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COCO-LC: Colorfulness Controllable Language-based
Colorization
Anonymous Authors

bedroom scene with a bookcase blue comforter and window

a red stop sign sitting under a couple of street signs

a light blue bicycle chained to a pole on the sidewalk in front of a red building

a brown horse in the field gazing around

(a) our language-based image colorization results (b) controllable colorization  

a couple of cats laying on top of a green / pink / yellow blanket

a man wearing a hat and a gray jacket

Figure 1: We propose COCO-LC, a novel colorfulness controllable language-based colorization framework. (a) COCO-LC
generates realistic and semantic-consistent colorization results. (b) COCO-LC allows for flexible user control over (top) color
types and (bottom) color styles.

ABSTRACT
Language-based image colorization aims to convert grayscale im-
ages to plausible and visually pleasing color images with language
guidance, enjoying wide applications in historical photo restora-
tion and the film industry. Existing methods mainly leverage large
languagemodels and diffusionmodels to incorporate language guid-
ance into the colorization process. However, it is still a great chal-
lenge to build accurate correspondence between the gray image and
the semantic instructions, leading to mismatched, overflowing and
under-saturated colors. In this paper, we introduce a novel coarse-
to-fine framework, COlorfulness COntrollable Language-based Col-
orization (COCO-LC), that effectively reinforces the image-text
correspondence with coarsely colorized results. In addition, a multi-
level condition that leverages both low-level and high-level cues
of the gray image is introduced to realize accurate semantic-aware
colorization without overflowing colors. Furthermore, we condition
COCO-LC with a scale factor to determine the colorfulness of the
output, flexibly meeting the different needs of users. We validate the
superiority of COCO-LC over state-of-the-art image colorization
methods in accurate, realistic and controllable colorization through
extensive experiments.
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1 INTRODUCTION
Color plays a pivotal role in shaping human perception of the world.
It serves not only as one of the most expressive visual elements, but
also directly influences people’s emotions through various color
styles. Image colorization aims to convert grayscale images into
color images, which has a wide applications in diverse fields such
as old photo restoration, color grading, and automatic animation
colorization. However, image colorization is an ill-posed problem
as it involves inferring a three-channel color image from a single-
channel illuminance image, which may have multiple reasonable
solutions. Despite many automatic colorization methods [9, 19, 23,
25, 35, 47] have been proposed, most of them suffer such color
ambiguity, leading to under-saturared colors with the mean of all
possible color choices. To address this issue, conditional colorization
begins to attract researchers’ interests. By imposing additional
constraints, such as language [5–7, 16, 41, 45], scribble [16, 44],
reference image [27] and palette [38, 42], the method can more
accurately render specified colors.

Recent advancement on large language models (LLMs) and dif-
fusion models empowers image processing with language guid-
ance. Compared with other visual conditions, text descriptions
are highly informative, and are simple and efficient to use. Recent
language-based image colorization methods [5, 7, 16, 41] either
train language-vision aligned models supervised by dense human
annotations, which may overfit on a small dataset and result in

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

poor quality; or employ pretrained large models such as BERT [11]
and CLIP [31] to align language domain and image domain, which,
however, is less effective in building an accurate correspondence
between gray instances and text description.

Based on the above analysis, we summarize three key require-
ments lies on the image colorization problem: (1) Realism. The
colorization results should look realistic. (2) Consistency. The col-
orization results should match the semantic content of the original
gray images. (3) Controllability.Users can flexibly adjust the color
of the output. Existing methods can only fulfill one or two require-
ments, hardly satisfying all above standards: The unconditional
ones provide no controllability and suffer under-saturation, while
the conditional ones are less flexible or fail to render semantically
correct colors, leading to color overflow and inconsistency.

To build a powerful image colorization framework that sim-
ulatenously achieves realism, consistency and controllability, we
proposeCOCO-LC forCOlorfulnessCOntrollable Language-based
Colorization. To strengthen realism, our key idea is a coarse-to-fine
framework that leverages Stable Diffusion [33], the pre-trained
cross-modality generative model, to utilize its high capability for
textual-visual modeling and powerful generative prior on the nat-
ural image distribution. To maintain the semantic consistency be-
tween gray inputs and colorization results, we further incorporate
robust multi-level conditions with both low-level and high-level
cues of the gray inputs. Finally, in order to providemore controllabil-
ity, besides color types, we develop a novel colorfulness-controllable
colorization decoder to produce results with diverse color styles
ranging from vintage, realistic, to fantastic.

