
A Upper Bound

We provide in this appendix the proofs of some technical lemmas, which were omitted from the main
paper due to space constraints.
Fact 3. Let u be the uniform distribution and p be an arbitrary distribution among [n]. We can
sample from p′ := 1/2(p+ u) efficiently with sample access to p.

A.1 Proof of Equitable Partition

Lemma 7 (Claim 1 in [ADK15]). There exists an algorithm Approx-Divide that, given parameters
δ ∈ (0, 1] and integer B > 1, takes O

(
B log(B/δ)

)
samples from a distribution p on [n] and, with

probability at least 1− δ, outputs a partition of [n] into K ≤ 8B intervals I1, I2, . . . , IK such that
the following holds:

1. For each i ∈ [n] such that p(i) > 1/B, there exists ℓ ∈ [K] such that Iℓ = {i}. (All “heavy”
elements are left as singletons)

2. Every other interval is such that p(I) ≤ 16/B.

Proof. Let B > 1, and consider an arbitrary (unknown) probability distribution p over [n]. Let p̂ be
the empirical distribution obtained by taking m =

⌈
18B ln 12B

δ

⌉
= O(B log(B/δ)) i.i.d. samples

from p, where C > 0 is an absolute constant to be chosen later in the proof.

Denote by i1 < · · · < iT the elements i such that p(i) > 1/B; note that 0 ≤ T ≤ B since there can
be at most B elements with probability mass greater than 1/B.

Consider the following (deterministic, and unknown to the algorithm) partition of the domain into
consecutive intervals:

• each of i1 < · · · < iT is a singleton interval Jℓj = {ij};

• setting for convenience i0 = −1 and iT+1 = n+ 1, define the remaining intervals greedily
as follows. For each 1 ≤ j ≤ T , to partition {ij + 1, ij + 2, . . . , ij+1 − 1}, do

1. set J ← ∅, t← ij + 1

2. while t < ij+1

– if p(J ∪ {t}) < 3/(2B), set J ← J ∪ {t}
– else add J as an interval to the partition, then start a new interval: J ← ∅
– consider the next element: t← t+ 1

That is, every remaining interval (“in-between” two heavy elements ij , ij+1) is greedily divided from
left to right into maximal subintervals of probability mass at most 3/(2B). Note that since every
element i ∈ {ij + 1, . . . , ij+1 − 1} has mass at most 1/B, this is indeed possible and leads to a
partition of {ij + 1, . . . , ij+1 − 1} in intervals, where all but at most one (the rightmost one) has
probability mass p(J) ∈ [1/(2B), 3/(2B)].

Overall, this process (which the algorithm cannot directly run, not knowing p) guarantees the
existence of a partition J1, . . . JS of the domain in at most

S ≤ T + T + 2B ≤ 4B

consecutive, disjoint intervals (the T singleton intervals, the at most T “rightmost, in-between”
intervals which may have probability mass at most 1/(2B), and the remaining “in-between” intervals
which all have mass at least 1/(2B), and of which there can thus be at most 2B in total).

Now, consider the following partition Ĵ1, . . . ĴK defined by the algorithm from p̂:

• every element i ∈ [n] such that p̂(i) > 1/(2B) is added as a singleton interval; let their
number be T ′;

• then the algorithm proceeds as in the above process (which defined J1, . . . JS), but using p̂
instead of p.
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The same analysis (but with T ′ ≤ 2B instead of T ≤ B, since the threshold for “singletons” is now
1/(2B) shows that this will result in a partition of the domain into K consecutive disjoint intervals
Ĵ1, . . . ĴK , with

K ≤ 8B .

It remains to argue about the properties of Ĵ1, . . . ĴK , by using those of (the unknown) J1, . . . JS .
First, we have that, for every 1 ≤ j ≤ T , by a Chernoff bound,

Pr

[
p̂(ij) ≤

1

2B

]
≤ e−(1/2)2 m

2B ≤ δ

3B

from our setting our m. Now, for any interval Jj (where 1 ≤ j ≤ S) such that 1/(2B) ≤ p(Jj) ≤
3/(2B) (there are at most 2B of them), we also have, all by a Chernoff bound,

Pr

[
p̂(ij) /∈

[ 1

4B
,
2

B

] ]
≤ 2e−

m
18B ≤ δ

6B

while for any Jj such that p(Jj) < 1/(2B) (there are at most T of them)

Pr[ p̂(ij) ≥ 1/B ] ≤ e−
m
6B ≤ δ

3B
.

This means, by a union bound, that with probability at least 1−
(
T · δ

3B + 2B · δ
6B + T · δ

3B

)
≥ 1−δ:

• all of the (1/B)-heavy elements for p will also be (1/(2B))-heavy elements for p̂, and thus
constitute their own singleton interval, as desired;

• all of the intervals Jj such that 1/(2B) ≤ p(Jj) ≤ 3/(2B) (call those “heavy”) satisfy
1/(4B) ≤ p̂(Jj) ≤ 2/B;

• all of the intervals Jj such that p(Jj) < 1/(2B) (call those “light”) satisfy p̂(Jj) ≤ 2/B.

Conditioning on this happening, we can analyze the properties of Ĵ1, . . . ĴK . Specifically, fix any Ĵj
which is not a singleton of the form {iℓ} for one of the T (1/B)-heavy elements for p. We want to
argue that p(Ĵj) ≤ 16/B.

