix. In another word, for
any sy, we randomly permute a1, ag, ag to af, ab, a and assign Py, 1o(+|sp, ai) < Ppm(-|sn, a;) for
i € [3]. In this way, the Optimal Value Dominance (OVD) condition is ensured, and we can expect
some of s;, are transferable when 7’ (sp,) = 7} (sn). When the number of source tasks W > 1, we
repeat the above process and construct W different source tasks.

47

)



	Introduction
	Closely Related Work

	Preliminary and Problem Formulation
	Assumptions and Characterization of Transferable States

	Lower Bound Results: Necessary Condition for Robust Transfer
	Robust Tiered MAB/RL with Single Source Task
	Robust Transfer in Tiered Multi-Armed Bandits
	Robust Transfer in Tiered Tabular RL

	Robust Tiered MAB/RL with Multiple Low-Tier Tasks
	Experiments
	Conclusion and Future Work
	Extended Introduction
	Tiered-RL Framework
	Other Related Works
	Examples for Assump. B
	Detailed Discussion on Open Problems

	Proofs for Lower Bound
	Proofs for Tiered MAB with Single Source/Low-Tier Task
	Proofs for RL Setting with Single Source/Low-Tier Task
	Missing Algorithms, Conditions and Notations
	Some Basic Lemma
	Analysis of AlgLo
	Analysis of Regret on MHi

	Proofs for Tiered MAB with Multiple Source/Low-Tier Tasks
	Proofs for Tiered RL with Multiple Source/Low-Tier Tasks
	Additional Algorithms, Conditions and Notations
	Analysis

	Missing Details for Experiments