Specifically, we propose a coarse-to-fine training framework. In
the coarse colorization stage, we inject features from the large-
scale cross-modality model CLIP [31] into the latent space of the
gray image. On this basis, the resulting latent codes with rich color
information are used to guide the diffusion model to generate fine-
level colorization results, which achieves accurate correspondence
between the textual color words and visual gray instances.

Additionally, we propose multi-level conditions that effectively
alleviate color overflow and mismatch issues. We design a novel
dual-branch feature extractor that aligns the feature granularity
of the low-level edge features with diffusion features for balanced
condition injection. A semantic-aware feature regularization is fur-
ther proposed to provide high-level features to improve semantical
correspondence.

In terms of controllability, brightness, hue and saturation are
three key characteristics to determine color values. While bright-
ness is determined by the gray image and the control of hue is well
studied for conditional colorization, controlling saturation remains
less explored. To this end, we design a colorfulness-controllable
colorization decoder, with a scaling factor to allow users to flexibly
choose different color styles from vintage to gorgeous styles.

With the novel designs above, COCO-LC comprehensively real-
izes realism, consistency, and controllability. Extensive experimen-
tal results demonstrate our superiority in generating high-quality
color images over both automatic and language-based state-of-the-
art baselines. In summary, our contributions are threefold:
• We propose a novel coarse-to-fine COCO-LC framework
for language-based colorization that achieves high realism,

consistency, and controllability simultaneously. We leverage
cross-modality model CLIP to build accurate correspondence
between the color words and gray instances, significantly
improving the visual-textual color consistency.
• We develop multi-level conditions with both low-level and
high-level guidance to find accurate color-semantic corre-
spondence. A novel dual-branch feature extractor is pro-
posed to align the feature granularity for balanced condition
injection, which effectively alleviates color overflow.
• We design a colorfulness-controllable decoder, which adap-
tivelty fuses the predicted color information and the original
grayscale information, allowing users to choose fantastic,
realistic or vintage colorized results to flexibly satisfy diverse
user preferences.

2 RELATEDWORKS
2.1 Automatic Colorization
Automatic colorization aims to generate plausible colorful images
from grayscale input without user guidance. Cheng et al. [9] in-
troduced the first deep-based colorization model. In view of the
imbalance of the color space, CIC [47] defines a classification loss in
the quantized 𝑎𝑏 color space rather than the traditional regression
loss, leading to more saturated results. Researchers produce models
with more plausible colorization results with Pixcolor [12]. With
the development of generative models, many researchers began
to make efforts on colorization problem with GAN [10]. Cao et
al. [4] conditioned GAN with grayscale information in multiple
layers to maintain spatial feature consistency. ChromaGAN [37]
adds color error and class distribution losses to optimize training for
colorization. BigColor [23] improves vividness through pre-trained
generative priors while suffering from color cast. DeOldify [1] uti-
lizes U-Net as the generator model with a self-attention scheme
and reduces direct GAN training time with a scheduled adversar-
ial loss. Furthermore, to utilize the long range dependency and
increase model capacity, transformer-based architectures [36] are
widely used in colorization tasks [19, 20, 25]. ColorFormer [19] de-
signs a color memory module to learn and store the semantic-color
mapping. HistoryNet [20] introduces fine-grained semantic under-
standing and classification prior to achieve accurate colorization
and prevent color overflow. Priors including class labels [18], in-
stance bounding boxes [35], and semantic segmentation maps [49]
are introduced to further guide colorization models with semantic
information. However, unconditional colorization is an ill-posed
problem, resulting in color ambiguity and under-saturation. From
the users’ perspective, lack of controllability limits the practicability
of this kind of approaches.

2.2 Language-based Colorization
With the help of the flexibility of text descriptions, language-based
colorization methods enable simple but effective control over in-
stance colors. Unicolor [16] developed a unified framework to sup-
port colorization in multiple modalities, including text descriptions.
It proposed a spatial partitioning heuristic method to align color
words and instances by leveraging CLIP [31] as zero-shot classifier,
but struggle with finer colorization ability in spatial, and can only
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Figure 2: Illustration of the proposed COCO-LC framework with three key components: (a) coarse-to-fine colorization; (b)
consistency-aware multi-level condition; (c) colorfulness controllable colorization.

deal with several classic colors. L-CoDe [41] introduced an color-
object correspondence matrix and an attention transfer module
to address the color-instance coupling problem, along with a soft-
gated injection module for resolving the color-object mismatch is-
sue. L-CoDer [5] introduced transformers [36] into language-based
colorization to deal with inaccuracy while keeping the language
decoupling property. However, both L-CoDe [41] and L-CoDer [5]
need to create an additional color-instance decoupling module to
align colors with gray instances. This module have to train on
extra human annotations, resulting in more training cost. Thus,
L-CoIns [7] achieved instance awareness with the grouping mech-
anism to adaptively aggregate similar image patches without ad-
ditional annotations. Furthermore, L-CAD [6] reduces the depen-
dence of colorization on the precision of language guidance by
using a pretrained diffusion model with rich color priors and supe-
rior cross-modal capability. However, it lacks the ability to generate
high-resolution colorized images due to the cost of fine-tuning.