• If Ĵj intersects with at most 8 Jj′’s (which must then all be consecutive, and at least
7 are “heavy”, and the rightmost one is either heavy or light), we are done, since then
p(Ĵj) ≤ 8 · 2/B = 16/B.

• Moreover, Ĵj cannot intersect with more than 8 Jj′ ’s, as otherwise those are consecutive, and
thus Ĵj must contain at least 6 “heavy” Jj′ ’s. But in that case p̂(Ĵj) ≥ 6·1/(4B) = 3/(2B),
while by our greedy construction we ensured that p̂(Ĵj) < 3/(2B).

This concludes the proof.

Proof of Lemma 2. Reduction from Lemma 7.
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A.2 Proof of Interval Mass Estimate

Algorithm 2 Interval-Mass-Estimate

Require: m i.i.d. samples from distribution p on [n]; failure probability δ.
1: Let T := 3 log(n/δ).
2: Split the samples into T batches S(1), S(2), · · ·S(T ), each of m/T samples.
3: Initialize a Map φ̂ : I 7→ R which maps sub-intervals of [n] to real values.
4: for all intervals I ⊆ [n] do
5: Let X(i)

j be the number of samples falling in interval Ij from samples S(i).

6: Compute the median Xj = Median1≤i≤T

(
X

(i)
j

)
. Accordingly, set

φ̂(I) = max

(
Xj

m
,
|I|
2n

)
.

7: Output the map φ̂.

Claim 4. Let I be an interval (or subset) over [n] and p a distribution over [n]. For δ ∈ (0, 1),
assume one takes T := 3 log(1/δ) batches of i.i.d. samples from p where each batch is of size b ∈ Z+.
Denote by X

(i)
I the number of samples falling in I from the i-th batch, for i ≤ [T ]. Then, the median

XI := Mediani(X
(i)
I ) satisfies∣∣∣∣XI

b
− p(I)

∣∣∣∣ ≤ 3 ·
√

p(I)

b
and

XI

b
≤ 3 · p(I) ,

with probability at least 1− δ.

Proof of Lemma 3. Let I ⊆ [n] be an arbitrary interval and XI be the median of the numbers of
samples falling in from each batch. By Claim 4, we have that∣∣∣∣XI

m
− p(I)

∣∣∣∣ ≤√p(I)/b , (1)

XI

m
≤ 3p(I). (2)

with probability at least 1 − δ/(2n). Since p(i) > 1/(2n) for any i ∈ [n], the max operation
decreases the distance between p and p̂ pointwise. Hence, with probability at least 1− δ/2K, we
have

|φ̂(I)− p(I)| ≤
√

p(I)/b . (3)

Since there are at most n2 sub-intervals I ⊆ [n] overall, by a union bound over all sub-intervals, we
have that Equation (3) holds simultaneously with probability at least 1− δ/2 for every sub-interval I .

To show that the ratio p(I)/φ̂(I) is bounded, we first consider the case p(I) ≤ 4/b. Since φ̂(I) >
1/(2n), it is easy to see that p(I)/φ̂(I) ≤ 8 · b/n. Otherwise, we have p(I) > 4/b. Following
Equation (3). it holds

|p(I)− φ̂(I)| ≤
√

p(I)/b ≤ 1

2
p(I) ,

This then implies that
p(I)

φ̂(I)
≤ 2 .

Lastly, since p(I) ≥ |I| /(2n), together with Equation (2), we have

φ̂(I)

p(I)
=

max (|I| /(2n), XI/m)

p(I)
≤ 3.
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A.3 Proof of Empirical Learning

Algorithm 3 Empirical-Learning

Require: m i.i.d. samples from distribution p on [n]; partition I = {I1, I2, · · · , IK} of the domain
[n]; error rate δ

1: Denote the m i.i.d samples as S.
2: Construct the Interval Estimator P ← Interval-Mass-Estimate(S, δ).
3: for j = 1 · · ·K do
4: Compute the estimate p̂(i) =

P(Ij)
|Ij | 1 ≤ j ≤ K, i ∈ Ij .

5: Output the measure p̂.

A.4 Detailed Analysis of Learn-And-Sieve

Proof of Lemma 4. Let I be a non-breakpoint interval. It is easy to see that p̂(I) = φ̂(I). By
Lemma 3, it holds that

p(I)

p̂(I)
≤ max(2 , 8 · n/b) ,

|p̂(I)− p(I)| ≤
√
p(I)/b .

with probability at least 1− δ. Condition on that, we easily have, for any sub-interval J ⊆ I ,

p(J)

p̂(J)
=

p(I)

p̂(I)
≤ max(2 , 8 · n/b)

since both p and p̂ are uniform within I . Furthermore, we also have

|p(J)− p̂(J)| = |p(I)− p̂(I)| · |J |
|I|
≤
√

p(I)

m
· |J |
|I|
≤
√

p(J)

m
,

where the first equality follows from the fact that p and p̂ are both uniform within I , the second
inequality follows from our conditioning, the third inequality follows from |J | ≤ |I|.

Proof of Lemma 5. The first point is easy to see since otherwise Line 7 would reject. We claim that
the following holds with probability at least 1 − δ. If p ∈ Hk, B contains all the ε-bad intervals
and no non-breakpoint intervals. Condition on that, it is easy to see B would contain no more than
k intervals since there are at most k break-point intervals. Besides, for any I ∈ G := I\B, we
have dIχ2

(
p
∥∥p̂) ≤ ε2/K. Overall, it then holds dI\Bχ2

(
p
∥∥p̂) ≤ ε2. This concludes the proof of the

second point.

It remains to show why B separates the bad intervals from the rest. We will separately establish that
with high probability B will not include any non-breakpoint intervals and that it will include all bad
intervals separately, and conclude by a union bound. The following statement, which follows from
Lemma 3 , will be useful in both aspects of the analysis. In particular, it holds

|φ̂(Q)− p(Q)| ≤
√
p(Q)/b (4)

φ̂(Q) ≤ 3 · p(Q) (5)

for all sub-intervals Q with probability at least 1− δ/2. We will condition on that in the analysis.

Exclusion of non-breakpoint intervals By Lemma 4, if I is not a break-point interval,
then for every sub-interval Q, with probability at least 1− δ/3, we have

|p̂(Q)− p(Q)| ≤
√
p(Q)/b (6)

p(Q)

p̂(Q)
≤ max(2 , 8 · n/b) , (7)
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As a result, we have

(φ̂(Q)− p̂(Q))2 ≤ 4 · p(Q)/b ≤ O(1/b+ n/b2) · p̂(Q) ≤ 1

4
p̂(Q) · ε2/K ,

where the first inequality follows Equations (6), (4) and the triangle inequality, the second inequality
follows from the bounded ratio between p̂(Q) and p(Q) (Equation (7)) and the last inequality follows
from b≫

√
nK/ε+K/ε2. This asserts that second condition of Line 5 will be false.

Next, we shift our focus to the first condition of Line 5. Together with Equation (7), which is the
condition in Lemma 4, and Equation (5), the guarantee obtained from Claim 3, we have

φ̂(Q)

p̂(Q)
=

φ̂(Q)

p(Q)
· p(Q)

p̂(Q)
≤ max (6 , 24 · n/b) . ≤ max

(
6 , ε
√

n/K
)
.

where the last inequality follows from b≫
√
nK/ε. This asserts that Line 5 won’t pass. Hence, with

probability at least 1− δ, B won’t include any non-breakpoint intervals.

Inclusion of ε-bad intervals Let I be an ε-bad interval. Then, there exists a sub-interval
Q such that p is constant within Q and (p(Q)−p̂(Q))2

p̂(Q) ≥ ε2/K, which implies that

|p(Q)− p̂(Q)| ≥
√

p̂(Q) · ε
2

K
. (8)

We then proceed to analyze the cases p(Q) ≤ 2 · ε√
Kn

and p(Q) > 2 · ε√
Kn

separately.

In the former case, we have

p(Q)

b
=

p̂(Q)

b
· p(Q)

p̂(Q)
≤ p̂(Q) ·O

(
ε ·
√

n

K

)
· 1
b
≤ 1

4
p̂(Q) · ε

2

K
,

where the first inequality follows from that p(Q) ≤ 2ε/
√
nK and p̂(Q) ≥ 1

2n , and the second
inequality follows from b≫

√
nK/ε. This together with Equations (4), (8) and triangle inequality

gives

|p̂(Q)− φ̂(Q)| ≥ 1

2

√
p̂(Q) · ε

2

K
,

which asserts that the second if condition of Line 5 is true.

In the latter case, since p(Q) > 2 ε√
nK
≫ 1

b , it holds p(Q)
b ≪ p(Q)2. From Equation (4) we have

φ̂(Q) ≥ p(Q)−
√
p(Q)/b ≥ 1

2
p(Q). (9)

If φ̂(Q)/p̂(Q) ≥ max(6, ε
√
n/K), the first condition of Line 5 is true, implying I will be included

in B. Otherwise, we could argue that

p(Q)

b
=

p̂(Q)

b
· p(Q)

φ̂(Q)
· φ̂(Q)

p̂(Q)
≤ p̂(Q)

b
· 2 ·max(6, ε

√
n/K) ≤ 1

4
p̂(Q)ε2/K ,

where the first inequality follows from Equation (9) and the fact that the first condition of Line 5 is
false, and the second inequality follows from b≫

√
nK/ε+K/ε2. In other words, we have√

p(Q)

b
≤ 1

2

√
p̂(Q) · ε

2

K
.

This together with Equations (4), (8) and triangle inequality allows us to conclude that

|p̂(Q)− φ̂(Q)| ≥ 1

2

√
p̂(Q) · ε

2

K
,

which asserts that the second condition of Line 5 is true.
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A.5 Main Testing Algorithm

Algorithm 4 Divide-And-Learn-And-Sieve

Require: Sample access to the distribution p; domain size [n]; accuracy ε.
1: Set I(0) = B(0) = {[n]}.
2: Set T ← 3 log(1/ε), δ ← 1

100T , t← 0, r = 1.
3: while r > ε/8 do
4: S(t+1) ← Approx-Sub-Divide

(
32k,B(t), δ

)
.

5: Set I(t+1) = (I(t) \ B(t)) ∪ S(t+1). ▷ Note that I(t+1) is still a partition of [n].
6: Q(t+1), p̂(t+1) ← Learn-And-Sieve

(
I(t+1), ε

4
√
T
, δ
)

.
7: Reject if Learn-And-Sieve outputs Reject.
8: Set B(t+1) = S(t+1) ∩Q(t+1).
9: Take ℓ = Θ(log(1/δ)/ε) i.i.d. samples from p.