2.3 Diffusion-based Image Colorization
Recently, diffusion model shows its advantages in image gener-
ation [32, 33], image editing [34] and image restoration [29, 43].
As diffusion models hold high-quality color and semantic priors
with the benifit from large-scale pretraining, L-CAD [6] designs
a luminance-guided compression module and merge latent codes
of grayscale images into diffusion process to maintain accurate
structure when fine-tuning the Stable Diffusion [33]. Diffusing
Colors [45] adopts the cold diffusion mechanism [2] to learn a
colorization process iteratively. Besides, CtrlColor [28] develops
multiple encoders based on ControlNet [46] according to different
kind of conditions, such as user scribbles, reference images, regions
or text descriptions. As colorized results need to spatially align with

input grayscale images, diffusion-based colorization methods have
to balance the trade-off between realism and consistency. Over-
all, diffusion-based image colorization is still a cutting-edge and
challenging topic.

3 COCO-LC
3.1 Preliminary: Stable Diffusion
Diffusion models learn image distributions based on a diffusion pro-
cess and a denoising process, where Stable Diffusion [33] operates
in the latent space with a VAE encoder E and a VAE decoder D.
During the diffusion process, random Gaussian noises 𝜖 ∼ N(0, 𝐼 )
are gradually added to the encoded latent feature 𝑧0 = E(𝑥0) of the
input image 𝑥0 in 𝑇 steps,

𝑧𝑡 =
√
𝛼𝑡𝑧0 +

√
1 − 𝛼𝑡𝜖, (1)

producing a series of noisy samples 𝑧1, ..., 𝑧𝑇 . As 𝑧𝑇 can be treated as
a standard Gaussian noise approximately when 𝑇 is large enough,
the denoising process can recover a realistic image 𝑥0 = D(𝑧0)
from a srandard Gaussian noise iteratively, which is achieved by
training a neural network U-Net 𝜖𝜃 with parameter 𝜃 to predict 𝜖
at each timestep 𝑡 based on 𝑧𝑡 with the loss function:

L = E𝜖∼N(0,𝐼 ),𝑡 [∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑐𝑡𝑒𝑥𝑡 , 𝑡)∥2], (2)

where in Stable Diffusion, text conditions 𝑐𝑡𝑒𝑥𝑡 are taken as guid-
ance to constrain the generation through cross-attention mecha-
nism. Besides text, Stable Diffusion can be addtionally conditioned
on images with ControlNet [46]. ControlNet is a trainable copy
of the diffusion model, serving as a side branch to accept and ap-
ply image conditions 𝑐𝑖 to the main diffusion branch. The overall
learning objective can be formulated as

L = E𝜖∼N(0,𝐼 ),𝑡 [∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑐𝑡𝑒𝑥𝑡 , 𝑐𝑖 , 𝑡)∥2] . (3)
3
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It is natural to apply ControlNet to the colorization task, i.e., us-
ing grayscale image 𝐼𝑔𝑟𝑎𝑦 as 𝑐𝑖 to predict the corresponding colorful
image 𝐼 . However, we experimentally found that vanilla Control-
Net is not competent to offer high-quality gray image constraints.
ControlNet uses simple convolution layers to preprocess the condi-
tional images, leading to imbalanced feature granularity between
the ControlNet and diffusion branches and causing structure dis-
tortion. It also fails to build robust correspondence between the
gray instances and the color words, resulting in color mismatch and
color overflow. This paper propose a new croase-to-fine framework
with novel multi-level consistency-aware conditions to solve the
above problems.

3.2 Overview architecture
COCO-LC takes as input a grayscale image 𝐼𝑔𝑟𝑎𝑦 , a text prompt
describing the desired color of the instances in 𝑐𝑡𝑒𝑥𝑡 , and a scaling
factor 𝛼 to indicate the targeted colorfulness, and produce a cor-
responding colorization result 𝐼 . As shown in Fig. 2, the proposed
COCO-LC framework consist of three key components: (1) coarse-
to-fine colorization; (2) consistency-aware multi-level condition;
(3) colorfulness controllable colorization decoder.