10: Denote X as the number of samples falling in B(t+1). Set r = X/ℓ.
11: t← t+ 1
12: Denote G(j) = S(j) \ B(j) for all j ≥ 1. ▷ Note that the union of G(1), · · · G(t),B(t) forms a

partition of the domain [n].
13: We will consider the measure p̄ such that on intervals I ∈ G(j), p̄(i) = p̂(j)(i); and on intervals

I ∈ B(t), p̄(i) = 0.
14: Use Dynamic Programming to check whether there is a k-histogram that is ε/2-close to p̄ in ℓ1

distance. Otherwise Reject. ▷ Can be done in time poly(k, 1/ε, n) as shown in Lemma 4.11 of
[CDGR18].

15: Output Accept if Tolerant-Identity-Test (p, p̂, ε) outputs Accept. Otherwise Reject.

Proof of Upper Bound in Theorem 1. We first argue that the algorithm terminates in T =
O(log(1/ε)) rounds with high probability. By Lemma 7, we have p(I) ≤ 16

32k ·p(B
(t)) = 1

2k ·p(B
(t))

for every non-singleton interval I ∈ S(t+1) with probability at least 1− δ. By Lemma 5, the subrou-
tine Learn-And-Sieve selects (removes) at most k intervals if it does not output reject. Notice that
B(t+1) will not include any singleton as singletons cannot be break-point intervals. Then, it holds
that p(B(t+1)) ≤ p(Q(t+1)) ≤ 1

2p(B
(t)). Hence, the mass of B(t) will drop below ε/100 after at

most T := 3 · log(1/ε) iterations with probability at least

(1− δ)T = (1− 1

100T
)T ≥ 9

10
, (10)

where the second inequality holds when T is sufficiently large. On the other hand, in the end of
iteration, we always r ≤ 10 · p(B(t)) ≤ ε/10 with probability at least 9

10 by Markov’s Inequality.
Combining the two facts then gives the algorithm exits the while loop in at most T := 3 · log(1/ε)
iterations with probability at least 0.9 · 0.9 > 8/10.

Furthermore, we claim, with probability at least 9/10, it holds p(B(t)) ≤ ε/4 when the algorithm
exits the while loop. Suppose at the j-th iteration, we have p(B(j)) > ε/4. Then, by the multiplicative
Chernoff Bound, we have

Pr [r ≤ ε/8] ≤ Pr
[
r ≤ 1/2 · p(B(j))

]
≤ 1/δ.

Hence, following the same calculation as Equation (10), our claim holds with probability at least
9/10. Conditioning on (i) the algorithm terminates in T iterations and (ii)

p(B(t)) ≤ ε/4 (11)
when the algorithm exits the loop, we proceed to argue it outputs the correct testing result with
probability at least 2/3.

Completeness Suppose we have p ∈ Hn
k . At the t-th iteration, we claim that, with probability at

least 1− δ, it holds

dG
(t)

χ2

(
p
∥∥p̂(t)

)
≤ ε2

16T
, (12)
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where G(t) = S(t)\B(t) as defined in 12 and p̂(t) is the learned distribution in the t-th iteration. By
Lemma 5, it holds

d
I(t)\Q(t)

χ2

(
p
∥∥p̂(t)

)
≤ ε2

16T
.

Since G(t) = S(t)\B(t) is a subset of I(t)\Q(t), the claim in Eq. (12) follows. Recall that we
condition on the algorithm runs for at most T iterations. Combining this with Eq. (12), if we denote
G =

⋃
Gt for 1 ≤ t ≤ T , it holds

dGχ2

(
p
∥∥p̄) ≤ T∑

t=1

dG
(t)

χ2

(
p
∥∥p̂(t)

)
≤ ε2/16 (13)

with probability at least (1 − δ)T ≥ 9
10 . Notice that G is precisely the sub-domain A = {i ∈

[n] : p̄(i) ≥ ε/(50n)} that will be used to compute the χ2 statistic since p̄(i) ≥ 1
2n for i ∈ G and

p̄(i) = 0 for i ̸∈ G. Conditioning on Equation (13), by Proposition 1, line 15 will output accept
with probability at least 9/10 by Chebyshev’s Inequality. Then, Equation (13) together with the
conditioning p(B(t)) ≤ ε/4 also implies TV(p, p̄) ≤ ε/2 and p ∈ Hn

k , line 14 will also pass.
Overall, the algorithm accepts with probability at least 2/3.

Soundness Suppose now that TV(p, H) > ε for every H ∈ Hn
k . For the sake of contradiction,

assume that line 14 and line 15 both pass. By line 15 and the contra-positive of Proposition 1, we
have TVG(p, p̄) ≤ ε/4 with probability at least 9

10 .

By definition we have p̄(B(t)) = 0. Since p(B(t)) ≤ ε/4 by our conditioning, it then holds that
TV(p, p̄) ≤ ε/2. Then, by line 14, there exists a k-histogram h satisfying TV(h, p̄) ≤ ε/2. By the
triangle inequality, we have TV(h,p) ≤ ε. This contradicts the assumption that p is more than ε-far
from any k-histogram. Hence, at least one of the two lines will output reject with probability at least
2/3.

Finally, the samples are consumed by five different types of routines – dividing (Line 4), learning,
sieving (Line 6), testing (Line 15) and mass estimation (Line 10). By Lemma 2, in one iteration,
the dividing phase consumes O

(
k log k/p

(
B(t)

) )
samples where p(B(t)) is the mass of the to-be-

divided intervals at the t-th iteration. Since p(B(t)) shrinks exponentially in every iteration, the
samples consumed are dominated by the last iteration. Hence, at most O (k log k/ε) samples are
consumed by the dividing phase in total.

At the t-th iteration, the partition size K :=
∣∣I(t+1)

∣∣ is upper bounded by O(T · k). Hence, by
Lemma 5, the Learn-And-Sieve procedure consumes in total

O

((
Tk

ε2
+

√
Tkn

ε

)
· log (n · log(1/ε)) · T )

)
(14)

samples. The process of testing the mass of B(t) consumes Θ(T · log(1/T )/ε) samples in total.

After the algorithm exits the for loop, the chi-square tester consumes Θ(
√
n/ε2) samples. Thus, in

total, the algorithm consumes

O

(√
n

ε2
+

(
k

ε2
· log2(1/ε) +

√
kn

ε
· log3/2(1/ε)

)
· log (n · log(1/ε))

)
(15)

if we sum up the samples consumed by all different routines and substitute T = 3 log(1/ε).

B Lower Bound

Definition 4 (Histogram Testing under Poisson Model). For 0 < ν < 1, 0 < ε < 1, define the
sample complexity of histogram testing (under Poisson model) as

mpoi
hist(n, k, ε, ν) := min

{
m ≥ 0 : ∃Î such that ∀P ∈ P̃n

Pr[Î = 1,1{ inf
P ′∈H̃n

k (ν)
TV(P ′, P ) ≥ ε(1 + ν)}] + Pr[Î = 0,1{P ∈ H̃n

k (ν)}] ≤ 1/10

}
,
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where Î is a binary indicator measurable with respect to M = (M1,M2, . . . ) ∼ Poi(mPi).7

B.1 Construction of Moment-Matching Random Variables

Fact 5. Suppose p is a degree-d polynomial with distinct roots r1, · · · rd. Then, for every 0 ≤ k ≤
d− 2,

∑d
i=1

rki
p′(ri)

= 0.

Proof of Lemma 6. We construct such a pair explicitly, relying on properties of Chebyshev polyno-
mials. For every integer d ≥ 0, recall that the corresponding Chebyshev polynomial (of the first kind)
Td is given by Td(x) = cos (d · arccos(x)) for x ∈ [−1, 1]. (and can be shown to be a polynomial
of degree d). Then, let ∆ :=

√
kn

C·log2 n
and d := c · log n (where c, C > 0 are two absolute constants,

suitably large), and consider the polynomial

p(x) = x

(
x− 1

n

)(
x− 2

n

)
Td (1−∆ · x) , (16)

for x ∈ [0, 1/∆]. This is a degree-(d+3) polynomial, whose roots are listed in the table below along
with the corresponding values of its derivative.

Roots p′

r0 = 0 2
n2 · Td(1) =

2
n2

r1 = 1
n − 1

n2 · Td

(
1− ∆

n

)
r2 = 2

n
2
n2 · Td

(
1− 2∆

n

)
r2+m = 1

∆

(
1− cos

(
2m−1
2d π

))
for 1 ≤ m ≤ d |p′(r2+m)| = Θ

(
m5

∆2d4

)
for 1 ≤ m ≤ d.

The roots in the last row are those associated with the Chebyshev Polynomial Td, and the last line
relies on the facts that, for r such that T (1−∆r) = 0, we have

p′(r) = −∆r(r − 1/n)(r − 2/n)T ′
d(1−∆r)

and that T ′
d(cos θ) =

d sin(dθ)
sin θ . This latter identity implies that |T ′

d(1 − ∆r2+m)| = d
| sin 2m−1

2d | =

Θ
(

d2

m

)
, and since r2+m = Θ( m2

∆d2 ) we get the claimed bound:

|p′(r2+m)| = Θ

(
∆ · m

2

∆d2
·max

(
m2

∆d2
,
1

n

)2

· d
2

m

)
= Θ

(
m5

∆2d4

)
(17)

Some of these d + 3 roots have positive derivatives, while others have negative derivatives: this
will tell us which ones to use for our construction of U , and which ones for U ′. Namely, for root r,
we set (1) Pr(U = r) = 0 and Pr(U ′ = r) ∝ 1

p′(r) if p′(r) > 0, and (2) Pr(U = r) ∝ 1
p′(r) and

Pr(U ′ = r) = 0 otherwise.

We now derive some bounds on the derivatives. Firstly, for sufficiently large choice of C (compared
to c), notice that the weights on the Chebyshev polynomial’s roots are overall bounded by

d∑
m=1

1

p′(rm+2)
= Θ(1) ·∆2d4

d∑
m=1

1

m5
≪ nk , (18)

since ∆2d4 = kn · (c2/C)2 and the series
∑

m
1

m5 is convergent. Secondly, we claim that

Td (1−∆/n) , Td (1− 2∆/n) ≥ cos(π/3) =
1

2
. (19)

7We remark that the choice of the constant 1/10 for error rate is arbitrary and our argument can easily be
adapted to show a lower bound on the sample complexity under any constant error rate δ ∈ (0, 1/2).
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This is because cos(π/3d) ≤ 1− 2
d2 ; while 1−∆/n ≥ 1− 1

C log2 n
≥ 1− 2

d2 , the latter inequality
again for a sufficiently large choice of C (with respect to c). The claim then follows by noticing
that Td is monotonically increasing in the region [π/3d, 1] and Td(cos(π/3d)) = cos(π/3). We then
proceed to verify each property claimed in the lemma.