Our coarse-to-fine colorization (Sec. 3.3) first colorizes the latent
feature 𝑧𝑔𝑟𝑎𝑦 = E(𝐼𝑔𝑟𝑎𝑦) with our proposed lightweight Colorful
Information Adaptor (CIA). CIA leverages the power of CLIP [31]
to create a coarsely colorized feature based on 𝑐𝑡𝑒𝑥𝑡 and 𝑧𝑔𝑟𝑎𝑦 . The
resulting 𝑧 is fed into the main diffusion branch by our condition
injection branch for fine-level colorization.

For consistency-aware multi-level condition, we extract the edge
map and segmentation map from 𝐼𝑔𝑟𝑎𝑦 to serve as low-level struc-
ture and high-level semantic guidance, respectively. We merge the
low-level edge maps and high-level semantic segmentation maps
with the condition injection branch, as will be detailed in Sec. 3.4.

In Sec. 3.5, we will introduce our colorfulness controllable col-
orization decoder (COCO-decoder), that adapts the VAE decoderD
to merge grayscale image and provides a scaling factor 𝛼 to enable
users to flexibly adjust the colorfulness of the output.

3.3 Coarse-to-fine Colorization Framework
While Stable Diffusion demonstrates satisfying performance of
matching color words and image instances with cross-attention
mechanism, it is not trival to find proper correspondence when the
instances lie in the gray feature space because of the domain gap
between the grayscale images and the color images. Our coarse-to-
fine colorization framework solve this issue by gradually narrow
the domain gap in two stages.

3.3.1 Coarse colorization. We design a Colorful Information Adap-
tor (CIA) to merge color information into VAE latent space, as
shown in Fig. 3. This lightweight adptor is trained off-the-shelf
and kept fixed during fine colorization stage, enables its flexibility
and simplicity. During training, given a color image 𝐼 , we obtain
its grayscale version 𝐼𝑔𝑟𝑎𝑦 and map images into feature domains
with VAE encoder E and CLIP image encoder 𝐸𝐶𝐿𝐼𝑃

𝐼
. CIA takes the

gray image latent feature E(𝐼𝑔𝑟𝑎𝑦) and CLIP color image feature
𝑓𝐼 = 𝐸𝐶𝐿𝐼𝑃

𝐼
(𝐼 ) as input, merging the grayscale content information

and color style information by a scale-shift operation, which can

s

CIA
ℰ

Igray

zgray ẑ

𝒟

ℒ𝑐𝑜𝑎𝑟𝑠𝑒

Igt

E 
CLIP
IE 

CLIP
T

“a big purple bus 
parked in 

a parking spot”

 

Figure 3: Illustration of Colorful Information Adaptor (CIA).
We utilize six ResBlocks to merge grayscale structure infor-
mation and color style information hierarchically, following
a paramerized version of AdaIN [15].

be formulated by Eq. (4):

𝑧 =
𝑧 − 𝜇 (𝑧)
𝜎 (𝑧)

(
1 + 𝐹𝑠𝑐𝑎𝑙𝑒 (𝑓𝐼 )

)
+ 𝐹𝑠ℎ𝑖 𝑓 𝑡 (𝑓𝐼 ), (4)

where 𝐹𝑠𝑐𝑎𝑙𝑒 , 𝐹𝑠ℎ𝑖 𝑓 𝑡 denote the mapping networks in CIA to wrap
the color information into scale-shift parameters. 𝑧 is the structure
feature initialized with E(𝐼𝑔𝑟𝑎𝑦). 𝜇 (𝑧) and 𝜎 (𝑧) denote the mean
and standard deviation of 𝑧. This fusion operation can be also
understood as a parameterized version of AdaIN [15], and is applied
to 𝑧 six times. The training objective of CIA is

L𝑐𝑜𝑎𝑟𝑠𝑒 =


D(CIA(E(𝐼𝑔𝑟𝑎𝑦), 𝑓𝐼 )) − 𝐼

2
+ 𝜆 · VGG_Loss(D(CIA(E(𝐼𝑔𝑟𝑎𝑦), 𝑓𝐼 )), 𝐼 ),

(5)

where VGG_Loss is the perceptual loss [21] and we simply set 𝜆 = 1.
During testing, as the color image 𝐼 is unavailbale, we utilize CLIP

text encoder 𝐸𝐶𝐿𝐼𝑃
𝑇

and replace 𝑓𝐼 with the encoded text description
𝐸𝐶𝐿𝐼𝑃
𝑇
(𝑐𝑡𝑒𝑥𝑡 ), thanks to the alignment of the CLIP visual and textual

spaces. Moreover, excluding other information that is not related
to color in image features (such as texture, luminance), 𝑐𝑡𝑒𝑥𝑡 with
color cues has greater color information density, further enhance
the reasonability of the coarse colorization results. Thus, we have
𝑧 = CIA(E(𝐼𝑔𝑟𝑎𝑦), 𝐸𝐶𝐿𝐼𝑃𝑇

(𝑐𝑡𝑒𝑥𝑡 )). We also try to use 𝐸𝐶𝐿𝐼𝑃
𝑇
(𝑐𝑡𝑒𝑥𝑡 )

during training CIA, but find it become hard to converge, likely
due to the high sparsity of the language domain.

3.3.2 Fine colorization. CLIP features cannot represent local infor-
mations of image in a finer granularity, thus the coarse colorization
results only provide rough color-instance correspondence. Then in
the fine stage, on the basis of the semi-colorized latent 𝑧, we use the
diffusion model to match the color words and instances precisely.
The fine-stage objective function is

L𝑓 𝑖𝑛𝑒 = E𝜖∼N(0,𝐼 ),𝑡 [


𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑐𝑡𝑒𝑥𝑡 , 𝑧, 𝑧𝑒𝑑𝑔𝑒 , 𝑓𝑠 , 𝑡)

2], (6)

where 𝑧𝑒𝑑𝑔𝑒 and 𝑓𝑠 denotes edge and semantic map feature condi-
tions extracted from 𝐼𝑔𝑟𝑎𝑦 , which will be introduced in Sec. 3.4.

3.4 Consistency-aware Multi-level Condition
3.4.1 Low-level dual-branch condition insertion. As has been ana-
lyzed in Sec. 3.1, vanilla ControlNet has imbalanced feature granu-
larity with the diffusion branch, which is especially harmful when

4
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Figure 4: Illustration of high-level feature regularization

dealing with gray image conditions, since grayscale images hold
rich structure and semantic information than simple conditions like
depth maps, and Canny edge maps [46]. Vanilla ControlNet do not
have the ability to extract enough semantic features to precisely
control the diffusion generation, leading to color overflow, color
mismatch and structure distortion.

To balance the feature granularity between condition injection
and diffusion generation, we propose a dual-branch feature extrac-
tor based on E. Given a grayscale image 𝐼𝑔𝑟𝑎𝑦 , we utilize SAM [24]
as a zero-shot edge detector to extract its instance-aware edge
map 𝐼𝑒𝑑𝑔𝑒 , and encode it into the latent space 𝑧𝑒𝑑𝑔𝑒 = E(𝐼𝑒𝑑𝑔𝑒 ). As
mentioned before, we have inserted color information into 𝑧𝑔𝑟𝑎𝑦
with CIA, to obtain 𝑧 with rich color priors. We concatenate 𝑧

and 𝑧𝑒𝑑𝑔𝑒 , and fuse them using a single convolution layer. We use
𝑧 = 𝐶𝑜𝑛𝑣 ( [𝑧, 𝑧𝑒𝑑𝑔𝑒 ]) as the input of the ControlNet branch.

3.4.2 High-level semantic feature modulation. To provide high-
level feature regularization to build more accurate correspondence
between the color and the instances, we leverage Mask2Former [8]
to predict semantic segmentation maps based on 𝐼𝑔𝑟𝑎𝑦 . As the se-
mantic map assigns labels to each pixel, we treat each label as a
text description and use CLIP text encoder 𝐸𝐶𝐿𝐼𝑃

𝑇
to extract the

feature of each description appear in semantic maps. Finally, we
aggregate these text features into a standard spatial semantic fea-
ture 𝑓𝑠 ∈ R𝑐×ℎ×𝑤 , where 𝑐 represents the dimension of CLIP text
features and ℎ ×𝑤 is the resolution of 𝐼𝑔𝑟𝑎𝑦 .

We design a semantic feature fusion block (SFF) to modulate the
original features 𝑓𝑜𝑟𝑖 on the skip connection of U-Net with 𝑓𝑠 , as
illustrated in Fig. 4. SFF adapts SPADE [30] with minor changes,
and uses two submodules 𝐹1 and 𝐹2 to process and fuse the features
in a “scale-shift” manner. This fusion operation can be formulated
as

𝑓𝑜𝑟𝑖 = 𝑓𝑜𝑟𝑖 + 𝐿𝑁 (𝑓𝑜𝑟𝑖 ) · 𝐹1 (𝑓𝑠 ) + 𝐹2 (𝑓𝑠 ), (7)
where 𝐿𝑁 is the Layer Normalization. 𝐹1 and 𝐹2 denote two map-
ping network to wrap 𝑓𝑠 into scale-shift parameters, with some
convolution layers and downsampling layers.