1. By our construction, U is only supported on roots with negative derivatives. Hence, it
can only takes values from r1 = 1

n and some of the roots of the Chebyshev polynomials
r2+m. Moreover, by Equations (18), (19), the probabilities are bounded respectively by
(before renormalization) Pr[U = 1

n ] ∝ Ω(n2) and Pr[U ̸= 1
n ] ∝

∑d
m=1 1{p′(r2+m) <

0}|p′(rm+2)| ≪ nk. It then follows that Pr[U ̸= 1
n ]≪

nk
nk+n2 ≤ k

n .

2. Similarly, we have Pr [U ′ = 0] ,Pr [U ′ = 2/n] ∝ Ω(n2) and by (19) are within a factor 2
of each other. Combined with the fact that

Pr [U ′ /∈ {0, 2/n}] ∝
d∑

m=1

1{p′(r2+m) > 0}p′(r2+m)≪ nk ,

this immediately yields after renormalization that Pr [U ′ = 0] ,Pr [U ′ = 2/n] ≥ 1
3 .

3. The largest values U,U ′ can take are the largest root of the Chebyshev polynomial, which is
at most maxm∈[d]

1
∆

(
1− cos

(
2m−1
2d π

))
≤ 2

∆ = 2C log2 n√
kn

.

4. First, as we used earlier, recall that by Taylor expansion of cos

rm+2 =
1

∆

(
1− cos

(
2m− 1

2d
π

))
= Θ

(
m2

∆d2

)
Then, it holds

E [U ] = Pr

[
U =

1

n

]
· 1
n
+

d∑
m=1

Pr [U = rm+2] · rm+2

≤ 1

n
+Θ(1) ·

d∑
m=1

∆2d4

n2m5
· m

2

∆d2

≤ 1

n
+Θ

(
∆d2

n2

)
·

d∑
m=1

1

m3
≤ 1

n

(
1 +O(

√
k/n)

)
.

The argument for E [U ′] = 1
n (1 +O(

√
k/n)) is similar.

5. The claim follows from Fact 5.

B.2 Lower Bounds under Poisson Sampling

Proof of Proposition 2. Our goal is to argue H and H ′, specified in Equation (20) below, satisfy the
following properties (i) H and H ′ are positive measures with total mass 1 + Θ(ε) with probability
at least 99/100; (ii) H is a k-histogram with probability at least 99/100 and H ′ is Ω(ε)-far away
from any k-histogram with probability at least 99/100; and (iii) the distributions of the vectors M =
{M1,M2, · · ·Mn} and M ′ = {M ′

1,M
′
2, · · ·M ′

n}, where Mi ∼ Poi(m ·Hi) and M ′
i ∼ Poi(m ·H ′

i),
are 1/4-close to each other in TV distance as long as m = o(

√
kn/ log2 n). If all these properties

are satisfies, the result follows by applying Le Cam’s Lemma. To do so, we define the measures H ,
H ′ as

H =

(
1

n
+ εU (1), · · · , 1

n
+ εU (n)

)
H ′ =

(
1

n
+ εU ′(1), · · · , 1

n
+ εU ′(n)

)
(20)

where U (1), · · · , U (n) and U ′(1), · · ·U ′(n) are n i.i.d. copies of the random variables U , U ′ defined
in Lemma 6.We proceed to verify that each property in our goal is satisfied.
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(i) We first observe that the mass of H is simply 1 + ε
∑n

i=1 U
(i). As stated in Lemma 6,

we have E [U ] = 1
n

(
1 +O(

√
k/n)

)
. Since U (i)s are just i.i.d. copies of U , this further

implies that E
[∑n

i=1 U
(i)
]
= 1 +O(

√
k/n) = O(1). Hence, by Markov’s inequality, we

have
∑n

i=1 U
i = Θ(1) with probability at least 99/100. Similar arguments hold for H ′.

This shows claim (i).

(ii) Turning to (ii), recall that by construction of U we have Pr
[
U ̸= 1

n

]
≪ k/n. Hence, with

probability 99/100, there are at most (k − 1)/2 entries in H with mass other than 1/n,
which makes H a k-histogram. To argue the second part, i.e., that H ′ is far away from
any k-histogram, we first lower bound the number of adjacent pairs (i, i + 1) such that
Hi = 0, Hi+1 = 2

n . We call such an adjacent pair a “right border pair.” For U ′, we have
Pr [U ′ = 0] ,Pr

[
U ′ = 2

n

]
> 1/3. Hence, in expectation, there are at least 1

9 (n− 1) such
right border pairs. On the other hand, the variance of the number of right border pairs
is at most n. Therefore, by Chebyshev’s inequality (and assuming n large enough), with
probability 99/100 there will be at least n/100 right border pairs. This implies that H ′ is at
least

(
n

100 − k
)
· εn = Ω(ε) far from a k-histogram. This concludes claim (ii).

(iii) Let PM and PM ′ be the distributions of the tuple of m samples seen by the algorithm. By
subadditivity of total variation distance, we have

TV(PM , P ′
M ) ≤ n · TV

(
EU

[
Poi
(m
n

+ εmU
)]

,EU ′

[
Poi
(m
n

+ εmU ′
)])

. (21)

To handle the right-hand-side, we will use the following lemma about distance between
mixtures of Poisson distributions.