3.5 Colorfulness Controllable Colorization
To generate colorization results with varying color richness accord-
ing with the user preference, we present colorfulness controllable
colorization decoder DCOCO (COCO-decoder), based on the VAE
decoder D with a scaling factor 𝛼 . As shown in Fig. 5, DCOCO
maintains a fixed decoder D, a trainable decoder D̂ and trainable
zero-initialized convolution layers 𝐹0. We feed the gray image latent
feature 𝑧𝑔𝑟𝑎𝑦 into D and get a set of middle features {𝑑𝑖 } as the
structure guidance, where 𝑖 is the layer index. Correspondingly, we
feed the diffusion output 𝑧0 in the fine colorization stage into D̂,

z0

zgray

multiplication

F0 F0 F0

𝛼

zero-init convs

diverse colorfulness results

𝛼 = 1 𝛼 = 0.9 𝛼 = 0.8

Figure 5: The struct of Colorfulness Controllable (COCO)
module which merge the feature space of two VAE decoder
space. We extract the middle features during the decoding
of gray latents, wrap them with zero-initialized convolution
layers and add themwith themiddle features of the decoding
of colorized latents.

and obtain the corresponding features {𝑑𝑖 }. In DCOCO, we update
𝑑𝑖 with 𝑑𝑖 by

𝑑𝑖 ← 𝑑𝑖 + 𝛼𝐹0 (𝑑𝑖 ) . (8)
During the training of DCOCO, we set 𝛼 = 1 and optimize

L𝐶𝑂𝐶𝑂 = E𝐼 [


DCOCO (𝑧0, 𝑧𝑔𝑟𝑎𝑦, 𝛼) − 𝐼 )



2] . (9)

Note that we use zero-initialized convolution layers to warm up
the middle features during injection, preserving the capability of
the pre-trained VAE decoder.

In the inference phase, we can use 𝛼 to control the injection
of gray information, i.e., we can get diverse colorfulness results
ranging from fantastic and gorgeous (low 𝛼), bright and realistic
(middle 𝛼) to grayish and vintage (high 𝛼), enabling users to choose
the best colorized result according to their preference.

4 EXPERIMENTS
4.1 Implementation Details
4.1.1 Training. We train CIA with a single NVIDIA RTX 2080Ti
GPU for 280k iterations with a batch size of 24. After that, we train
COCO-LC on a single NVIDIA RTX 4090 GPU for 150k iterations
with a batch size of 16. We use AdamW optimizer with 𝛽1 = 0.9
and 𝛽2 = 0.999. The learning rate is set to 10−5.

4.1.2 Inference. We use a single NVIDIA RTX 2080Ti GPU for
inference. All testing images are resized to 512 × 512 with bilinear
interpolation. Besides, we transform the output image to 𝐿𝐴𝐵 space
and replace its𝐿 channel with that of 𝐼𝑔𝑟𝑎𝑦 , tomaintain the structure
consistency. Our method will generate colorized results of the input
grayscale images based on users’ text description. If users don’t
provide any text descriptions, we utilize BLIP [26] to get a standard
text description and do colorization automatically.

4.2 Evaluation
4.2.1 Training data. We conduct our experiments on language-
based colorization datasets proposed by L-CoDe [41] and L-CoIns [7]:
(i) the extended COCO-Stuff dataset, which is built upon the COCO-
Stuff dataset [3] by discarding unqualified samples for the coloriza-
tion task.We further filter out some black andwhite photos, remains
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Figure 6: Qualitative comparison results of our methods and other language-based methods. Our colorized images enjoy a
higher saturation and more plausible visual effect. Zoom in for better visualization.

56K training images and 1.9K evaluation images; (ii) multi-instances
dataset which includes multiple instances with different visual char-
acteristics within a single image, including 65K training images and
7K evaluation images. For both datasets, each image is accompanied
by a corresponding language description.

4.2.2 Evaluate data. Apart from the validation set of the above
two training datasets which totally contain 6.9k images, we use the
first 5k images in ImageNet validation dataset, i.e. ImageNet-val5k.
For the extended COCO-Stuff dataset and multi-instances dataset,
each image is accompanied by several corresponding language
descriptions. For ImageNet-val5k, we use BLIP [26] to generate a
default text description of the color image to evaluate our method.

4.2.3 Evaluation metric. Following UniColor [16], we use Frechet
Inception Distance (FID) [14] and colorfulness [13] to quantita-
tively evaluate the quality of our colorization results. We also utilize
Δcolorfulness that computes the absolute difference of ground truth
and colorization results to indicate realism in advance. Moreover, to

evaluate the controllability of text descriptions, we calculate CLIP
similarity score [31] between the prompts and colorization results.
As image colorization is an ill-posed problem which may have mul-
tiple reasonable solutions, we do not adopt Peak Signal-to-Noise
Ratio (PSNR) [17], Structural Similarity Index Measure (SSIM) [39]
or Learned Perceptual Image Patch Similarity (LPIPS) [48] for pre-
cisely match pairs of colorized result and ground truth.

4.3 Comparisons
We make comparisons with both automatic colorization meth-
ods and language-based coolorization methods. For automatic col-
orization methods, we compare our method with CIC [47], Col-
orFormer [19], DDColor [22] and CT2 [40]. For language-based
colorization methods, we compare our methods with UniColor [16],
L-CoDe [41], L-CoDer [5], L-CoIns [7] and L-CAD [6].

4.3.1 Qualitative comparisons. As shown in Fig. 6, we make com-
parisons with previous language-based colorization methods. Our
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Table 1: Quantitative evaluation of different image colorization methods.

Dataset Extended COCO-Stuff Multi-instances ImageNet5k-val

Metrics FID↓ Colorfulness↑ ΔColorfulness↓ CLIP Score↑ FID↓ Colorfulness↑ ΔColorfulness↓ CLIP Score↑ FID↓ Colorfulness↑ ΔColorfulness↓ CLIP Score↑
CIC [47] 38.41 36.25 7.20 - 30.77 33.78 7.10 - 20.45 26.34 12.11 -

ColorFormer [19] 16.84 42.25 1.20 - 6.24 37.17 3.71 - 6.16 37.63 0.82 -
DDColor [22] 7.49 40.97 2.48 - 14.21 44.54 3.66 - 6.77 41.55 3.10 -
CT2 [40] 18.81 44.21 0.76 - 10.64 41.21 0.34 - 7.50 39.68 1.23 -

UniColor [16] 10.51 40.92 2.69 25.14 9.00 34.17 6.71 24.75 10.63 34.98 3.47 23.96
L-CoDe [41] 31.82 29.21 14.24 29.93 27.89 25.22 15.66 27.59 19.56 24.23 14.22 29.10
L-CoDer [5] 31.03 29.68 13.77 29.91 24.04 24.79 16.09 27.50 16.73 22.90 15.55 29.39
L-CoIns [7] 37.34 35.71 7.74 29.64 27.89 33.53 7.35 27.61 21.03 33.53 4.92 29.52
L-CAD [6] 8.57 41.97 1.48 30.60 7.85 38.62 2.26 31.02 6.03 36.34 2.11 30.24

ours-fantastic 11.97 54.71 11.26 30.78 9.77 50.46 9.58 31.56 7.86 49.01 10.57 30.25
ours-realism 6.80 42.89 0.56 31.27 4.98 39.84 1.03 32.01 5.84 39.01 0.57 31.97
ours-vintage 9.65 38.79 4.66 30.13 5.27 35.40 5.48 30.24 9.62 37.53 0.92 29.97

method reduces color overflow better and generates more bright
and colorful results. While L-CoDe [41], L-CoDer [5], L-CoIns [7]
may suffer from color overflow of yellow sign on the forth row,
or struggle with color under-saturation, UniColor [16] produces
unreasonable colors (e.g.the green meat in the third row) when
conditioned by complex text descriptions and inaccurate colors
(e.g.brown ties in the second row should be red in the text descrip-
tion). L-CAD [6] can generate globally natural images, but it fails
to reduce color overflow in some local area, such as the red tennis
racket in the first row, the red color of tie overflows to the white
shirt in the second row, and the unreasonable magenta knife in the
third row. Additionally, although L-CAD utilizes diffusion model
to generate high-realistic results, it still suffers from grayish and
unnatural results, which can be seen obviously in the last row.
The green leaf and trees behind two cats are recognized by our
model and colorized to proper colors, while other methods can only
generate gray or inproper colors.

4.3.2 Quantitative comparisons. As presented in Table 1, we present
three different variants with different scaling factors to generate
different styles of colors, ranging from fantastic (𝛼 = 1), realism
(𝛼 = 0.9) to vintage (𝛼 = 0.8). We make comparison with four
unconditional method, CIC [47], ColorFormer [19], DDColor [22]
and CT2 [40] to demonstrate our superior visual effect. The com-
parison between other five language-based colorization methods:
Unicolor [16], L-CoDe [41], L-CoDer [5], L-CoIns [7] and L-CAD [6].
The results indicate our method can produce more plausible and
accurate results. It is noticable that our method can not only gen-
erate high-realistic colorization results with the lowest FID and
Δcolorfulness, but also generate the most colorful results with the
highest colorfulness, satisfy the appetites of different users.