Lemma 8 ([WY+19, Lemma 4]). Let V, V ′ be random variables taking values in [0,Λ]. If
E
[
V j
]
= E

[
V ′j] for 1 ≤ j ≤ L, then

TV(E [Poi(V )] ,E [Poi(V ′)]) ≤
(
eΛ

2L

)L

.

Now, let Λ := m
(

1
n + c′ε log2 n√

kn

)
and L := c log n, where c, c′ > 0 are as in Lemma 6.

It is straightforward to check from Lemma 6 that the random variables V := m
n + εmU ,

V ′ := m
n + εmU ′ satisfy the assumptions of Lemma 8. This implies the existence of a

(small) absolute constant c′′ > 0 such that, if m ≤ c′′ min
(
n log n,

√
kn

ε logn

)
, then by (21)

TV(PM , P ′
M ) ≤ n ·

(
e

2c
·m
(

1

n log n
+ c′

ε log n√
kn

))c logn

≤ n · 1

n2
=

1

n
<

1

4
. (22)

Combining Equations (22) and (21) then finishes the proof of claim (iii).

Since H and H ′ satisfy all the properties listed, by Le Cam’s Lemma, no algorithm can distinguish
between the two distributions with probability more than 3/4 + 2/100 ≤ 9/10 when

m = o

(
min

(
n log n,

√
kn

ε log n

))

under the Poissonization model. Notice that min
(
n log n,

√
kn

ε logn

)
is exactly

√
kn

ε logn under the assump-

tion ε · log2 n ≥
√
k/n. This concludes the proof.

Proof of the second part of Proposition 2. We already showed above, while establishing the first
part of Proposition 2, that, with 99% probability, the total masses of H,H ′ are 1 + Θ(ε), and that
H is a k-Histogram Approximate Probability Vector while H ′ is Ω(ε) far away any k-Histogram
Approximate Probability Vector. It thus only remains to show the indistinguishability. To do so, let as
before PM and PM ′ denote the distributions of the tuple of m samples seen by the algorithm: we
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then need to establish that PM and PM ′ are within total variation distance 1/4 when m = õ(k/ε2),
for which is suffices to bound by 1/4 the RHS below:

TV (PM , P ′
M ) ≤ n · TV

(
E
[
Poi

(m
n

+ εmU
)]

,E
[
Poi

(m
n

+ εmU ′
)])

. (23)

We will now use a result from [Han19], restated below:

Theorem 6 (Theorem 4 from [Han19]). For any Λ > 0 and random variables X,X ′ supported on
[−Λ,∞), we have

TV(E[Poi(Λ +X)],E[Poi(Λ +X ′)]) ≤ 1

2

( ∞∑
ℓ=0

∣∣E[Xℓ]−E[X ′ℓ]
∣∣2

ℓ!Λℓ

)1/2

.

Recall that the first few moments of U,U ′ are identical i.e., E[U t] = E[U ′t] for 1 ≤ t ≤ L := c·log n.
Let X := εmU , X ′ := εmU ′, and Λ := m

n . Notice that we indeed have |X| , |X ′| ≤ Λ under the
assumption ε≪

√
k/n/ log2 n since

max(|X| , |X ′|) = ε ·m ·max(|U | , |U ′|) ≤ ε ·m ·O
(
log2 n√

kn

)
≤ m/n = Λ.

Applying Theorem 6 then gives

4 · TV
(
E
[
Poi

(m
n

+ εmU
)]

,E
[
Poi

(m
n

+ εmU ′
)])2

≤
∞∑
ℓ=0

(εm)
2ℓ

∣∣E[U ℓ
]
−E

[
U ′ℓ]∣∣2

ℓ!(m/n)ℓ

=

∞∑
ℓ=L+1

(
ε2mn

)ℓ ∣∣E[U ℓ
]
−E

[
U ′ℓ]∣∣2

ℓ!
(the first L moments match)

≤
∞∑

ℓ=L+1

(
ε2mn

)ℓ 1
ℓ!

(
c′ log2 n√

kn

)2ℓ

(|U |, |U ′| ≤ c′ log2 n√
nk

(Lemma 6))

=

∞∑
ℓ=L+1

(
c′2 · log4 n · ε2/k ·m

)ℓ 1

ℓ!
.

Set for convenience κ := c′2 · log4 n ·ε2/k ·m. Notice that κ≪ L when m = o
(

k
ε2 log3 n

)
. Denoting

by Y a Poi(κ) random variable, this leads to

4TV
(
E
[
Poi

(m
n

+ εmU
)]

,E
[
Poi

(m
n

+ εmU ′
)])2

≤
∞∑

ℓ=L+1

κℓ

ℓ!
= eκ Pr[Y ≥ L+ 1 ]

≤ eκe−
(L+1−κ)2

2(L+1) = e
− 1

2

(
L+1+ κ2

L+1

)
≤ e−

L
2 ,

where the second inequality is by standard Poisson concentration (see, e.g., the note [Can]) and
E[Y ] = κ≪ L. This immediately gives

TV
(
E
[
Poi

(m
n

+ εmU
)]

,E
[
Poi

(m
n

+ εmU ′
)])
≤ 1

2
e−L/4 (24)

Combining Equations (23) and (24) then yields

TV (PN , P ′
N ) ≤ n · e−L/4 = n · e−c logn/4 < 1/4.

for sufficiently large c. By Le Cam’s Lemma, no algorithm can distinguish between the two
distributions as constructed in Equation (20) with probability more than 3/4 + 2/100 < 9/10 when
m = o

(
k

ε2 log3 n

)
under the Poissonization model.
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B.3 Proof of Lower Bound in Theorem 1

Proof of Lower Bound Part of Theorem 1. By Proposition 2, it holds that mpoi
hist ≥ Ω(k/(ε2 ·log3 k)+√

kn/(ε · log k)). We proceed to argue for sample complexity lower bound under standard sampling.
Suppose we are given a tester for fixed sample size such that it succeeds with high probability as
long as it is given more than m∗ samples. Assume that we want to use it to test whether an unknown
measure P is a k-histogram under Poisson sampling model with m̃ ∼ Poi(mpoi

hist(n, ℓ, ε) ∥P∥1)
samples. We can construct an estimator which invokes the fixed sample size tester whenever m̃ ≥ m∗

and outputs fail otherwise.