4.4 User Study
We further conduct user studies to evaluate the subjective percep-
tion of human observers. We invite 46 volunteers to answer 10
questions, each questions contains a text description and eight col-
orized results of previous methods and our results. We encourage
participants to evaluate those colorized results from the following
three aspects: (1) consistency with text descriptions; (2) realism of
images; (3) personal preference. We present our results of differ-
ent colorfulness ranging from fantistic, realistic, to vintage at the
same time to evaluate the robustness of our COCO-Decoder. The

four people 
in red shirts 

playing tennis 
with onlookers in 
the background

a man in a red 
santa hat and a 

dog pose in front 
of a christmas tree

a basket of fresh 
fruit is adorned 

with a red ribbon

two brown horses 
grazing in a field 

next to a tree

a white cat sitting 
before a bench 
surrounded by 

plants in planters

𝛼 = 1.0 𝛼 = 0.9 𝛼 = 0.8

Figure 7: Qualitative results of our Colorfulness Controllable
Decoder (COCO-Decoder) with scaling factor 𝛼 ∈ {0.8, 0.9, 1.0}.
Our results enjoy different color styles ranging from fantastic
(𝛼 = 1.0), realistic (𝛼 = 0.9) to vintage (𝛼 = 0.8). We allow users
to control colorfulness in a simple and flexible way.

statistics results are presented as Fig. 8, which shows our method
is prefered by most users.

4.5 Ablation Study and Discussion
We conduct other four baselines to demonstrate effectiveness of
our coarse-to-fine framework and multi-level condition injection.
The colorization results can be seen in Fig. 9.
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Figure 8: Quantitative results of user study.

a big bin filles 
with some ripe 
green bananas

a big purple bus 
parked in 

a parking spot
Input Vanilla ControlNet W/o CIA

W/o SFF W/o edge Full

Input Vanilla ControlNet W/o CIA

W/o SFF W/o edge Full

Figure 9: Qualitative colorization results of ablation experi-
ments. Zoom in for better visualization.

vanilla ControlNet. We train a vanilla ControlNet without any
design. We find experimentally that vanilla ControlNet will lead to
color incomplete and color overflow. As shown in Fig. 9, tiny yellow
spots appear on the bus body, and the number on the top of the
bus is not completely colorized. The cloth of bus driver becomes
purple due to the color overflow.

Colorful Information Adaptor. We remove CIA which insert
CLIP color priors to latent codes of gray images. Without CIA, it’s
more difficult to build the accurate correspondence between color

words and gray instances, so that the results become grayish or out
of the control of text descriptions. In Fig. 9, the purple of the bus
overflows to the light and the front glass, and the banana fails to
create a link with "green" constaint.

Semantic Feature Fusion. We disable the insertion of the spa-
tial semantic feature extract by Mask2Former [8] and CLIP [31]. As
a result, obvious color overflow occurs in the colorized images. In
Fig. 9, the bush behind the bus becomes purple and the paper sign
under the bananas become green unexpectly.

Low-level edge condition. We disable the low-level edge con-
dition, leading to color overflow and color incompletion.

COCO-Decoder. We present some results of different color
styles by our colorfulness controllable decoderwith different scaling
factor, as shown at Fig. 7. Our method provides a user-friendly way
of controllable color richness to generate diverse colors ranging
from bland to gorgeous. Please refer to our supplementary materials
for more visualization results.

In summary, we propose a coarse-to-fine framework that use
CIA to insert rich color priors conditioned by language prompts in
the coarse stage. On the basis of this semi-colorized result, we use
high-level spatial semantic features and low-level edge latent codes
to constrain colors to the correct area spatially. Disabling any one
of them will lead to obvious color overflow.

Input Ours

Figure 10: Failure case of our method when dealing with
multiple color words in a text prompt. Prompt: “the blue
cup, the yellow cup and the cyan cup”. The middle cup is
incorrectly rendered red.

5 CONCLUSION AND DISCUSSION
In this paper, we present COCO-LC, a novel coarse-to-fine frame-
work that achieves COlorfulness COntrollable Language-based Col-
orization.We design amulti-level condition to reduce color overflow
and COCO-Decoder to generate colorized results with diverse color
styles flexibly. Extensive experiments demonstrate the superiority
of COCO-LC over state-of-the-art image colorization methods in
accurate, realistic and controllable colorization.

Limitations and Future Work. Stable Diffusion utilizes CLIP
to align text and image domain, which struggles with complex text
descriptions. When there are multiple colors and instances, it is
hard to find accurate correspondence, leading to color-instance
mismatch, as shown in Fig. 10. The color of the middle blue cup
turns red unexpectly. In our future work, we would like to adopt
more powerful cross-modality models and generative backbones to
enhance the robustness of colorization.
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