By our lower bound result for the Poisson sampling model, the estimator fails with probability at
least 1/10. On the other hand, the estimator based on the fixed-sample tester succeeds with high
probability whenever m̃ > m∗. Together this implies that

m∗ ≥ (1− ν) ·m ·
(
1−O

(
(1− ν)−1 ·m− 1

2

))
,

where m := mpoi
hist(n, ℓ, ε, ν). Since ν < 1, it then holds

m∗ > Ω(1) ·mpoi
hist(n, ℓ, ε, ν) ≥ Ω(k/(ε2 · log3 k) +

√
kn/(ε · log k)).

Finally, we remark that the standard lower bound construction and analysis for uniformity testing
can be shown to still apply to testing k-histograms (see [Can16, Proposition 4.1]), making formal the
intuitive statement that testing whether a distribution is a k-histogram is at least as hard as testing
whether a distribution is uniform. This shows that we also have m∗ ≥ Ω(

√
n/ε2), and concludes the

proof.

C Application to Model Selection

In this section, we detail how our testing algorithm, by a standard reduction, can be used for model
selection, i.e., to select a suitable parameter k in order to succinctly represent the data.
Theorem 7. There exists an algorithm which, given samples from an unknown distribution p on [n],
an error parameter ε ∈ (0, 1], and a failure probability δ ∈ (0, 1], outputs a parameter 1 ≤ K ≤ n
such that the following holds. Denote by 1 ≤ k ≤ n the smallest integer such that p ∈ Hn

k . With
probability at least 1−δ, (1) the algorithm takes Õ((

√
n+k)/ε2 ·log(1/δ)) samples, (2) 1 ≤ K ≤ 2k,

and (3) p is at TV distance at most ε from some H ∈ Hn
K . Moreover, the algorithm runs in time

poly(m), where m is the number of samples taken.

Before proving the theorem, we discuss the various aspects of its statement. (1) guarantees that, with
high probability, the algorithm does not take more samples than what it would if it were given k and
just needed to test whether it was the right value. Moreover, as most tasks on k-histograms require
at least a number of samples growing linearly in k, this guarantes that whenever k ≫

√
n the cost

of the model selection step is negligible in front of all subsequent tasks. Item (2), ensures that the
output of the algorithm is a good approximation of the true, optimal value k; that is, that the model
selected is essentially as succinct as it gets. Finally, (3) guarantees that even when the output is such
that K ≪ k, the parameter K is still good: that is, approximating p by a K-histogram still leads to a
sufficiently accurate representation (even though it is even more succinct that what the true parameter
k would yield).

Proof. The model selection algorithm is quite simple, and works by maintaining a current “guess” K
as part of a doubling search, and using the tester of to check if the current value is good. Specifically:
for 0 ≤ j ≤ ⌈log2 n⌉, run the testing algorithm of Theorem 1 (Divide-And-Learn-And-Sieve) with
parameters n, ε, 2j , and δj :=

δ
2(j+1)2 . If the testing algorithm returns Accept, then return K := 2j

and stop; otherwise, continue the loop.

Let L ≤ ⌈log2 n⌉ be the number of iterations before the algorithm stops. By a union bound, the
probability that all L invocations of the testing algorithm behaved as they should is, by a union bound,
at least

1−
L∑

j=0

δj = 1−
L∑

j=0

δ

2(j + 1)2
≥ 1−

∞∑
j=0

δ

2(j + 1)2
≥ 1− δ.
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Condition on this being the case. Since the algorithm, as soon as j ≥ ⌈log2 k⌉, returns Accept (since
then p ∈ Hn

2j ), we get that L := ⌈log2 k⌉, and that the output satisfies K ≤ 2k, giving (2). Moreover,
if K < k, then by the guarantee of the testing algorithm this means that p was not ε-far fromHn

K ,
showing (3). Finally, the sample complexity is then

L∑
j=0

Õ

(√
n

ε2
log

1

δj
+

2j

ε2
log

1

δj

)
= Õ

(√
n

ε2
+

k

ε2

)
log

1

δ

since L = O(log k). This shows (1), and concludes the proof.

As a final remark, we note that the guarantee provided in (2) can be improved to the optimal
1 ≤ K ≤ k, by modifying slightly the above procedure. Namely, after finding some K such that
1 ≤ K ≤ 2k as before, one can run the testing algorithm for K/2 ≤ i ≤ K (not a binary search
anymore), each time with parameters n, ε, i, and δi = δ/K. By a union bound, this incurs an extra δ

probability of failure, and an additional Õ
(
(
√
n+ k)/ε2 · log(1/δ)

)
samples overall, but now the

output after this second step will be guaranteed to be at most k (with high probability).
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